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Background
Multiple sequence alignment (MSA) is a fundamental task required by most genomic 
analyses, with a multitude of alignment tools already available. Due to the inherent com-
putational complexity of MSA inference, several heuristics have been proposed. The pro-
gressive approach is one of popular strategies that involves aligning pairs of sequences or 
alignments from the tips towards the root along the tree structure that represents the 
evolutionary relationship of the input sequences (i.e., the tree leaves). At each internal 
node a dynamic programming instance (DP) aligns the partial solutions present in its 
two child nodes. In general, the partial MSA solutions at each inner node and hence 
also the final MSA at the tree root correspond to the local optima obtained by maximiz-
ing the partial solution in a smaller space spanned by local pairwise alignments. This 
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approximation is however widely accepted and represents the status quo today. Typically 
the DP algorithm scales quadratically with the average length of the sequences [1, 2].

Classically, however, aligners only consider substitutions and the length distribution 
of the observed sequence gaps. These methods typically do not explicitly model the 
evolution of indels (insertions/deletions). This shortcoming can lead to a disconnect 
between the history of indel events and the phylogenetic relationship of the sequences, 
and the consequent visible distortions are over-alignment (i.e., artificially short align-
ments). Among notable exceptions are PRANK [3] and PrographMSA [4], but both 
account for indel evolution algorithmically rather than using an explicit mathematical 
model. The inclusion of more complicated scenarios requires that the underlying evo-
lutionary model is more sophisticated, which almost always goes along with a greater 
computational complexity. A typical example of an explicit indel model that represented 
a paradigm shift was the TKF91 model [5] whose calculation of the marginal likelihood 
requires an exponential time in the number of sequences, or the more recent Poisson 
Indel Process PIP [6] that reduced the complexity to linear. Whilst TKF91 and PIP are 
mathematically very different, both models explicitly describe indel evolution directly on 
a phylogeny.

The PIP model has been proposed as a new evolutionary model together with formu-
las to efficiently calculate the marginal likelihood given unaligned sequences, the evolu-
tionary parameters and a tree that relates the input sequences. This makes it possible to 
measure the goodness of fit of this model to a pool of candidate MSAs given the model 
parameter. The candidate with the highest optimised log-likelihood is considered to be 
the best description of the unaligned data under a fixed model. Recently we developed 
a progressive MSA inference method that generates MSA candidates and scores them 
under the PIP model [7]. It was shown that this method, therefore, infers gaps in a phylo-
genetically consistent and meaningful way. In addition, the use of an explicit indel model 
allows to make inferences about the rates of insertions and deletions, replacing the need 
for gap penalty parameters, which are known to be difficult to set and interpret.

Implementation
Here we present the ProPIP software, which implements our originally published pro-
gressive MSA inference method based on PIP [7], and also introduces new features, such 
as stochastic backtracking and parallelisation (as described below). According to the PIP 
model, insertions are Poissonian events on a phylogeny that add single characters to a 
sequence. Once inserted, a character evolves via a continuous time Markov process of 
substitutions and deletions along the phylogeny relating the sequences. The intensity of 
insertions and deletions is parameterized by two rates that determine the type of homol-
ogy and consequently the gap pattern in the final alignment. By modifying these param-
eters different homology hypotheses can be compared in a model-based framework. 
Thus, instead of the traditional gap penalties (which are typically set arbitrarily), the 
parameters used by ProPIP are the insertion and deletion rates, which have biological 
interpretation and are contextualized in a probabilistic environment.

ProPIP can align both nucleotide and protein sequences. The overall complexity of our 
progressive algorithm is O(Nl3) , for N taxa and an average input sequence length l. Fur-
ther running time reductions are possible. For example, recently we proposed a strategy 
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to accelerate alignment inference by trimming the original DP matrix [8]. The method is 
implemented in the frequentist framework, where log-likelihood scores under PIP are 
used as an optimality criterion. In a progressive fashion, ProPIP traverses a guide tree 
phylogeny from the leaves towards the root according to one of the two different modes: 
(1) using the Dynamic Programming (DP), and (2) using the Stochastic Backtracking 
version (see also Fig. 1. These are briefly described below.

Dynamic programming

ProPIP proceeds progressively from leaves towards the root of a guide tree. By default, 
at each internal node the algorithm aligns the evolutionary histories in the left and right 
subtrees by full maximum likelihood (ML) using DP, to obtain the homology history at 
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Fig. 1  Algorithm scheme. At each internal node of the guide tree an instance of the algorithm aligns the 
homology paths of the two sub-alignments present in the children nodes. Each instance of the aligner 
requires 3 sparse three-dimensional DP matrices for Match, GapX and GapY (shown in the figure). These 
matrices contain the column by column likelihood of the 3 respective states. The state, among the 3 
possible choices, with the highest likelihood is saved in a fourth traceback matrix (not shown). At the end, 
the final MSA is generated by traversing the traceback matrix backwards following the path that generates 
the highest likelihood at each step. GapX and GapY states require a marginalization of multiple possible 
homology paths. Some of these are highlighted in the figure. The existence of a character is illustrated by the 
coloured strokes on the trees
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the current node. More specifically, at each node the likelihood computation marginal-
izes over all possible indel and substitution scenarios given the sub-alignments obtained 
for the child nodes in the previous steps of the progressive algorithm. This includes 
homology histories where all characters have been deleted, i.e. unobserved or “empty” 
columns. In a given node, any two MSA columns from the child nodes can be aligned 
in three ways: either they matched, or any of the two columns is aligned with a column 
full of gaps. Each of these three states can in turn imply a number of scenarios which, 
depending on the depth of the tree and the number of gaps present, can also be large. 
The algorithm computes the likelihood for each of the three scenarios, In particular, we 
consider all possible places where a character may have been inserted along the phylog-
eny and all possible points where it may have been deleted. All these homology paths are 
listed and marginalised into a single likelihood value, without having to make a choice of 
one scenario (e.g. based on parsimony or ML).

Our DP is locally optimal, i.e. in each internal node the two sub-alignments are aligned 
by full ML. Progressive application of DP, however, does not lead to a globally optimal 
solution. To overcome this greedy behaviour, we have enhanced our method with SB 
- stochastic backtracking [9], adapted to the PIP model.

Stochastic backtracking

SB provides an ensemble of sub-optimal candidate solutions, distributed according to 
their individual probabilities. During progressive alignment with the SB option, SB is 
applied at each internal node. Instead of aligning only the optimal histories at the two 
children, the aligner generates an ensemble (e.g. alignment.sb_solutions=4) of 
histories combining samples from the distributions at the children nodes. Therefore, the 
SB version of the algorithm reduces the chances to be trapped in local optima produced 
by the greedy nature of the default progressive DP.

SB is parameterised by a temperature T (e.g. alignment.sb_temperature=0.8), 
which tunes the deviation from the optimal alignment. For T = 0 SB returns the opti-
mal alignment, falling back to classical DP. By setting T → ∞ , each alignment becomes 
equiprobable and the solution is therefore random. In the range 0 < T < ∞ the param-
eter controls the deviation from the optimal alignment allowing, gradually, the genera-
tion of sub-optimal alignments.

Substitution models

ProPIP can align either nucleotide (alphabet=DNA) or amino acid 
(alphabet=Protein) sequences, based on different substitution models avail-
able in the Bio++ library [10]. Among these are the nucleotide models are JC69, K80, 
HKY85, and GTR, and the amino acid models JTT, WAG, and LG. All models are 
extended with PIP. For a complete list of the substitution models available see the Bio++ 
documentation.

In addition, users can choose to account for Across-Site Rate Variation (ASRV), which 
is implemented as a discretised Ŵ distribution (default), or alternatively as exponential or 
Gaussian distributions, with user-defined number of discrete categories.
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Initial tree and indel rate inference

Providing a reasonable initial guide tree [11] and indel rates helps to make the MSA 
inference more accurate. These can be provided by the user when known. If the guide 
tree is not provided then ProPIP first computes a distance matrix from the pairwise 
alignments which is then used to infer a guide tree as a rooted BioNJ tree [10, 12].

The same applies to indel rates (insertion rate and deletion rate), which are inferred 
from the data when not provided by the user. We compute the initial indel rate values 
of the PIP model from pairwise alignments using the Needleman-Wunsch algorithm 
with gap opening and extension penalties for nucleotide sequences and a Grantham 
distance-based scoring method for amino acids [13]. The indel rates are calculated 
from the pairwise alignments as follows. The phylogeny and indel rate parameter 
values imply expectations on the number of gap/non-gap states (or gap patterns) in 
alignments. Each position in a pairwise alignment belongs to one of three possible 
patterns: either no gap is present, or a gap is present in one of the two sequences. 
Given that we need to estimate two parameters ( � and µ ) this leads to an overdeter-
mined system of equations. We solve this system for each pairwise alignment using 
a non-linear least-squares algorithm [14, 15]. Then we take an average over all esti-
mates to obtain the indel rates for the progressive alignment.

Finally, the various indel rates are averaged to obtain the initial insertion and dele-
tion rate. The estimated indel rates eventually determine the resulting MSA gap 
pattern.

Parameter optimization

ProPIP allows the optimisation of model parameters, such as indel rates or the instan-
taneous substitution rates between characters. These features are inherited from 
Bio++ libraries. When requesting parameter optimisation, the system automatically 
instantiates the appropriate OptimizationTools class object. As input, this object 
receives a pointer to the likelihood function, which can be evaluated under PIP if 
the user wishes to invoke this evolutionary model. It is also possible to specify the 
maximum number of iterations or a tolerance value at which the optimisation ends. 
The user can monitor the optimisation progress and the final values in the two files 
“profiler” and “messenger”. Among the various Bio++ functions that ProPIP couples 
with the PIP model are the Brent and BFGS optimisation routines. In both cases the 
method optimises all parameters until convergence, respecting the requested thresh-
olds or the maximum number of steps. If, on the other hand, the user desires to fix 
parameters at given values, this can be specified via the “None” optimisation option.

The syntax is the following: optimisation=ND-Brent(derivatives=Bre
nt,nstep=1000). It is also possible to specify which parameters to ignore, for 
example if the user wants to optimise the insertion rate � and the deletion rate µ but 
not κ of the K80 substitution model then the following should be specified: optimi-
sation.ignore_parameter = K80.kappa. For more details see the wikipages 
on our github website and the Bio++ manual.
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Parallelization

To reduce the computational time, ProPIP was parallelised. We use the open source 
version of Intel Thread Building Blocks library available at https://​github.​com/​oneapi-​
src/​oneTBB, which can be activated by the user (see documentation). The following 
parallelisation options are provided:

parallel_for: In this option, for-loops have been rewritten to exploit 
tbb::parallel_for loops provided by Intel TBB. This loop instruction allows to 
split the looping range into smaller chunks that are then executed in parallel by TBB’s 
tasks. This approach has been applied to the vector and matrix initialization loops 
and to the actual dynamic programming forward phase, where the likelihood matrices 
are computed and the maximum likelihood score is sought. To preserve the optimisa-
tion algorithms in the parallel execution context, the local optimum comparison and 
variable update have been protected using a locking mechanism (tbb::mutex). The 
necessity of this lock clearly influences and limits the achievable parallelism of this 
approach.

TBB Task: The TBB Task optimization provides more flexibility during the paralleli-
zation. Instead of parallelizing the internal loops this approach focuses to parallelize 
each node. The tree topology is processed in a post-order traversal, from the leaves 
towards the root of the tree. Starting from the root node each node creates 2 tasks (1 
for each child node) and executes them in parallel before doing its own processing. 
This recursive process is repeated until the leafs of the binary tree are reached and the 
actual execution begins. Each node is executed as a separate parallel task, which leads 
to a more dynamic parallelism. Table  1 shows the speed-up values for some n-taxa 
trees and as the number of columns to be aligned increases. The speed-up factor 
improves when increasing the number of taxa while it remains constant when aug-
menting the number of columns.

Thread control: to have a better control of the parallel execution environment it is 
possible to limit the number of threads the TBB library will create and use to execute 
the parallel tasks. Finally, also thread pinning can be enabled, which allows to specify 
the CPUs the threads will be assigned to.

Table 1  The table shows the computational times as a function of the number of taxa and the 
number of columns to be aligned

The times are given in minutes for the single core version; TBB Task; parallel_for and in brackets the relative speed-up values

taxa\cols 100 200 400 800

8 0.005; 0.004; 0.003 
(1.18; 1.37)

0.049; 0.035; 0.032 
(1.40; 1.55)

0.383; 0.270; 0.268 
(1.42; 1.43)

2.675; 1.769; 1.842 (1.51; 
1.45)

16 0.011; 0.005; 0.005 
(2.17; 2.24)

0.120; 0.057; 0.059 
(2.11; 2.02)

0.750; 0.338; 0.357 
(2.22; 2.10)

5.604; 2.624; 2.630 (2.14; 
2.13)

32 0.021; 0.008; 0.014 
(2.53; 1.49)

0.149; 0.061; 0.056 
(2.46; 2.65)

1.374; 0.456; 0.458 
(3.01; 3.00)

10.630; 3.530; 3.929 (3.01; 
2.71)

64 0.037; 0.013; 0.012 
(2.85; 3.14)

0.407; 0.123; 0.116 
(3.31; 3.50)

2.612; 0.743; 0.737 
(3.52; 3.54)

22.855; 6.220; 6.925 (3.67; 
3.30)

128 0.138; 0.037; 0.030 
(3.76; 4.52)

0.966; 0.222; 0.214 
(4.36; 4.52)

5.711; 1.282; 1.210 
(4.46; 4.72)

49.183; 10.344; 11.060 
(4.75; 4.45)

256 0.281; 0.046; 0.051 
(6.15; 5.55)

2.064; 0.320; 0.317 
(6.45; 6.51)

11.694; 2.171; 1.929 
(5.39; 6.06)

98.428; 17.529; 16.762 
(5.62; 5.87)

https://github.com/oneapi-src/oneTBB
https://github.com/oneapi-src/oneTBB
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Results
Our previously published results [7] show that ProPIP does not over-align. Here we add 
additional experiments to illustrate this with the “distant” data from [3]. Specifically, it 
was generated with MySSP v.1 [16] by evolving a sequence of 1000 nucleotides under 
JC69 model [17] on a symmetrical 16-taxon tree with equal branch lengths of 0.075 
expected substitutions/site and with the constraint of a maximum pairwise distances 
0.6. The indel sizes were Poisson-distributed with averages of 1.7 bases. The synthesised 
dataset was aligned with both MAFFT [18] (default settings) and ProPIP, using the true 
tree as a guide tree. In ProPIP the indel rates have been inferred from the non-aligned 
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Fig. 2  Overalignment example block #1. This figure shows the true MSA (top) obtained as described 
in section Results, the alignment obtained with MAFFT (middle), and with ProPIP (bottom). The 3 MSAs 
represent a portion of the entire alignment, namely columns 1–116, 1–107, and 1–114 for true, MAFFT, and 
ProPIP, respectively. For ProPIP we selected the MSA with the highest likelihood and not the one with the best 
Q score [20]. It can be noted that MAFFT tends to over-align, while the gap pattern resulting from ProPIP is 
more compatible with the true MSA. The similarity value (AlignStat v1.3.1 [19]) are 75% for MAFFT and 82% for 
ProPIP [27]. Column by column similarity values are shown under true MSA for both aligners
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Fig. 3  Overalignment example block #2. The 3 MSAs represent columns 1001–1188, 933–1108, and 985–
1169 for true, MAFFT, and ProPIP, respectively. Analgously to Fig. 2, MAFFT produces a too short alignment 
while ProPIP is closer to the true MSA on top. The similarity value (AlignStat v1.3.1 [19]) is for MAFFT 81% while 
ProPIP 86% [27]. Column by column similarity values are shown under true MSA for both aligners. See also 
Fig. 2
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sequences (as described above in paragraph Initial tree and indel rate inference). Com-
pared to the true MSA consisting of 1213 columns, MAFFT (with option ep 0.0 to allow 
longer indels) inferred an MSA with 1146 columns, while ProPIP inferred a longer MSA 
with 1193 columns. Figs. 2, 3 show the comparison of the three MSAs focusing on two 
homologous blocks—the first at the beginning of the MSA and the second at its end. 
Quality scores have been calculated with the AlignStat [19] and Q-score [20, 21]. It can 
be observed that MAFFT over-aligns sequences while ProPIP generates alignments with 
a gap pattern more compatible with the true MSA. It is worth noting, however, that for 
both aligners this is a relatively complicated case where the sequences are distant from 
each other. By adjusting indel-related parameters (i.e., gap penalties or indel rates) of 
the alignment program, one can potentially change the inferred gap pattern. Neverthe-
less, even with indel rates that deviate from optimal values, ProPIP does not overalign 
and produces high quality MSA. In order to demonstrate the robustness of ProPIP to 
changes in insertion � and deletion µ rates we re-aligned the synthetic dataset 50 times, 
by introducing an increasing noise level pi from 1% to 50% to the input indel rate values. 
For each pi we have generated 50 uniform random samples of pairs of {�,µ} within the 
region [�− � · pi, �+ � · pi, ] and [µ− µ · pi,µ+ µ · pi, ] , respectively.

Figures 4 and 5 show the lengths of the 2500 resulting MSAs and the relative quality 
scores (Cline et al. shift score [21]), the used indel rates are shown in Fig. 6. This experi-
ment shows that compared to MAFFT, our aligner always infers MSAs that are longer 
and closer to the true MSA length and of a better quality, despite large deviations in 
input indel rates.
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Fig. 4  MSA length. The length of the 2500 MSAs obtained by increasingly perturbing the indel rates is 
represented by the black dots. The length of the reference MSAs and the length of the alignment obtained 
with MAFFT have also been added (dashed colored lines). ProPIP proves to be robust to a sustained 
disturbance of indel rates from the overalignment problem perspective
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Discussion and conclusion
Popular state-of-the-art alignment software typically relies on gap penalties and modi-
fying them visibly affects the inferred gap patterns. How to set these appropriately for 
a given dataset is unclear. The usual practice is using default values, which are inferred 
by software developers empirically, for example based on real data benchmarks. How-
ever, benchmarking and tuning MSA inference is known to be notoriously difficult [22]. 
Default gap penalties may not be appropriate for individual datasets [23]. In addition, 
they are generally not phylogenetically interpretable.
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Fig. 5  Quality score. The 2500 MSAs obtained as described in the Results section have been scored with 
qscore [20]. The quality scoring (Cline et al. shift score [21]) is represented with black dots while as a reference 
(dashed line) we have also added the score obtained by MAFFT alignment (using ep equal to 0). ProPIP 
proves to be very robust to a sustained disturbance of indel rates also from the MSA quality point of view
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Fig. 6  Indel rates ( µ and � ). This figure represents the 2500 insertion rate and deletion rate values related to 
the simulations described in Results



Page 10 of 12Maiolo et al. BMC Bioinformatics          (2021) 22:518 

In contrast, gap patterns inferred by ProPIP are controlled by insertion and deletion 
events that are mathematically described by a generative evolutionary process. There-
fore, gap patterns inferred by ProPIP are phylogenetically consistent and require no 
a priori chosen gap costs. Instead, the initial indel rates are computed from the input 
sequences at hand and eventually can be optimised (for example by maximum likeli-
hood). The resulting indel rates and events are biologically meaningful and, moreover, 
are dataset specific, i.e., they allow to accommodate any special features of an indi-
vidual dataset, rather than relying on generic indel values.

The popular aligner PRANK was the first to correct for over-alignment using an 
algorithmic approach to distinguish insertions from deletions. MAFFT followed up 
with a different approach, based on using variable scoring matrix for different pairs or 
groups of sequences. ProPIP, the software presented here, avoids the over-alignment 
problem by using the explicit model to describe indel evolution over time.

Previously, we showed that both PRANK and our PIP-based methods produce high 
quality and phylogenetically consistent alignments of similar length, but vary in the 
inferred gap pattern [7]. The availability of an explicit model of indel evolution makes 
ProPIP a useful tool for systematic statistical inferences regarding the indel rates and 
events history.

On the other hand, one may rightfully doubt whether an MSA inference method 
based on a single-residue indel model like PIP is capable of inferring long gaps. While 
this will be the subject of a separate large-scale systematic study, our preliminary 
results show that ProPIP does infer long gaps when these are suggested by the data 
[24].

Through the phylogeny-aware explicit description of indel evolution, the PIP model 
leads to more plausible MSAs than more traditional methods relying on arbitrary gap 
penalties. ProPIP avoids overalignment, estimate indel rates, and infers gap patterns 
that are consistent with the phylogeny. Overall, this leads to results that have a proper 
biological interpretation. Note that phylogenetic aligners are sensitive to the quality 
of the guide tree and are likely to perform rather poorly on structural benchmarks 
[25, 26]. For this reason, it is essential that tree inference is also performed under a 
robust evolutionary model. A future goal is to infer phylogenies under PIP so that 
the MSA and tree share a consistent model. Finally, model-based alignment methods 
like ProPIP facilitate future developments towards the quantification of uncertainty in 
inferred MSA columns and in the estimates of parameter values.
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