
FASTAFS: file system virtualisation of random
access compressed FASTA files
Youri Hoogstrate1,2,3* , Guido W. Jenster2 and Harmen J. G. van de Werken2,3,4

Background
FASTA is a file format used for storing nucleotide and amino acid polymeric sequences
and is compatible with a high variety of bioinformatics software. It is used as database
for ribosomal RNA sequences but also for eukaryotic reference genomes and protein
databases, that can be several gigabytes in size. In contrast to for example the GenBank
format, it offers limited support for metadata. Corresponding supplementary (fai-)
index files are used to achieve random access by providing the sequence length, padding

Abstract

Background: The FASTA file format, used to store polymeric sequence data, has
become a bioinformatics file standard used for decades. The relatively large files require
additional files, beyond the scope of the original format, to identify sequences and to
provide random access. Multiple compressors have been developed to archive FASTA
files back and forth, but these lack direct access to targeted content or metadata of the
archive. Moreover, these solutions are not directly backwards compatible to FASTA files,
resulting in limited software integration.

Results: We designed a linux based toolkit that virtualises the content of DNA, RNA
and protein FASTA archives into the filesystem by using filesystem in userspace. This
guarantees in-sync virtualised metadata files and offers fast random-access decom-
pression using bit encodings plus Zstandard (zstd). The toolkit, FASTAFS, can track all
its system-wide running instances, allows file integrity verification and can provide,
instantly, scriptable access to sequence files and is easy to use and deploy. The file
compression ratios were comparable but not superior to other state of the art archival
tools, despite the innovative random access feature implemented in FASTAFS.

Conclusions: FASTAFS is a user-friendly and easy to deploy backwards compatible
generic purpose solution to store and access compressed FASTA files, since it offers file
system access to FASTA files as well as in-sync metadata files through file virtualisation.
Using virtual filesystems as in-between layer offers format conversion without the need
to rewrite code into different programming languages while preserving compatibility.

Keywords: FASTA, FASTAFS, Integrity, FUSE, Zstd, Metadata, Random access,
Virtualisation

Open Access

© The Author(s) 2021, corrected publication 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in
a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of
this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Hoogstrate et al. BMC Bioinformatics 2021, 22(1):535
https://doi.org/10.1186/s12859-021-04455-3 BMC Bioinformatics

*Correspondence:
yhoogstrate@erasmusmc.nl
1 Department of Neurology,
Erasmus University Medical
Center, Dr. Molewaterplein
40, 3015 GD Rotterdam, The
Netherlands
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0003-2166-0676
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04455-3&domain=pdf

Page 2 of 12Hoogstrate et al. BMC Bioinformatics 2021, 22(1):535

corrected file positions and padding and line length. This is static information that is
embedded in the FASTA file, which is extracted after generating the FASTA file.

Scientific demand for reproducibility and interoperability of both software applica-
tions and data is growing strongly and as a result unique identification and data integrity
play a critical role. For instance, in the CRAM data format Next Generation Sequencing
(NGS) alignments are compressed relative to a reference sequence. In this format, these
reference sequences are addressed using their unique identifier for interoperability. With
this identifier, the corresponding sequence can be obtained directly using the online
European Nucleotide Archive (ENA) service1, preserving the intrinsic link between the
data file and the reference sequences. Because real-time computation of identifiers can
be computationally expensive, they are stored in supplementary dictionary files (*.dict).
Dict-files are, like fai-index files, beyond the scope of the original file format and have to
be generated and maintained after obtaining the FASTA file.

Software applications make use of FASTA files as input in two different manners:

• First, a tool reads a FASTA file in a streaming manner: sequentially and in one-
direction, starting with the first character in the file. For example, short-read align-
ment algorithms but also motif-scanners that iteratively search for a given motif [1]
across a sequence, read a FASTA file sequentially into the memory before building an
index [2, 3]. Similarly, Single-Nucleotide Polymorphism (SNP) detectors may iterate
sequentially over a FASTA file [4].

• Second, a tool reads a FASTA file in a random-access manner by starting at an
arbitrary location in the file and having the possibility to make jumps through the
file, forwards but also backwards. The precise file coordinates are typically calcu-
lated using the fai-index file. For example, a request to a genomic region within a
genome browser is such a random-access request, since a next query can be expected
at any genomic location. If underlying FASTA file access does not support jumping
through a file, it is necessary to copy a file entirely into memory. This procedure is
resource intensive and can slow a process significantly. Bioinformatics tools that rely
on random-access in FASTA files are for i.e. JBrowse [5], samtools mpileup for Var-
Scan2 [6]. But also tools for quick file operations such as SeqKit [7], GATK [8] and
Picard [9] rely on random-access, of which the latter two require dict-files as well.

Compression

The simplicity of the FASTA format makes it highly convenient to work with. The trade-
off is the requirement of the additional fai-index and dict-files, as well as having a rela-
tively large file size. The large file size issue has been tackled by various compression
methods [10–12]. Although modern compressors achieve high compression ratios, most
bioinformatics applications that require FASTA files are only rarely compatible with
compressed equivalents. The only exception is occasional compatibility with gzipped
FASTA, a generic purpose compressor which is limited to streaming use-cases.

1 https:// www. ebi. ac. uk/ ena/ cram/ swagg er- ui. html.

https://www.ebi.ac.uk/ena/cram/swagger-ui.html

Page 3 of 12Hoogstrate et al. BMC Bioinformatics 2021, 22(1):535

Sequence compression algorithms create a compressed file (archive) yielding the com-
pressed content. To use the original data, the archive needs to be fully decompressed
into a temporary FASTA file again, unless the decompression algorithm also provides
an Application Programming Interface (API) in the desired programming language. For
instance, short read compressor DNA Sequence Reads Compressor 2 (DSRC2) [13] pro-
vides an API in C, C++ and Python.

The index algorithm of RNA read aligner STAR [3] can be provided with the path to
any decompression binary as argument and thus offers a generic solution to provide
on-demand de-compression. However, implementing a similar solution in other appli-
cations would only work for applications with streaming instead of random access to
FASTA files. An analogues workaround to avoid file duplication is to make use of
(named) pipes [10]. A pipe is a virtual, one-directional, data stream, that stays in idle as
long as no further data requests come in. This could be the output of a decompressor.
This is resource efficient as data access is chunked, but is not a generic solution as it does
not offer random access. Access to FASTA archives in a random-access use case requires
an available compression API that supports random access explicitly. If these conditions
are not met, the primary goal of compression is then in practice lost.

Currently available bioinformatics applications that make use of FASTA files in a ran-
dom-access setting mostly support only FASTA files and no compressed equivalents.
Therefore, it is in practice necessary to keep a flat copy of a FASTA file with the corre-
sponding the fai-index file. For systems limited to applications with streaming access to
FASTA files, a decompression binary in combination with (named) pipes is an ideal way
to use FASTA archives, although it requires management of metadata files. Instead of
(de)compressing through the classical back and forths file compression binaries, we can
also make use of file virtualisation. In this context, file virtualization functions as layer
between a compressed archive and the virtually mounted FASTA plus metadata files,
which offers multiple advantages over classical (de-)compression binaries

• Virtual files and their system calls are identical to flat file system calls. For command
line tools that are only compatible with FASTA files, such as samtools view -T,
this preserves backwards compatibility, also for random access use-cases.

• There is no need to use additional disk space for temporary decompression and no
need to read entire FASTA files into memory.

• For random access requests, computational resources are only spent on decompress-
ing the region of interest.

• Implementations of compression and decompression in other programming lan-
guages or within other software applications are not needed, as it is backwards com-
patible with flat FASTA files.

• The archive is guaranteed to provide dict- and fai-index files that are in sync with
their FASTA file of origin. This makes additional management of these metadata files
unnecessary.

Making use of virtualization as layer between archive and decompressed content is a
generic purpose solution since it provides file access to both streaming and random access.
Here, we propose FASTAFS, a file archival format and toolkit that allows file integrity

Page 4 of 12Hoogstrate et al. BMC Bioinformatics 2021, 22(1):535

verification and provides unique sequence identifiers by using file virtualization. In addi-
tion, it virtualises FASTA and guaranteed in-sync dict- and fai-index files, from Zstd com-
pressed 2-, 4- or 5-bit encodings.

Implementation
FASTA File System (FASTAFS) file format consists of four blocks: (1) File Header (2)
Per-Sequence-Data (3) Per-Sequence-Header and (4) File Metadata, to efficiently store
sequence and metadata (Fig. 1). During conversion, the metadata flag sets the archives
status to incomplete. Each block of compressed sequence data is followed by the CRAM
format and BAM specification compatible MD5 checksum [14, 15]. In the last phase of
file conversion, file pointers are put in place and the metadata flag is updated to mark the
archives conversion status to complete. The file ends with the CRC32 checksum used for
whole file integrity verification.

Sequence compressor Nucleotide Archival Format (NAF) [10] compresses sequence data
first with a 4-bit encoding followed by generic compressor Zstandard (zstd), but lacks ran-
dom access. Given that NAF achieves high compression ratios [10], FASTAFS was designed
in a similar fashion. It first compresses sequence data to a lower bit encoding, followed by
the random-access implementation of zstd (zstd-seekable). When a sequence consists of
AC[T|U]GN, it is stored in a 2-bit encoding, when it follows the IUPAC DNA/RNA dic-
tionary, it is stored in a 4-bit encoding and when it is a protein sequence it is stored in a
5-bit encoding (Fig. 1).

Fig. 1 Overview of the FASTAFS file format specification. (top) A flowchart of the fastafs cache
procedure. (bottom) The layout of the FASTAFS format consists of four blocks, starting with the file header,
followed by the per-sequence data, the per-sequence header data and a metadata block. The file header has
a file pointer to the per-sequence header block, where each sequence has a file pointer to its data. The file
ends with a metadata block, currently supporting a CRC32 checksum. The raw FASTAFS file is subsequently
compressed with zstd-seekable. The full specification is available on the website: https:// github. com/ yhoog
strate/ fasta fs/ blob/ master/ doc/ FASTA FS- FORMAT- SPECI FICAT ION. md

https://github.com/yhoogstrate/fastafs/blob/master/doc/FASTAFS-FORMAT-SPECIFICATION.md
https://github.com/yhoogstrate/fastafs/blob/master/doc/FASTAFS-FORMAT-SPECIFICATION.md

Page 5 of 12Hoogstrate et al. BMC Bioinformatics 2021, 22(1):535

Toolkit

The Linux based FATSTAFS toolkit is a single executable (fastafs) with different sub-
commands. The package comes also with an executable ‘mount.fastafs’ to mount
through the /etc/fstab table.

Cache: FASTA files can be converted to a FASTFS archive using the ‘fastafs cache’
subcommand (Fig. 1), which adds a reference to the FASTAFS file into a config-file
(Additional file 1: Fig. S1A).

Mount: The ‘fastafs mount’ subcommand is used to mount a FASTAFS archive to
a directory (mount point) to virtualise the FASTA, fai-index, dict- and UCSC TwoBit
files (Additional file 1: Fig. S1A). All files are mounted read-only which guarantees per-
sistency with the identifiers. Mount points can be configured in /etc/fstab which
requires using the binary ‘mount.fastafs’ instead of the binary ‘fastafs’. These
entries can be configured to automatically mount during boot. Upon a file request, the
kernel requests, through the Filesystem in Userspace (FUSE), the FASTAFS toolkit to
provide either file attributes such a timestamps, size or permissions, or to copy real-time
decompressed file content into a buffer.

In addition, FASTAFS provides filesystem access to query partial sequences using
a subsequence identifier as filename in the ‘seq’ subdirectory. For example, the file
<mountpoint>/seq/chr1:10-20 contains only the 10th up to the 20th nucleotide
of chr1, without additional characters such as newlines or spaces. Subsequently, request-
ing the file size of <mount point>/seq/chr1 will provide its size in nucleotides.
Indeed, these additional features do not solve backwards compatibility issues, but do
provide virtualised random access by functioning as programming language independ-
ent API implemented at filesystem level.

List: The ‘fastafs list’ command gives an overview of the FASTAFS archives,
their alias, number of sequences, format, compression ratio and all active mount points
(Additional file 1: Fig. S1A).

View: Besides mounting, the FASTA contents can be decompressed to stdout using
‘fastafs view’, of which the padding can be set to a desired value and masking can
be virtually disabled. If the archive contains only DNA sequences, the contents can also
be exported to the UCSC TwoBit format (Additional file 1: Fig. S1B).

Info: The ‘fastafs info’ subcommand gives information about the file layout,
sequence size, the per-sequence MD5 checksum and used compression type. This sub-
command can also be used to query European Nucleotide Archive (ENA) [16] whether
the existence of a sequence MD5 checksum can be verified (Additional file 1: Fig. S1C).

Check: The ‘fastafs check’ command checks the file integrity using a CRC32
checksum. Integrity of compressed sequence data blocks can be checked separately
using their MD5 checksums with the ‘--md5’ argument (Additional file 1: Fig. S1D).

Page 6 of 12Hoogstrate et al. BMC Bioinformatics 2021, 22(1):535

Fi
g.

 2
 O

ve
rv

ie
w

 o
f d

iff
er

en
t a

rc
hi

ve
 fi

le
s

si
ze

s.
Co

m
pa

ris
on

 o
f c

om
pr

es
si

on
 ra

tio
s

of
 a

 d
iv

er
se

 s
et

 o
f F

A
ST

A
 fi

le
s

co
m

pr
es

se
d

w
ith

 b
gz

ip
, M

FC
om

pr
es

s,
N

A
F

an
d

FA
ST

A
FS

. T
he

 b
ar

 h
ei

gh
t r

ep
re

se
nt

s
th

e
pe

rc
en

ta
ge

 o
f t

he
 a

rc
hi

ve
s

fil
e

si
ze

 c
om

pa
re

d
w

ith
 th

e
or

ig
in

al
 F

A
ST

A
 fi

le
s

si
ze

. T
he

 tr
an

sl
uc

en
t b

ar
s

on
 to

p
of

 th
e

co
lo

ur
ed

 b
ar

s
re

pr
es

en
t t

he
 c

or
re

ct
ed

 fi
le

 s
iz

e
ne

ed
ed

 to
 s

to
re

 1
6

ad
di

tio
na

l
by

te
s

pe
r-

se
qu

en
ce

 re
se

rv
ed

 fo
r s

to
rin

g
M

D
5

ch
ec

ks
um

s.
W

e
us

ed
 g

en
om

e
re

fe
re

nc
es

 fr
om

 fu
ng

i (
C

M
00

22
40

),
hu

m
an

 w
ith

 a
nd

 w
ith

ou
t a

lte
rn

at
e

lo
ci

 (G
RC

h3
8.

p1
3

an
d

G
RC

h3
8.

pr
im

ar
y_

as
m

),
D

N
A

 (C
ol

ip
ha

ge
 p

hi
-X

17
4:

 N
C

_0
01

42
2)

 a
nd

 R
N

A
 v

iru
se

s
(S

A
RS

-C
oV

-2
: N

C
_0

45
51

2.
2)

, d
at

ab
as

es
 w

ith
 s

m
al

l R
N

A
s

(m
iR

ba
se

 a
nd

 tR
N

A
s)

, S
ilv

a
rR

N
A

 d
at

ab
as

es
 [1

7]
 a

nd
 u

ni
pr

ot
 [1

8]
 fo

r p
ro

te
in

se

qu
en

ce
s

Page 7 of 12Hoogstrate et al. BMC Bioinformatics 2021, 22(1):535

ps: A list of active FASTAFS mount points and their processes is provided by the ‘fas-
tafs ps’ subcommand. The mount point has an extended file attribute (xattr) named
‘FASTAFS-file’ that returns the path to the mounted FASTAFS archive. When a FAS-
TAFS file is mounted to multiple mount points, they are each listed as separate entry
with the corresponding system process id (Additional file 1: Fig. S1E).

Results
FASTAFS format specification, toolkit and GPL-2.0 licensed C ++ code are available at:
https:// github. com/ yhoog strate/ fasta fs

We compared the compression ratios of NAF, bgzip and MFCompress with FASTAFS
(Fig. 2). We then assessed the consumption of the relative number of CPU instructions
needed to access the end, thus the suffix, of a virtualised FASTA file. This showed that
the number of CPU instructions scaled linearly and proportionally to the suffix size
(Fig. 3).

Discussion
FASTAFS compression ratios for FASTA files with relatively few sequences (human ref-
erence genome: GRCh38, SARS-CoV-2 genome primary assembly (RNA): NC_045512.2,
Coliphage phi-X174, complete genome NC_001422, fungus Neurospora crassa genome
reference: CM002240) were comparable to the compression ratios of NAF and MFCom-
press but were overall not superior. For sequences with relatively high numbers of
sequences (miRNA, tRNA or protein databases), compression ratios of FASTAFS files
were typically smaller than the other compressors, in particular for miRbase [19]. These
files are composed of small sequences which result in a substantial contribution of the
sequence names and MD5 checksums to the total archive file size. When the size of the

Skipped instructions
compared to full decompression

0

25

50

75

100

0 25 50 75 10
0

Suffix size of GRCh38.p12.fa FASTAFS archive
(percentage of original file size)

Pe
rc

en
ta

ge
 C

PU
 in

st
ru

ct
io

ns
(li

nu
x−

pe
rf

, r
el

at
iv

e
to

 h
ig

he
st

 v
al

ue
)

Fig. 3 CPU consumption reading suffixes of the FASTA file. The x-axis shows the size of a requested suffix
(tail-c) of GRCh38.p12.fasta virtualised with FASTAFS, piped through to /dev/null. The y-axis shows
the number of CPU instructions by fastafs mount to virtualise the suffix of GRCh38.p12.fasta, as
termined with perf stat. The number of CPU instructions needed to read the FASTA suffix through
FASTAFS scales linearly and proportionally with the suffix size

https://github.com/yhoogstrate/fastafs

Page 8 of 12Hoogstrate et al. BMC Bioinformatics 2021, 22(1):535

archives is corrected with the space needed to store the MD5 checksums (16 bytes per
entry), the FASTAFS compression ratios are again comparable to those of MFCompress
and NAF. Except for protein sequence compression, the most commonly used FASTA
compression method, gzip, has consistently lower compression ratios than all other
compressors.

Obtaining both the FASTA followed by the fai-index starting from a NAF archive took
more CPU instructions than virtual access through FASTAFS (Additional file 1: Fig. S2).
Moreover, classical decompression through a single conversion binary is not linearly
scalable and requires the whole decompressed file to be written to disk. Although this
is not the use-case for which these tools were developed and therefore maybe not repre-
sent the best comparison, these are features that provide high usability.

Ideally, new bioinformatics analysis projects are started with a new folder that
is under version control. This will allow the researcher to integrate FASTAFS with
workflow management systems such as Snakemake [20] or Nextflow [21] as well as
software dependencies by including dependency management configurations. Ulti-
mately, this makes a project portable as it allows users to distribute projects over
multiple locations, share it with other researchers and roll back to previous ver-
sions. Currently, version control for plain FASTA files is inconvenient and redun-
dancy across multiple projects will occur quickly. However, by integrating FASTAFS
mount points and scripts into a workflow management system FASTA files can be
integrated intuitively into a projects’ version control.

FASTAFS archives are currently compressed with a 2-bit, 4-bit or 5-bit encod-
ing, followed by zstd-seekable, resulting in comparable compression ratios to other
known compressors. Indeed, as may be expected from compression supporting ran-
dom access which also need to store their index indexes, FASTAFS compression
ratios were not superior in all cases examined. However, differences in compression
ratios were consistently close to other dedicated compressors and always outper-
formed commonly used gzip, while offering all the FASTAFS advantages has.

FASTFS currently works with per-file aliases and CRAM compatible per-sequence
identifiers. It would be more convenient to integrate FASTA files into workflow
managers by using persistent per-file identifiers combined with a mechanism for
decentralised synchronization of archives. As such additional features would be
helpful, defining a system for per-file identifiers and development of decentralised
file synchronization prompts future work. Overall, FASTFS is a modern and highly
elegant software solution for a user-friendly and easy to deploy generic purpose
solution to store and access to compressed FASTA files.

Multiple system processes can, in parallel, request data from the same FAST-
SAFS mount point. The current implementation is single-threaded per filehandle,
but thread-safe. Thread safety is required because the Linux kernel is not guaran-
teed to request data sequentially during sequential reads. These non-sequential data
requests will make optimization of FASTAFS for multi-threading more complicated,
but will be a logical and important next step.

Page 9 of 12Hoogstrate et al. BMC Bioinformatics 2021, 22(1):535

Fi
g.

 4
 S

cr
ee

ns
ho

t s
ho

w
in

g
co

m
pa

tib
ili

ty
 w

ith
 ’s

am
to

ol
s

vi
ew

’ fo
r C

RA
M

 fi
le

s.
Th

e
rig

ht
 p

an
el

 s
ho

w
s

an
 a

ct
iv

e
f
a
s
t
a
f
s

m
o
u
n
t

 p
ro

ce
ss

 w
ith

 d
eb

ug
 m

es
sa

ge
s

en
ab

le
d,

 m
ou

nt
in

g
th

e
hg

19

FA
ST

A
FS

 a
rc

hi
ve

 to
 ./

m
nt

_h
g1

9.
 T

he
 le

ft
 p

an
el

 s
ho

w
s

th
re

e
sa

m
to

ol
s

op
er

at
io

ns
: C

om
m

an
d

1
sh

ow
s

th
e

or
ig

in
al

 S
A

M
-fi

le
. C

om
m

an
d

2
ru

ns
 th

e
sa

m
to

ol
s

co
nv

er
si

on
 fr

om
 S

A
M

 to
 C

RA
M

, r
eq

ui
rin

g
th

e
m

ou
nt

ed
 F

A
ST

A
 fi

le
 b

y
th

e
m

ou
nt

 p
ro

ce
ss

 (r
ig

ht
 p

an
el

).
Co

m
m

an
d

3
sh

ow
s

th
e

co
nt

en
ts

 o
f t

he
 C

RA
M

 fi
le

. T
he

 C
RA

M
 fi

le
 la

ck
s

ac
tu

al
 s

eq
ue

nc
e

da
ta

, w
hi

ch
 s

am
to

ol
s

ne
ed

s
to

 e
xt

ra
ct

 fr
om

 th
e

FA
ST

A
 fi

le
 m

ou
nt

ed
 in

 th
e

rig
ht

 p
an

el
. T

he
 F

A
ST

A
FS

 m
ou

nt
 p

ro
ce

ss
 (r

ig
ht

) s
ho

w
s

th
at

 s
am

to
ol

s
ha

s
re

qu
es

te
d

ac
ce

ss
 to

 b
ot

h
./m

nt
_h

g1
9/

hg
19

.fa
 a

nd
 ./

m
nt

_h
g1

9/
hg

19
.fa

.fa
i

Page 10 of 12Hoogstrate et al. BMC Bioinformatics 2021, 22(1):535

Conclusions
The FASTA file format is used to store biological polymeric sequence data in an easy-
to-use format that has become a file standard in bioinformatics. Static information is
embedded within each file, but needs to be extracted and stored in additional files to
complement the FASTA file. Previous methods have specifically focused on the most
efficient compression possible, but not on backwards compatibility, interoperability, ran-
dom access and inclusion of (static) metadata. This is the most probable explanation why
gzip, a generic purpose compression method that is suboptimal for this data type, is the
most common integrated archive type in bioinformatics applications that use FASTA as
input.

To address this, we developed FASTAFS, a toolkit to virtualise FASTA archives along
with their metadata files into the file system. The implementation makes use of the zstd-
seekable compression library, which makes random access to the virtual FASTA files
possible. FASTAFS comes with a feature rich toolkit that can manage the archives, their
locations, their file integrity and provides file access in a backwards compatible manner
to regular FASTA file access. This allows the archives to be used with existing software,
such as samtools (Fig. 4), without the need for adaptation for compatibility or without
requiring the presence of APIs or without requiring to fully decompress data to disk
before accessing it. FASTAFS is a modern, versatile and elegant solution for storage of
sequence data that is therefore easy to use, and can optionally be extended with other
related file formats.

Abbreviations
API: Application programming interface; DSRC2: DNA sequence reads compressor 2; ENA: European nucleotide archive;
FUSE: Filesystem in userspace; NAF: Nucleotide archival format; NGS: Next generation sequencing; SNP: Single-nucleo-
tide polymorphism; Zstd: Zstandard.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 021- 04455-3.

Additional file 1. Supplementary Figures.

Acknowledgements
We would like to thank Job van Riet for valuable scientific discussions regarding this work.

Authors’ contributions
YH designed and implemented the project, HW and GJ provided feedback and assisted in writing. All authors (YH, GJ
and HW) have fully read and approved all submitted revisions of the manuscript.

Funding
None to declare.

Availability of data and materials
FASTAFS: Project name: fastafs;
Project home page:https:// github. com/ yhoog strate/ fasta fs;
Operating system(s): POSIX compliant;
Programming language: C++-14;
Other requirements: cmake, C++-14 compatible compiler, libzstd, libopenssl, libcrypto, zlib and libboost (for unit
testing);
License: GNU GPL-2.0;
Any restrictions to use by non-academics: terms stated in GNU GPL-2.0

Declarations

Ethics approval and consent to participate
Not Applicable

https://doi.org/10.1186/s12859-021-04455-3
https://github.com/yhoogstrate/fastafs

Page 11 of 12Hoogstrate et al. BMC Bioinformatics 2021, 22(1):535

Consent for publication
Not Applicable

Competing interests
The authors declare that they have no competing interests.

Sequences
All sequences used were obtained from free public resources: CM002240: https:// www. ebi. ac. uk/ ena/ brows er/ view/
CM002 240; hg19.fa: http:// hgdow nload. cse. ucsc. edu/ golde npath/ hg19/ bigZi ps/ hg19. fa. gz; GRCh38.p12: http:// ftp.
ebi. ac. uk/ pub/ datab ases/ genco de/ Genco de_ human/ relea se_ 28/ GRCh38. p12. genome. fa. gz; GRCh38.p13: http:// ftp.
ebi. ac. uk/ pub/ datab ases/ genco de/ Genco de_ human/ relea se_ 38/ GRCh38. p13. genome. fa. gz; GRCh38.primary_asm:
http:// ftp. ebi. ac. uk/ pub/ datab ases/ genco de/ Genco de_ human/ relea se_ 38/ GRCh38. prima ry_ assem bly. genome. fa. gz;
NC_001422: ftp:// ftp. ncbi. nlm. nih. gov/ genom es/ Virus es/ enter obact eria_ phage_ phix1 74_ sensu_ lato_ uid14 015/ NC_
001422. fna; NC_045512.2: https:// github. com/ PoonL ab/ covizu/ blob/ master/ covizu/ data/ NC_ 045512. fa; miRBase
22.1 hairpin: ftp:// mirba se. org/ pub/ mirba se/ CURRE NT/ hairp in. fa. gz; sacCer3-mature-tRNAs: http:// gtrna db. ucsc.
edu/ genom es/ eukar yota/ Scere3/ sacCe r3- mature- tRNAs. fa; SILVA_138_SSURef: https:// www. arb- silva. de/ no_ cache/
downl oad/ archi ve/ relea se_ 138/ Expor ts/; silva-bac-16s-1d90: https:// raw. githu buser conte nt. com/ bioco re/ sortm erna/
v4.2. 0/ data/ rRNA_ datab ases/ silva- bac- 16s- id90. fasta; silva-euk-28s-id98: https:// raw. githu buser conte nt. com/ bioco re/
sortm erna/ v4.2. 0/ data/ rRNA_ datab ases/ silva- euk- 28s- id98. fasta; uniprot_sprot: https:// ftp. unipr ot. org/ pub/ datab ases/
unipr ot/ curre nt_ relea se/ knowl edgeb ase/ compl ete/ unipr ot_ sprot. fasta. gz;

Author details
1 Department of Neurology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Neth-
erlands. 2 Department of Urology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands.
3 Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The
Netherlands. 4 Department of Immunology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The
Netherlands.

Received: 9 August 2021 Accepted: 20 October 2021

References
 1. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. Simple combinations

of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and b cell
identities. Mol Cell. 2010;38(4):576–89. https:// doi. org/ 10. 1016/j. molcel. 2010. 05. 004.

 2. Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data.
Bioinformatics. 2012;28(24):3211–7. https:// doi. org/ 10. 1093/ bioin forma tics/ bts611.

 3. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast univer-
sal RNA-seq aligner. Bioinformatics. 2012;29(1):15–21. https:// doi. org/ 10. 1093/ bioin forma tics/ bts635.

 4. Liao Y, Smyth GK, Shi W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic
Acids Res. 2013;41(10):108–108. https:// doi. org/ 10. 1093/ nar/ gkt214.

 5. Buels R, Yao E, Diesh CM, Hayes RD, Munoz-Torres M, Helt G, Goodstein DM, Elsik CG, Lewis SE, Stein L, Holmes IH.
Jbrowse: a dynamic web platform for genome visualization and analysis. Genome Biol. 2016;17(1):66. https:// doi.
org/ 10. 1186/ s13059- 016- 0924-1.

 6. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, Wilson RK. Varscan
2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res.
2012;22(3):568–76. https:// doi. org/ 10. 1101/ gr. 129684. 111.

 7. Shen W, Le S, Li Y, Hu F. Seqkit: a cross-platform and ultrafast toolkit for fasta/q file manipulation. PloS One.
2016;11(10):0163962–0163962. https:// doi. org/ 10. 1371/ journ al. pone. 01639 62.

 8. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M,
DePristo MA. The genome analysis toolkit: a mapreduce framework for analyzing next-generation dna sequencing
data. Genome Res. 2010;20(9):1297–303. https:// doi. org/ 10. 1101/ gr. 107524. 110.

 9. Picard toolkit. Broad Institute (2019). https:// broad insti tute. github. io/ picard
 10. Kryukov K, Ueda MT, Nakagawa S, Imanishi T. Nucleotide archival format (NAF) enables efficient lossless reference-

free compression of DNA sequences. Bioinformatics. 2019;35(19):3826–8. https:// doi. org/ 10. 1093/ bioin forma tics/
btz144.

 11. Pinho AJ, Pratas D. MFCompress: a compression tool for FASTA and multi-FASTA data. Bioinformatics. 2013;30(1):117–
8. https:// doi. org/ 10. 1093/ bioin forma tics/ btt594.

 12. Rajarajeswari P, Apparao A. Dnabit compress-genome compression algorithm. Bioinformation. 2011;5(8):350–60.
https:// doi. org/ 10. 6026/ 97320 63000 5350.

 13. Roguski L, Deorowicz S. DSRC 2-industry-oriented compression of FASTQ files. Bioinformatics. 2014;30(15):2213–5.
https:// doi. org/ 10. 1093/ bioin forma tics/ btu208.

 14. Samtools Organisation: CRAM format specification (version 3.0: 2fcaab6). https:// samto ols. github. io/ hts- specs/
CRAMv3. pdf (2019)

 15. The SAM/BAM format specification working group: sequence alignment/map format specification (version 1.6:
f2a6b99). 2019. https:// samto ols. github. io/ hts- specs/ SAMv1. pdf.

 16. European Bioinformatics Institute: CRAM reference registry. https:// www. ebi. ac. uk/ ena/ cram (2019)

https://www.ebi.ac.uk/ena/browser/view/CM002240
https://www.ebi.ac.uk/ena/browser/view/CM002240
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/bigZips/hg19.fa.gz
http://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_28/GRCh38.p12.genome.fa.gz
http://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_28/GRCh38.p12.genome.fa.gz
http://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_38/GRCh38.p13.genome.fa.gz
http://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_38/GRCh38.p13.genome.fa.gz
http://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_38/GRCh38.primary_assembly.genome.fa.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/Viruses/enterobacteria_phage_phix174_sensu_lato_uid14015/NC_001422.fna
ftp://ftp.ncbi.nlm.nih.gov/genomes/Viruses/enterobacteria_phage_phix174_sensu_lato_uid14015/NC_001422.fna
https://github.com/PoonLab/covizu/blob/master/covizu/data/NC_045512.fa
ftp://mirbase.org/pub/mirbase/CURRENT/hairpin.fa.gz
http://gtrnadb.ucsc.edu/genomes/eukaryota/Scere3/sacCer3-mature-tRNAs.fa
http://gtrnadb.ucsc.edu/genomes/eukaryota/Scere3/sacCer3-mature-tRNAs.fa
https://www.arb-silva.de/no_cache/download/archive/release_138/Exports/
https://www.arb-silva.de/no_cache/download/archive/release_138/Exports/
https://raw.githubusercontent.com/biocore/sortmerna/v4.2.0/data/rRNA_databases/silva-bac-16s-id90.fasta
https://raw.githubusercontent.com/biocore/sortmerna/v4.2.0/data/rRNA_databases/silva-bac-16s-id90.fasta
https://raw.githubusercontent.com/biocore/sortmerna/v4.2.0/data/rRNA_databases/silva-euk-28s-id98.fasta
https://raw.githubusercontent.com/biocore/sortmerna/v4.2.0/data/rRNA_databases/silva-euk-28s-id98.fasta
https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.fasta.gz
https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.fasta.gz
https://doi.org/10.1016/j.molcel.2010.05.004
https://doi.org/10.1093/bioinformatics/bts611
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/nar/gkt214
https://doi.org/10.1186/s13059-016-0924-1
https://doi.org/10.1186/s13059-016-0924-1
https://doi.org/10.1101/gr.129684.111
https://doi.org/10.1371/journal.pone.0163962
https://doi.org/10.1101/gr.107524.110
https://broadinstitute.github.io/picard
https://doi.org/10.1093/bioinformatics/btz144
https://doi.org/10.1093/bioinformatics/btz144
https://doi.org/10.1093/bioinformatics/btt594
https://doi.org/10.6026/97320630005350
https://doi.org/10.1093/bioinformatics/btu208
https://samtools.github.io/hts-specs/CRAMv3.pdf
https://samtools.github.io/hts-specs/CRAMv3.pdf
https://samtools.github.io/hts-specs/SAMv1.pdf
https://www.ebi.ac.uk/ena/cram

Page 12 of 12Hoogstrate et al. BMC Bioinformatics 2021, 22(1):535

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 17. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene
database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(D1):590–6. https:// doi.
org/ 10. 1093/ nar/ gks12 19.

 18. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin
MJ, Natale DA, ODonovan C, Redaschi N, Yeh LSL. UniProt: the universal protein knowledgebase. Nucleic Acids Res.
2004;8:9. https:// doi. org/ 10. 1093/ nar/ gky092.

 19. Kozomara A, Birgaoanu M, Griffiths-Jones S. mirbase: from microrna sequences to function. Nucleic Acids Res.
2018;47(D1):155–62. https:// doi. org/ 10. 1093/ nar/ gky11 41.

 20. Köster J, Rahmann S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics. 2018;34(20):3600–
3600. https:// doi. org/ 10. 1093/ bioin forma tics/ bty350.

 21. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible computa-
tional workflows. Nat Biotechnol. 2017;35(4):316–9. https:// doi. org/ 10. 1038/ nbt. 3820.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1093/nar/gky092
https://doi.org/10.1093/nar/gky1141
https://doi.org/10.1093/bioinformatics/bty350
https://doi.org/10.1038/nbt.3820

	FASTAFS: file system virtualisation of random access compressed FASTA files
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Compression

	Implementation
	Toolkit

	Results
	Discussion
	Conclusions
	Acknowledgements
	References

