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Background
FASTA is a file format used for storing nucleotide and amino acid polymeric sequences 
and is compatible with a high variety of bioinformatics software. It is used as database 
for ribosomal RNA sequences but also for eukaryotic reference genomes and protein 
databases, that can be several gigabytes in size. In contrast to for example the GenBank 
format, it offers limited support for metadata. Corresponding supplementary (fai-)
index files are used to achieve random access by providing the sequence length, padding 
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corrected file positions and padding and line length. This is static information that is 
embedded in the FASTA file, which is extracted after generating the FASTA file.

Scientific demand for reproducibility and interoperability of both software applica-
tions and data is growing strongly and as a result unique identification and data integrity 
play a critical role. For instance, in the CRAM data format Next Generation Sequencing 
(NGS) alignments are compressed relative to a reference sequence. In this format, these 
reference sequences are addressed using their unique identifier for interoperability. With 
this identifier, the corresponding sequence can be obtained directly using the online 
European Nucleotide Archive (ENA) service1, preserving the intrinsic link between the 
data file and the reference sequences. Because real-time computation of identifiers can 
be computationally expensive, they are stored in supplementary dictionary files (*.dict). 
Dict-files are, like fai-index files, beyond the scope of the original file format and have to 
be generated and maintained after obtaining the FASTA file.

Software applications make use of FASTA files as input in two different manners:

• First, a tool reads a FASTA file in a streaming manner: sequentially and in one-
direction, starting with the first character in the file. For example, short-read align-
ment algorithms but also motif-scanners that iteratively search for a given motif [1] 
across a sequence, read a FASTA file sequentially into the memory before building an 
index [2, 3]. Similarly, Single-Nucleotide Polymorphism (SNP) detectors may iterate 
sequentially over a FASTA file [4].

• Second, a tool reads a FASTA file in a random-access manner by starting at an 
arbitrary location in the file and having the possibility to make jumps  through the 
file, forwards but also backwards. The precise file coordinates are typically calcu-
lated using the fai-index file. For example, a request to a genomic region within a 
genome browser is such a random-access request, since a next query can be expected 
at any genomic location. If underlying FASTA file access does not support jumping 
through a file, it is necessary to copy a file entirely into memory. This procedure is 
resource intensive and can slow a process significantly. Bioinformatics tools that rely 
on random-access in FASTA files are for i.e. JBrowse [5], samtools mpileup for Var-
Scan2 [6]. But also tools for quick file operations such as SeqKit [7], GATK [8] and 
Picard [9] rely on random-access, of which the latter two require dict-files as well.

Compression

The simplicity of the FASTA format makes it highly convenient to work with. The trade-
off is the requirement of the additional fai-index and dict-files, as well as having a rela-
tively large file size. The large file size issue has been tackled by various compression 
methods [10–12]. Although modern compressors achieve high compression ratios, most 
bioinformatics applications that require FASTA files are only rarely compatible with 
compressed equivalents. The only exception is occasional compatibility with gzipped 
FASTA, a generic purpose compressor which is limited to streaming use-cases.

1 https:// www. ebi. ac. uk/ ena/ cram/ swagg er- ui. html.

https://www.ebi.ac.uk/ena/cram/swagger-ui.html
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Sequence compression algorithms create a compressed file (archive) yielding the com-
pressed content. To use the original data, the archive needs to be fully decompressed 
into a temporary FASTA file again, unless the decompression algorithm also provides 
an Application Programming Interface (API) in the desired programming language. For 
instance, short read compressor DNA Sequence Reads Compressor 2 (DSRC2) [13] pro-
vides an API in C, C++ and Python.

The index algorithm of RNA read aligner STAR [3] can be provided with the path to 
any decompression binary as argument and thus offers a generic solution to provide 
on-demand de-compression. However, implementing a similar solution in other appli-
cations would only work for applications with streaming instead of random access to 
FASTA files. An analogues workaround to avoid file duplication is to make use of 
(named) pipes [10]. A pipe is a virtual, one-directional, data stream, that stays in idle as 
long as no further data requests come in. This could be the output of a decompressor. 
This is resource efficient as data access is chunked, but is not a generic solution as it does 
not offer random access. Access to FASTA archives in a random-access use case requires 
an available compression API that supports random access explicitly. If these conditions 
are not met, the primary goal of compression is then in practice lost.

Currently available bioinformatics applications that make use of FASTA files in a ran-
dom-access setting mostly support only FASTA files and no compressed equivalents. 
Therefore, it is in practice necessary to keep a flat copy of a FASTA file with the corre-
sponding the fai-index file. For systems limited to applications with streaming access to 
FASTA files, a decompression binary in combination with (named) pipes is an ideal way 
to use FASTA archives, although it requires management of metadata files. Instead of 
(de)compressing through the classical back and forths file compression binaries, we can 
also make use of file virtualisation. In this context, file virtualization functions as layer 
between a compressed archive and the virtually mounted FASTA plus metadata files, 
which offers multiple advantages over classical (de-)compression binaries

• Virtual files and their system calls are identical to flat file system calls. For command 
line tools that are only compatible with FASTA files, such as samtools view -T, 
this preserves backwards compatibility, also for random access use-cases.

• There is no need to use additional disk space for temporary decompression and no 
need to read entire FASTA files into memory.

• For random access requests, computational resources are only spent on decompress-
ing the region of interest.

• Implementations of compression and decompression in other programming lan-
guages or within other software applications are not needed, as it is backwards com-
patible with flat FASTA files.

• The archive is guaranteed to provide dict- and fai-index files that are in sync with 
their FASTA file of origin. This makes additional management of these metadata files 
unnecessary.

Making use of virtualization as layer between archive and decompressed content is a 
generic purpose solution since it provides file access to both streaming and random access. 
Here, we propose FASTAFS, a file archival format and toolkit that allows file integrity 
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verification and provides unique sequence identifiers by using file virtualization. In addi-
tion, it virtualises FASTA and guaranteed in-sync dict- and fai-index files, from Zstd com-
pressed 2-, 4- or 5-bit encodings.

Implementation
FASTA File System (FASTAFS) file format consists of four blocks: (1) File Header (2) 
Per-Sequence-Data (3) Per-Sequence-Header and (4) File Metadata, to efficiently store 
sequence and metadata (Fig.  1). During conversion, the metadata flag sets the archives 
status to incomplete. Each block of compressed sequence data is followed by the CRAM 
format and BAM specification compatible MD5 checksum  [14, 15]. In the last phase of 
file conversion, file pointers are put in place and the metadata flag is updated to mark the 
archives conversion status to complete. The file ends with the CRC32 checksum used for 
whole file integrity verification.

Sequence compressor Nucleotide Archival Format (NAF) [10] compresses sequence data 
first with a 4-bit encoding followed by generic compressor Zstandard (zstd), but lacks ran-
dom access. Given that NAF achieves high compression ratios [10], FASTAFS was designed 
in a similar fashion. It first compresses sequence data to a lower bit encoding, followed by 
the random-access implementation of zstd (zstd-seekable). When a sequence consists of 
AC[T|U]GN, it is stored in a 2-bit encoding, when it follows the IUPAC DNA/RNA dic-
tionary, it is stored in a 4-bit encoding and when it is a protein sequence it is stored in a 
5-bit encoding (Fig. 1).

Fig. 1 Overview of the FASTAFS file format specification. (top) A flowchart of the fastafs cache 
procedure. (bottom) The layout of the FASTAFS format consists of four blocks, starting with the file header, 
followed by the per-sequence data, the per-sequence header data and a metadata block. The file header has 
a file pointer to the per-sequence header block, where each sequence has a file pointer to its data. The file 
ends with a metadata block, currently supporting a CRC32 checksum. The raw FASTAFS file is subsequently 
compressed with zstd-seekable. The full specification is available on the website: https:// github. com/ yhoog 
strate/ fasta fs/ blob/ master/ doc/ FASTA FS- FORMAT- SPECI FICAT ION. md

https://github.com/yhoogstrate/fastafs/blob/master/doc/FASTAFS-FORMAT-SPECIFICATION.md
https://github.com/yhoogstrate/fastafs/blob/master/doc/FASTAFS-FORMAT-SPECIFICATION.md
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Toolkit

The Linux based FATSTAFS toolkit is a single executable (fastafs) with different sub-
commands. The package comes also with an executable ‘mount.fastafs’ to mount 
through the /etc/fstab table.

Cache:  FASTA files can be converted to a FASTFS archive using the ‘fastafs cache’ 
subcommand (Fig.  1), which adds a reference to the FASTAFS file into a config-file 
(Additional file 1: Fig. S1A).

Mount:  The ‘fastafs mount’ subcommand is used to mount a FASTAFS archive to 
a directory (mount point) to virtualise the FASTA, fai-index, dict- and UCSC TwoBit 
files (Additional file 1: Fig. S1A). All files are mounted read-only which guarantees per-
sistency with the identifiers. Mount points can be configured in /etc/fstab which 
requires using the binary ‘mount.fastafs’ instead of the binary ‘fastafs’. These 
entries can be configured to automatically mount during boot. Upon a file request, the 
kernel requests, through the Filesystem in Userspace (FUSE), the FASTAFS toolkit to 
provide either file attributes such a timestamps, size or permissions, or to copy real-time 
decompressed file content into a buffer.

In addition, FASTAFS provides filesystem access to query partial sequences using 
a subsequence identifier as filename in the ‘seq’ subdirectory. For example, the file 
<mountpoint>/seq/chr1:10-20 contains only the 10th up to the 20th nucleotide 
of chr1, without additional characters such as newlines or spaces. Subsequently, request-
ing the file size of <mount point>/seq/chr1 will provide its size in nucleotides. 
Indeed, these additional features do not solve backwards compatibility issues, but do 
provide virtualised random access by functioning as programming language independ-
ent API implemented at filesystem level.

List:  The ‘fastafs list’ command gives an overview of the FASTAFS archives, 
their alias, number of sequences, format, compression ratio and all active mount points 
(Additional file 1: Fig. S1A).

View:  Besides mounting, the FASTA contents can be decompressed to stdout using 
‘fastafs view’, of which the padding can be set to a desired value and masking can 
be virtually disabled. If the archive contains only DNA sequences, the contents can also 
be exported to the UCSC TwoBit format (Additional file 1: Fig. S1B).

Info:  The ‘fastafs info’ subcommand gives information about the file layout, 
sequence size, the per-sequence MD5 checksum and used compression type. This sub-
command can also be used to query European Nucleotide Archive (ENA) [16] whether 
the existence of a sequence MD5 checksum can be verified (Additional file 1: Fig. S1C).

Check:  The ‘fastafs check’ command checks the file integrity using a CRC32 
checksum. Integrity of compressed sequence data blocks can be checked separately 
using their MD5 checksums with the ‘--md5’ argument (Additional file 1: Fig. S1D).
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ps:  A list of active FASTAFS mount points and their processes is provided by the ‘fas-
tafs ps’ subcommand. The mount point has an extended file attribute (xattr) named 
‘FASTAFS-file’ that returns the path to the mounted FASTAFS archive. When a FAS-
TAFS file is mounted to multiple mount points, they are each listed as separate entry 
with the corresponding system process id (Additional file 1: Fig. S1E).

Results
FASTAFS format specification, toolkit and GPL-2.0 licensed C ++ code are available at: 
https:// github. com/ yhoog strate/ fasta fs

We compared the compression ratios of NAF, bgzip and MFCompress with FASTAFS 
(Fig. 2). We then assessed the consumption of the relative number of CPU instructions 
needed to access the end, thus the suffix, of a virtualised FASTA file. This showed that 
the number of CPU instructions scaled linearly and proportionally to the suffix size 
(Fig. 3).

Discussion
FASTAFS compression ratios for FASTA files with relatively few sequences (human ref-
erence genome: GRCh38, SARS-CoV-2 genome primary assembly (RNA): NC_045512.2, 
Coliphage phi-X174, complete genome NC_001422, fungus Neurospora crassa genome 
reference: CM002240) were comparable to the compression ratios of NAF and MFCom-
press but were overall not superior. For sequences with relatively high numbers of 
sequences (miRNA, tRNA or protein databases), compression ratios of FASTAFS files 
were typically smaller than the other compressors, in particular for miRbase [19]. These 
files are composed of small sequences which result in a substantial contribution of the 
sequence names and MD5 checksums to the total archive file size. When the size of the 
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Fig. 3 CPU consumption reading suffixes of the FASTA file. The x-axis shows the size of a requested suffix 
(tail-c) of GRCh38.p12.fasta virtualised with FASTAFS, piped through to /dev/null. The y-axis shows 
the number of CPU instructions by fastafs mount to virtualise the suffix of GRCh38.p12.fasta, as 
termined with perf stat. The number of CPU instructions needed to read the FASTA suffix through 
FASTAFS scales linearly and proportionally with the suffix size

https://github.com/yhoogstrate/fastafs
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archives is corrected with the space needed to store the MD5 checksums (16 bytes per 
entry), the FASTAFS compression ratios are again comparable to those of MFCompress 
and NAF. Except for protein sequence compression, the most commonly used FASTA 
compression method, gzip, has consistently lower compression ratios than all other 
compressors.

Obtaining both the FASTA followed by the fai-index starting from a NAF archive took 
more CPU instructions than virtual access through FASTAFS (Additional file 1: Fig. S2). 
Moreover, classical decompression through a single conversion binary is not linearly 
scalable and requires the whole decompressed file to be written to disk. Although this 
is not the use-case for which these tools were developed and therefore maybe not repre-
sent the best comparison, these are features that provide high usability.

Ideally, new bioinformatics analysis projects are started with a new folder that 
is under version control. This will allow the researcher to integrate FASTAFS with 
workflow management systems such as Snakemake [20] or Nextflow [21] as well as 
software dependencies by including dependency management configurations. Ulti-
mately, this makes a project portable as it allows users to distribute projects over 
multiple locations, share it with other researchers and roll back to previous ver-
sions. Currently, version control for plain FASTA files is inconvenient and redun-
dancy across multiple projects will occur quickly. However, by integrating FASTAFS 
mount points and scripts into a workflow management system FASTA files can be 
integrated intuitively into a projects’ version control.

FASTAFS archives are currently compressed with a 2-bit, 4-bit or 5-bit encod-
ing, followed by zstd-seekable, resulting in comparable compression ratios to other 
known compressors. Indeed, as may be expected from compression supporting ran-
dom access which also need to store their index indexes, FASTAFS compression 
ratios were not superior in all cases examined. However, differences in compression 
ratios were consistently close to other dedicated compressors and always outper-
formed commonly used gzip, while offering all the FASTAFS advantages has.

FASTFS currently works with per-file aliases and CRAM compatible per-sequence 
identifiers. It would be more convenient to integrate FASTA files into workflow 
managers by using persistent per-file identifiers combined with a mechanism for 
decentralised synchronization of archives. As such additional features would be 
helpful, defining a system for per-file identifiers and development of decentralised 
file synchronization prompts future work. Overall, FASTFS is a modern and highly 
elegant software solution for a user-friendly and easy to deploy generic purpose 
solution to store and access to compressed FASTA files.

Multiple system processes can, in parallel, request data from the same FAST-
SAFS mount point. The current implementation is single-threaded per filehandle, 
but thread-safe. Thread safety is required because the Linux kernel is not guaran-
teed to request data sequentially during sequential reads. These non-sequential data 
requests will make optimization of FASTAFS for multi-threading more complicated, 
but will be a logical and important next step.
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Conclusions
The FASTA file format is used to store biological polymeric sequence data in an easy-
to-use format that has become a file standard in bioinformatics. Static information is 
embedded within each file, but needs to be extracted and stored in additional files to 
complement the FASTA file. Previous methods have specifically focused on the most 
efficient compression possible, but not on backwards compatibility, interoperability, ran-
dom access and inclusion of (static) metadata. This is the most probable explanation why 
gzip, a generic purpose compression method that is suboptimal for this data type, is the 
most common integrated archive type in bioinformatics applications that use FASTA as 
input.

To address this, we developed FASTAFS, a toolkit to virtualise FASTA archives along 
with their metadata files into the file system. The implementation makes use of the zstd-
seekable compression library, which makes random access to the virtual FASTA files 
possible. FASTAFS comes with a feature rich toolkit that can manage the archives, their 
locations, their file integrity and provides file access in a backwards compatible manner 
to regular FASTA file access. This allows the archives to be used with existing software, 
such as samtools (Fig. 4), without the need for adaptation for compatibility or without 
requiring the presence of APIs or without requiring to fully decompress data to disk 
before accessing it. FASTAFS is a modern, versatile and elegant solution for storage of 
sequence data that is therefore easy to use, and can optionally be extended with other 
related file formats.
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