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Abstract 

Background:  Discerning genes crucial to antimicrobial resistance (AMR) mechanisms 
is becoming more and more important to accurately and swiftly identify AMR patho‑
genic strains. Pangenome-wide association studies (e.g. Scoary) identified numerous 
putative AMR genes. However, only a tiny proportion of the putative resistance genes 
are annotated by AMR databases or Gene Ontology. In addition, many putative resist‑
ance genes are of unknown function (termed hypothetical proteins). An annotation 
tool is crucially needed in order to reveal the functional organization of the resistome 
and expand our knowledge of the AMR gene repertoire.

Results:  We developed an approach (PangenomeNet) for building co-functional net‑
works from pan-genomes to infer functions for hypothetical genes. Using Escherichia 
coli as an example, we demonstrated that it is possible to build co-functional network 
from its pan-genome using co-inheritance, domain-sharing, and protein–protein-inter‑
action information. The investigation of the network revealed that it fits the character‑
istics of biological networks and can be used for functional inferences. The subgraph 
consisting of putative meropenem resistance genes consists of clusters of stress 
response genes and resistance gene acquisition pathways. Resistome subgraphs also 
demonstrate drug-specific AMR genes such as beta-lactamase, as well as functional 
roles shared among multiple classes of drugs, mostly in the stress-related pathways.

Conclusions:  By demonstrating the idea of pan-genome-based co-functional net‑
work on the E. coli species, we showed that the network can infer functional roles of 
the genes, including those without functional annotations, and provides holistic views 
on the putative antimicrobial resistomes. We hope that the pan-genome network idea 
can help formulate hypothesis for targeted experimental works.
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Introduction
Antibiotic resistance is an emerging worldwide problem. Due to the misuse of antibi-
otics, emergence of highly resistant pathogens has again transformed the once con-
quered infectious diseases lethal. To control those resistant pathogens, new drugs are 
needed. However, new antimicrobial agents approved by the Food and Drug Admin-
istrative is declining since the 1990s [1], hinting that we are running out of drugs 
against AMR pathogens very quickly, as exemplified by the hospital superbug, methi-
cillin-resistant Staphylococcus aureus (MRSA) [2].

To generate new strategies against resistance, we must know more about resist-
ance mechanisms—how do those mobile elements and mutations change the dynam-
ics of microbes? Are there new resistance genes within the pathogens that mandate 
therapeutic targeting? How quickly and how often do pathogens acquire AMR genes? 
It has been hypothesized that antibiotic resistance trades off against fitness in the 
absence of antibiotics [3, 4], in which adaptive genes amplify against antimicrobial 
agents and are accompanied by compensatory mutations to tackle the fitness losses 
[5]. This indicates that the acquisition of resistance genes exposes new vulnerability in 
pathogens that may allow new strategies against resistance strains.

Networks are becoming powerful tools in functional genomics [6], hypothesis gen-
eration in disease research [7], and gene essentiality prediction [8–10]. For example, 
recent studies have identified novel genes and potential drug target molecules from 
network analysis [11]. Existing networks, however, suffer from one major drawback: 
many genes without known functions are missed in the species-level networks; as a 
result the networks are biased toward the core genome [12–14]. In other words, genes 
with unknown functions (often annotated as hypothetical genes) are often excluded 
from the analysis and hence cannot be inferred for functional purposes. However, 
many resistance determinants are acquired from horizontal gene transfer and do not 
belong to the core genome. Furthermore, existing network-based approaches usually 
focus on one or several strains instead of utilizing a more comprehensive collection of 
strain-level variability, resulting in potential biases toward certain strains.

In order to identify hypothetical genes that may be related to AMR activities from 
a more comprehensive collection of pathogenic strains, we incorporated the idea of 
pan-genome, which is defined as the collectively shared genes of all strains of a certain 
bacterium, and used it to build a co-functional network. This allowed us to include all 
available genetic elements, including putative genes with unknown functions (hypo-
thetical genes), into the network for analysis purpose. Our network (PangenomeNet) 
was constructed based on information from three different data types: co-inheritance 
information, protein domain sharing, and protein–protein interactions. Each type of 
the data has the potential to complement other data types (i.e. providing gene rela-
tionships that can only be seen within one of the data types) and provides a functional 
organization of the resistome. By building the pan-genome for the common pathogen 
Escherichia coli and using the pan-genome to build a co-functional network, we show 
that we are able to predict the functions for putative hypothetical genes and demon-
strate their functional links with antibiotic resistances.
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Results
The Escherichia coli pan‑genome

We built a pan-genome for the E. coli species in order to probe thousands of strains at 
the same time. As shown in Table  1, the constructed E. coli pan-genome, which was 
built from 2931 E. coli genomes (list of genomes and their genomic properties can be 
found in  Additional file  2: Table  S1), consists of 41,822 gene clusters, among which 
3056 belong to the core-genome and 38,766 belong to the accessory genome (Table 1).   
After annotating gene clusters for their functional roles (Additional file 3: Table S2), we 
identified that 48.86% of the gene clusters are designated as hypothetical proteins. The 
growth curves of core-, accessory-, and pan-genomes were plotted to check whether our 
“extended core (99% identity)” definition [15] is suitable for ongoing pan-genome analy-
sis. By fitting to the power law distribution we identified that the E.coli pan-genome is an 
open pan-genome (alpha = 0.21) (Fig. 1A, Additional file 1: Fig. S1) [16], indicating the 
highly diverse genetic variability among different E. coli strains.

To probe the connection between gene clusters and the AMR phenotypes, we used 
pangenome-wide association tool, Scoary [17], to identify gene clusters that are signifi-
cantly correlated with antimicrobial resistance phenotype. Using meropenem resistance 
as an example, Scoary identified 683 putative carbapenem-resistance associated genes, 
with KPC Carbapenemase as the strongest resistance determinant (Fig. 1B). Only 30% of 
the putative resistance genes have GO annotation, among which 1.2% can be annotated 
by Comprehensive Antibiotic Resistant Database (CARD) [18] and 3% are detected by 
Resfam [19]. There are many hypothetical genes that are significantly associated with 
meropenem resistance (Fig. 1B). Similar observations were also made on other antibi-
otics, in which many hypothetical genes are strongly associated with drug resistances 
(Additional file 1: Fig. S2, Additional file 4: Table S3). GO enrichment analysis demon-
strated enrichment in aromatic compound catabolism (GO:0019439) and C4-dicarbozy-
lase transport (GO:0014730) (Additional file 1: Fig. S3, Additional file 5: Table S4). Since 
only a small set of AMR genes can be annotated by existing databases, we reasoned that 
a more comprehensive functional view on meropenem resistance requires an alternative 
approach.

The PangenomeNet

In order to identity the functional roles of the hypothetical genes that are potentially 
related to antimicrobial resistance activities (termed hypothetical AMR genes hereafter) 
in E.coli, we built and integrated a co-functional network using the pan-genome based 
on three different types of information: co-inheritance [20], domain sharing [21], and 
protein–protein interaction relationship [22] (See Methods for details). As the complex-
ity of network construction grows quadratically with the number of gene clusters, we 
reduced computational load by selecting 2052 accessory genes that were associated with 

Table 1  Escherichia coli pan-genome statistics

Genome number Pangenome size Core size Accessory size Hypothetical (%)

2931 41,822 3056 38,766 20,436 (48.86%)
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resisting at least one drug (detected by Scoary) along with 1001 sampled core genes to 
construct the network.

Even though the amount of hypothetical genes of the co-inheritance networks (includ-
ing the RefseqNet and the EskapeNet) and DomainNet are significant (approximately 
20–28%), the two networks are fragmented (as indicated by the number of components). 
In order to improve the connectivity of the network, the STRING network (STRING-
Net) [22] was integrated with the two co-inheritance networks. As shown in Table 2, the 
coverage of the integrated network (termed PangenomNet) reaches 2284 out of 3053 
(74%) gene clusters, among which 1001 (43.8%) belong to the core genome and 1283 
(56.2%) belong to the accessory genome.

GO term semantic similarity score (GOSim) [23, 24] was calculated to evaluate the 
accuracy of the PangenomeNet for co-functional inferences. The score distributions 
of all individual networks are positively associated with log-likelihood scores (LLS; 
GOSim > 0.6 is labelled as true interaction), indicating that all four networks contain 
information in determining the GO similarity (Additional file  1: Fig. S5). Since each 
the four networks contributes to unique nodes and edges  (Additional file  1: Fig. S6), 
we reasoned that all components are indispensable to a comprehensive view on the 

A

B

Fig. 1  Pan-genome statistics and meropenem-resistance genes. A Growth curves of the core, accessory and 
pangenome; B Scoary-predicted meropenem-resistance associated genes
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pan-genome. As shown in Fig. 2A–C, the integrated network (PangenomeNet) is more 
comprehensive than individual networks. Comparing to EcoliNet [25], which is a co-
functional network built on 4146 protein-coding genes from E. coli, and Mentha, an 
expert-curated protein–protein interaction database [26], the PangenomeNet has bet-
ter performance for covering both core and accessory genes. We note that Mentha and 
STRING networks had very poor positive predictive value (PPV)-coverage tradeoff for 
accessory genes, showing their biases towards the core genome.

Table 2  Properties of individual networks and the composite PangenomeNet

Bold indicates the properties of PangenomeNet built by this work
a Indicates gene clusters constructed from the pan-genome
b Indicates the 1001 core genes along with the 2052 accessory genes associated with at least one drug (selected by Scoary)

No. nodes Nodesa Components Core Accessory Hypothetical

Totalb 3053 – 1001 2052 1122

RefseqNet 1834 5 1001 833 225

EskapeNet 1960 9 997 963 321

StringNet 1118 1 982 136 105

DomainNet 2131 35 994 1137 319

PangenomeNet 2284 12 1001 1283 424
EcoliNet 1095 5 964 131 0

Mentha 782 64 683 99 0

Fig. 2  The network statistics and properties of PangenomeNet. Positive-predictive values (PPV) and coverage 
tradeoff curve for A the entire pangenome, B core genes, and C accessory genes; D Power-law distribution of 
the Pan-genomeNet; E–H Degree centrality score for different sets of genes
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The scale-free property, defined by the power law distribution (the probability a node 
has k links P(k)k−t with t as the degree component) [6], was also checked since most 
biological networks are scale-free. As shown in Fig. 2D (the power law distribution for 
all networks are available in Additional file 1: Fig. S7), the PangenomeNet fits the charac-
teristics of biological networks and can be used for functional inferences.

Network centrality scores

Since genes that are critical to the survival of bacteria tend to be centralized in the gene 
or protein networks [27], the centrality score of several gene cluster groups were exam-
ined. Not surprisingly, we identified that core genes receive significantly higher central-
ity scores compared to accessory genes (Fig. 2E, Kolmogorov–Smirnov p value 2e−85), 
and that hypothetical genes have lower centrality scores (Fig. 2F, Kolmogorov–Smirnov 
p-value 7e-232). COG categories that are essential to bacterial survival (ECFHKML-
GIJ) also receive significantly higher centrality (Fig. 2H, Kolmogorov–Smirnov p value 
1e−147) [28]. These results again suggest that the PangenomeNet is consistent with the 
looks of biological networks.

The centrality scores of AMR genes were also checked. As shown in Fig. 2G, The AMR 
genes annotated by the CARD database have higher centrality than ordinary accessory 
genes, but lower than core genes (Kolmogorov–Smirnov p value 0.0003). The results 
suggests that the AMR may be located at the periphery of core genes, indicating their 
close connection to normal physiology [29].

PangenomeNet reveals functional organization of the meropenem resistome

We extracted a subnetwork with 683 putative resistance genes (see Methods;  net-
work details provided in Additional file 6, Table S5 and Additional file 7, Table S6) for 
a complete functional view of meropenem resistome. With predicted GOsim > 0.6, our 
PangenomeNet is able to cover interactions among 224 (32.7%) of them. In contrast 
to common resistance gene annotation tools, including CARD [18] and Resfam [19], 
which annotate 1% and 3% of all putative resistance genes, our network has the advan-
tage in discovering novel resistance modules. The subnetwork consists of a large con-
nected component along with several small components (Fig. 3; detailed network with 
node annotations is also available on Network data exchange (NDX); see Availability of 
data and materials for accession). The largest component consists of several densely con-
nected communities, indicating resistance acquisition is functionally modularized.

The Meropenem resistome contains a cluster of new drug target, transglycosylase

Our network identified a separate component that is composed of three transglycosy-
lases, one conjugal transfer protein, and one hypothetical protein, as shown in Fig. 3. The 
prevalence of transglycoylases in the resistome also suggests the importance of this gene 
family. Interestingly, recent genetic screens show transglycosylase disruption increases 
susceptibility to beta-lactams in Pseudomonas aeruginosa. Bulgecin A, a small mol-
ecule transglycosylase inhibitor, can restore the efficacy of meropenem [30]. Merope-
nem, a type of beta-lactam antibiotic, targets penicillin binding protein, which usually 
has dual transpeptidase and transglycosylase activity in cell wall formation [31]. Upon 
cell wall perturbation, the transglycosylase cleaves the accumulated product, producing 
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metabolites that are capable of inducing beta-lactamase resistance genes [32] and offer-
ing survival advantage upon meropenem treatment. The connections between the hypo-
thetical proteins with the transglycosylases indicate their potential roles in cell wall 
formation, and may be novel targets to combat meropenem resistances.

Hypothetical proteins

Genes with Annotation

fi

fi

fi

Tellurium Resistance

Transcriptional Regulator

Methyltransferase

Endonuclease

Helicase

Exonuclease/Transposase

Frimbrial Protein CRISPR Transglycosylase

Two Component System
Error Prone DNA polymerase

MFS transporter

Type II Toxin-antitoxin ParDType I toxin-antitoxin Hok

beta-lactamase

Fig. 3  Meropenem resistance gene subnetworks. Grey nodes indicate genes with annotations while pink 
nodes indicate hypothetical proteins. Functional overviews of the sub-components are indicated next to the 
components
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The Meropenem resistome contains clusters related to signal transduction pathways 

to stress response and gene acquisition

Several subnetworks consist of known proteins that elicit downstream transcriptional 
response for antibiotic stress adaptation (Fig.  3), including two component systems, 
Quorum sensing Luxl–LuxR [33], toxin–antitoxin systems (type II: HigA, ParD, HicB; 
type I: Hok) [34], Tellurium-resistant genes [35–39] and Willebrand factor type A 
(vWA) [40, 41]. These signal transduction pathways regulate cell density, virulence and 
dormancy [33, 34, 42, 43]. The rapid gene expression changes allow “phenotypic resist-
ance”, that is, resistance without genetic alterations. For example, dormant cells are 
more tolerant to antibiotics due to lower target activities or drug uptakes [42, 43]. Such 
mechanisms were found to be the first line defense against antibiotics before acquir-
ing resistance genes that removes the drug from the cells [42, 43]. We summarized the 
mechanisms from existing literature of how these genes lead to resistance in Fig. 4.

Several pathways related to resistance gene acquisition were also identified in the 
network. First, Error prone DNA polymerase V may increase mutation rate and thus 
allows better adaptability to stress [44]. Second, DNA methylation has been shown 
to enhance viability under antibiotic treatment. Absence of DNA methyltransferase 
impairs methyl-dependent mismatch repair, leaving the bacteria overwhelmed with 
deleterious DNA break [45]. Epigenetic modification is also crucial for survival under 
sub-inhibitory concentration, enabling flexible phenotypic resistance [46]. Interestingly, 
a group of DNA methyltransferase connect tightly with a group of hypothetical proteins 
(DUF 4942 and two other hypothetical protein), indicating that these hypothetical pro-
teins may be a novel group of methyltransferase, or a system working in conjunction 
with the DNA repair process. Last but not least, large number of genes participate in 

Fig. 4  Inferred mechanisms for meropenem resistance acquisition revealed by this study
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horizontal-gene-transfer (HGT) mechanisms, including phage, plasmid and integron 
proteins that may allow genetic acquisition of resistances [47].

Pan‑resistome reveal drug‑class‑specific and general resistant gene modules

Many of the aforementioned resistance modules such as the signal transduction and 
mutational related pathways are not specific to Meropenem. Motivated by this find-
ing, we aimed to compare the resistomes detected by Scoary for all antibiotics. We 
extracted all 2052 putative resistance genes that are associated with any of the antibi-
otic drugs and constructed a subnetwork termed pan-resistome subnetwork. Similar 
to the meropenem resistance network, the pan-resistome network is highly modu-
larized. To quantitatively extract functional modules, we ran data-driven ontology 

Fig. 5  Clustering of shared terms in the pan-resistome ontology
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(DDOT) [48] to organize the network into an ontology and aligned the terms to Gene 
Ontology [49] and Antibiotic Resistance Ontology [48]  (Additional file 8, Table S7). 
To identify drug-specific gene modules, for each term in the tree, we ran Fisher’s 
exact test to find terms that contain genes significantly associated with a specific 
drug. As shown in Fig.  5, we found several drug-specific terms. For example, term 
ARO:3000187-hydrolysis of beta-lactam antibiotic by serine beta-lactamase (S:1520) 
and GO:0030655-beta-lactam antibiotic catabolic process (S:1504) are associated 
with multiple beta-lactam drugs (cephem, penicillin and carbapenems). Genes associ-
ated with this term are annotated as various families of beta-lactamases: SHV, CTXM 
and TEM1.

Specific classes of beta-lactamases are associated with subtypes of beta-lactams. 
For example, ARO:3000467-NDM-5 (S:1456) and glycosyltransferase are only associ-
ated with cephems among the probed drugs, indicating the potential roles of these two 
enzymes on cephem resistances. Another example of drug specific term is GO:0006545-
glycine biosynthetic process (S:1515) with enrichment in drugs trimethoprim and 
trimethoprim-sulfamethoxazole. Trimethoprim, a folate synthesis inhibitor, inhibits 
dihydrofolate reductase (DHFR) and impairs downstream glycine and methionine syn-
thesis, hampering cell growth [50]. Genes associated with these terms are all transpo-
son-encoded DHFR dfrA8 and drfA12.

In addition to the drug-specific resistome, we also identified many GO terms shared 
among drugs. For example, toxin–antitoxin system is associated with multiple drug 
class, including ’GO:0097351-toxin–antitoxin pair type II binding (S:1500)’, ’antitoxin 
(S:1480)’, and ’Type I toxin–antitoxin (Hok) (S:1422). None of these are annotated by 
CARD or Resfam. In addition, two genes belonging to Type I toxin–antitoxin Hok do 
not have GO annotation. This example shows that our network can complement current 
gene annotation databases and allow a functional overview of the resistome by grouping 
genes with related functions together.

Discussion
Here we built a network on the pan-genomic scale to investigate the biology of hypo-
thetical genes and their roles of antibiotic resistance. In our network, we found many 
functional modules that is related to resistance, either to a specific class of drug or serve 
as a general response to stress. The latter one, however, is less well-known and poorly 
documented in current annotation databases. Meanwhile, experiments in literature 
report strains with those systems display phenotypic resistance, thereby allowing more 
time for these pathogens to acquire genetic resistance. For example, two component 
systems, quorum sensing pathways and toxin–antitoxin systems utilize different signal 
transduction pathways to induce dormancy and virulence gene modules (Fig. 4) [33, 34, 
51]. Organic or heavy metal solvent tolerance was found to be associated with multid-
rug resistance, possibly due to shared mechanism against drug and solvent [35, 36, 38, 
39]. Deletion of Tellurium-resistant operons has been reported to reduce resistance to 
cell-wall-targeting drugs in Listeria [37]. Error prone DNA polymerase V is required for 
persister cells heritable resistance [44]. Unlike the traditional shield-and-weapon view of 
AMR genes versus antibiotics [29], our findings and literature both suggest there may be 
more genes related to the antimicrobial resistance activities than well-documented ones.
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Since the foundation of our network is based on pan-genome, the first step for building 
the PangenomeNet would be the construction of the bacterial pan-genome. The most 
important step for building the pan-genome is clustering the genes at certain amino acid 
identity threshold, in which we chose 70% as the clustering identity cutoff. There are two 
reasons choosing 70% as our identity threshold. Firstly, we annotated Gene Ontology 
(GO) terms for the genes using Interproscan v5.47–82 [52] and checked the proportion 
of gene clusters with consistent GO terms. As shown in Additional file 9: Table S8, we 
found that gene clusters ranging from 95 to 70% amino acid identity were all highly con-
sistent in their GO term functionality annotations, indicating that identity as low as 70% 
may also be used for pan-genome construction purpose. The second reason would be 
that even though our approach is very useful in inferring gene functionalities for hypo-
thetical proteins, the time required for running our algorithm grows quadratically with 
the number of gene clusters. We therefore decided to choose 70% as our clustering iden-
tity threshold for both the reduced number of gene clusters and the highly-consistent 
GO term annotations.

Our network reproduces characters of biological networks–scale free, and has bet-
ter coverage in both core and accessory components compared to STRING networks 
[22] by species. It captures the underlying biology of core and accessory genes, dem-
onstrating high connections in core genes, indicating its central physiologic role. The 
locations of known resistance genes on the periphery of core components indicate their 
tight connection to modifying the physiology to generate resistance. We note that Ecoli-
Net [25], which consists of 4099 protein coding genes that covers 99% of a single E. coli 
genome, was also constructed using similar methods.. Our pan-genome-based network, 
however, is far more comprehensive than EcoliNet: the pan-genome composes of 41,822 
gene clusters from 2931 strains. In other words, the pan-genome network can be used to 
describe the functional roles of the E. coli species in terms of thousands of strains. 

The investigation of the network connectivity reveals that the PangenomeNet, which 
was generated from the integration of four networks, is more comprehensive than any 
individual network, suggesting that utilizing different information helps in connecting 
the dots. The evaluation of network quality using GO term similarity scores also indi-
cates that the integrated PangenomeNet is much more comprehensive than other net-
works. Other networks have high biases towards the core genome that mainly contains 
most of the well-studied genes. Even though our integrated network, PangenomeNet, is 
also somewhat biased, in which the coverage of the accessory genome is lower than the 
core genome, the bias is less significant than other networks. We hypothesize that such 
bias is an inevitable result from training on GO terms, as Gene Ontology itself is also 
biased. In our pan-genome, 78% of core gene clusters were annotated by Gene Ontology, 
while only 31% of the accessory gene clusters were annotated. The cumulative distribu-
tion of GOsim scores [23] for accessory-accessory gene pairs was also significantly lower 
(Additional file 1: Fig. S4).

Despite the efforts and contributions that we made in this work, there are still limi-
tations. The first limitation of this method is that the running time grows quadrati-
cally as the size of pan-genome grows, as we are investigating all possible interactions 
between gene pairs, and thus will take a long time on pan-genome studies with a lot of 
genes or gene clusters. In this study, we demonstrated computing only on the genes of 
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interest—the Scoary-detect resistance genes, in order to save computational resources. 
However, doing so omits the possibility of annotating hypothetical genes that are able 
to form connections with resistance  genes but are not in the selected group (i.e. not 
detected by Scoary). Secondly, the bias toward the core genome lead to the loss of con-
nections between accessory genes, resulting in an incomplete annotation of the whole 
resistome. Despite these biases, we nevertheless emphasize that the successful inference 
of potential antimicrobial resistance genes from the PangenomeNet shows that it is pos-
sible to probe putative AMR genes from thousands of microbial strains instead of just 
focused on one or a few strains. Last but not least, to thoroughly understand the mecha-
nism of which these putative AMR genes lead to resistance, more experimental works 
are required.

In the future we plan to extend this work toward three directions. Firstly, we aim to 
develop a systematic annotation pipeline to annotate hypothetical proteins given a net-
work, be it PangenomeNet or other networks built by other groups. This could greatly 
improve our annotation efficiency on any network. Secondly, we also seek to incorporate 
point mutation, insertion, and deletion information into the PangenomeNet in order 
to better utilize information on the nucleotide level. Finally, we also wish to develop an 
experimental platform to show the correlation between the hits and the acquisition of 
resistance. We hope this network can serve as a starting point of systems biology on 
species-level antimicrobial resistance activities and a guide on experimental biology and 
pharmacologic development.

Methods
Construction of the pan‑genome

A pan-genome is defined as all possible genes that can occur within a single strain 
within a study group [53, 54]. As many antibiotic resistance genes disseminate horizon-
tally, we reasoned the pan-genome includes both the core genes (genes exist in all E. 
coli strains) and the accessory genes (genes specific to a few, but not all, strains) to each 
strain, can best cover all possible genes conferring resistance. The construction steps 
are as follow: All E. coli genomic sequences (.fna) with resistant phenotype annotation, 
“Good” genome quality and from a human host were downloaded from PATRIC data-
base website [55, 56] on February 2021. Genomes annotated as “plasmid” or contained 
less than 4826 genes (which is 60% of median gene number among all downloaded E. 
coli genomes) were removed from this study. The removed genomes had an average of 
1274 CDS inferred. Upon checking the genome quality using checkM [57] we identified 
that the genome completeness of the excluded genomes were much lower than included 
genomes, as shown in Additional file 1: Fig. S8. In the end, a total of 2931 genomes were 
included in the construction of the pan-genome. The complete genome list and statistics 
are provided in Additional file 2: Table S1.

Protein coding sequences were predicted from all genomes using Prodigal v2.6.3 [58]. 
Pan-genome was then constructed by grouping genes predicted from every genome and 
then clustering the genes using CD-HIT v4.6 [59, 60] with amino acid identity 70%. We 
adapted the definition of extended core as our core genome, which corresponds to the 
presence in 99% of the genomes [15]. The representing genes of the clusters grouped by 
CD-HIT were annotated using DIAMOND v0.9.24 (blastp mode with “-k 1” parameter) 
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[61] against RefSeq non-redundant protein database [62]. Any protein with the best hit 
protein annotation containing “Unknown”, “Hypothetical”, “DUF (Domain of unknown 
function)” or “Uncharacterized” words were regarded as hypothetical protein. Whether 
the pan-genome is open- or close-pan-genome was determined following [16], in 
which the exponential regression for new genes was fitted to the power law n = kN−α . 
Whether the pan-genome is open or close is determined by α , in which the pan-genome 
is open if α > 1 and close if α ≤ 1.

Gene clusters annotation

To annotate gene clusters, we used the sequence from representing genes to query sev-
eral resources. For antibiotic resistance annotation, Resfam [19] and Comprehensive 
antibiotic resistance database (CARD) [18] were used. CARD is a manually curated 
database that represents mostly experimentally validated resistance mechanisms, while 
Resfam database consists of optimized Hidden Markov model for computational detec-
tion of protein families validated for antibiotic resistance [19]. CARD annotations were 
retrieved from RGI tool v5.1.1 with default parameter. CARD antibiotic resistance 
ontology (ARO) 3.1.1 were downloaded on February, 2021 to interpret RGI results. Res-
fam HMM database v1.2 and metadata v1.2 were downloaded from the Resfam web-
site (http://​www.​danta​slab.​org/​resfa​ms). For functional annotations of genes, pathway, 
domain and Gene Ontology (GO) annotations were retrieved from EMBL Interproscan 
v5.48–83 [52]. Cluster of Orthologous Group (COG) annotation was identified using 
eggNOG HMM model [63] via HMMER v3.2.1 [64] with E-value cutoff set as 1e-10.

Pan‑genome‑wide association study to identify putative resistance genes

To identify gene clusters associated with resistance, we compared presence/absence 
patterns of the gene clusters against resistant phenotype annotations (provided by and 
downloaded from PATRIC database [55, 56]) using Scoary [17]. Scoary performs Fisher’s 
Exact Test to identify variants significantly associated with trait and then incorporates 
phylogenetic structure to look for the mostly likely causal variant. The Scoary analysis 
was performed with default parameters. Genes with odds ratio > 8 and false discovery 
rate (FDR) < 0.05 were defined as putative resistance genes.

Co‑inheritance network

Proteins with relevant functions are more likely to be inherited together throughout the 
evolutionary process [20]. Previously Shin et al. showed that combining 3 co-inheritance 
network from 3 domains of life respectively increases precision and coverage [20]. To 
increase coverage on accessory genes, we trained two co-inheritance networks built 
against different sets of target genomes: ESKAPE genomes (Enterococcus faecium, Kleb-
siella pneumonia, Acinetobacter baumannii, P. aeruginosa, and Enterobacter species, 
which are groups of Gram-negative pathogen commonly share virulence genes), and all 
RefSeq prokaryotic genomes (ftp://​ftp.​ncbi.​nlm.​nih.​gov/​genom​es/​refseq/).

The construction of each co-inheritance network was similar to [20]. Firstly, the amino 
acid sequences of all representing genes in the E. coli pan-genome were extracted and 
mapped against the protein sequences of target genomes using DIAMOND v0.9.24 (with 

http://www.dantaslab.org/resfams
ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/
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e-value cutoff 0.001) [61]. The e-values were then normalized by second best e-value of 
each genome into “hit score” between zero and one by the following equation [20]:

A high hit score signifies that the query gene is more likely to have a similar counterpart 
present in the target genome. A pair of query genes with similar “hit score profile (a vec-
tor of length the number of target genomes, a.k.a. phylogenetic profile)” among all target 
genomes indicates that they may be co-inherited. Mutual information (I) was then used 
to estimate the similarity between phylogenetic profiles [20]. All query-target pairs of hit 
scores are discretized into 200 bins with equal intervals; the hit scores are then ordered in 
each bin to derive the joint probability of the query-target pair. The entropies H(qi) , H

(

qj
)

 , 
and the mutual information I

(

qi, qj
)

 are calculated as

Domain‑sharing network

Protein domains are essential regions that determine protein functions, and genes with 
similar function usually share the same protein domains. The co-functional links inferred 
from protein domains are determined following the use of weighted mutual information 
(WMI) [21], in which rarer domains are weighted more significantly to account for more 
specific functions. The detailed steps are described as follows.

Given protein domain matrix M with m protein and n domains, each protein domain j is 
assigned weight wj as:

where Cxy is the abundance of the xth domain for yth protein. The weighted mutual infor-
mation Iw of two proteins X and Y  are calculated from weighted entropy Hw(X) as:

Weighted entropy Hw(X) is defined as:

And probability pw(X , t) is assigned as:

Similarly, joint entropy Hw(X ,Y ) is estimated as:

Hit score =







−ln(evalue)
−ln(second best evalue)

0 < evalue < 1

1 evalue = 0
0 evalue ≥ 1 or no hit

H(qi) = −
∑

p(qi)ln(p(qi))

I
(

qi, qj
)

= H(qi)+H
(

qj
)

−H(qi, qj)

wj =

∑n
k=1

∑m
l=1ckl

∑n
k=1ckj

Iw(X ,Y ) = Hw(X)+Hw(Y )−Hw(X ,Y )

Hw(X) = −
∑

t∈{0,1}

{

pw(X , t) · logpw(X , t)
}

pw(X , t) =

∑

j∈{j|cXji=t}Wj
∑m

j=1wj
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Protein–protein interaction network

The STRING database was downloaded from [22]. DIAMOND v0.9.24 [61] was 
employed to identify the E. coli representing genes that can be mapped to the STRING 
database (blastp mode; -id 0.7). The subset of the STRING nodes was then extracted by 
getting only nodes that can be mapped to the E. coli representing genes along with the 
edges that connected the extracted nodes.

Benchmarking with GO term similarity score

To benchmark each network, biological process GO term semantic similarity score 
(GOsim) was calculated using GOSemSim 2.12.0 using the Wang method [23, 24]. Each 
protein can be associated with multiple GO terms. The score of multiple term pairs 
between two proteins are aggregated using the BMA (best-match average strategy) 
method [23, 24]. With gene pair with GOsim > 0.6 labelled as “true interaction”, log likeli-
hood score (LLS) was calculated following [12, 14, 20, 25]. Briefly the interval distribu-
tion of each network is estimated for its likelihood of interaction as

where L indicates the true interaction, and E (supporting evidence) corresponds to net-
work score intervals. A high LLS score can be interpreted as having a greater chance of 
having highly similar GO terms.

Positive predictive ratio (PPV) was calculated to quantify the percentage of finding a 
“true interaction” in network as

And coverage was calculated to estimate how many genes (nodes) of interest can be 
detected using the network.

By plotting the PPV-coverage tradeoff with different network scoring thresholds, the 
area under curve was determined to estimate how accurate and complete the network 
cover interactions of the genes of interest.

Hw(X ,Y ) = −
∑

t∈{00,01,10,11}

{

pw(XY , t1t2) · logpw(XY , t1t2)
}

pw(XY , t1t2) =

∑

j∈{j|cXj=t1,cYj=t2}Wj
∑m

j=1wj

LLS = ln

(

P(L|E)/P(∼ L/E)

P(L)/P(∼ L)

)

PPV =
#edges labelld as true interaction

# edge with score higher than threshold

coverage =
# nodes detected in network

# input nodes
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Integrating distinct networks using random forest regressor

To infer GOsim for gene pairs, we trained a random forest regressor using Scikit-learn 
0.22.2 [65] with network scores from EskapeNet, RefseqNet, DomainNet and StringNet. 
For EskapeNet, RefseqNet and DomainNet, we found that edges lower than 70th per-
centile consist of LLS = 0, indicating the absence of information for predicting GOsim 
scores and were removed from training. StringNet only contains high scoring edges 
and hence was not filtered at all. All missing scores were filled with − 1. To avoid over-
fitting, the training was conducted on 75% of the data while the rest 25% of the data 
was retained in the test set for evaluation purpose. The integrated network, dubbed 
PangenomeNet with random forest predicted score was used for downstream analysis.

Network visualization

Network visualization was conducted using Cytoscape v3.7.1. Network statistics were 
calculated using Python 3.6.7 and networkx 2.2 [66].

Data‑driven ontology

Pairwise scores from the PangenomeNet was fed into data-driven ontology (DDOT) 
CliXO algorithm [48, 67], which facilitates inference, visualization and alignment of bio-
logical hierarchies. After the ontology was inferred, terms were aligned to Gene Ontol-
ogy (GO) [49] and Antibiotic Resistant Ontology (ARO) [18] with false discovery rate 
(FDR) < 0.05. Terms were assigned to either GO or ARO terms, depending on which 
term shares a higher similarity in gene composition. Terms without existing ontological 
term alignment were curated manually by inspecting their protein annotation based on 
non-redundant (NR) protein database [62].

Abbreviations
AMR: Antimicrobial resistance; MRSA: Methicillin-resistant Staphylococcus aureus; LLS: Log-likelihood score; GO: Gene 
ontology; ARO: Antibiotic resistant ontology.
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