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Abstract 

Background:  Identification of molecular mechanisms that determine tumour progres-
sion in cancer patients is a prerequisite for developing new disease treatment guide-
lines. Even though the predictive performance of current machine learning models is 
promising, extracting significant and meaningful knowledge from the data simultane-
ously during the learning process is a difficult task considering the high-dimensional 
and highly correlated nature of genomic datasets. Thus, there is a need for models 
that not only predict tumour volume from gene expression data of patients but also 
use prior information coming from pathway/gene sets during the learning process, to 
distinguish molecular mechanisms which play crucial role in tumour progression and 
therefore, disease prognosis.

Results:  In this study, instead of initially choosing several pathways/gene sets from 
an available set and training a model on this previously chosen subset of genomic 
features, we built a novel machine learning algorithm, PrognosiT, that accomplishes 
both tasks together. We tested our algorithm on thyroid carcinoma patients using gene 
expression profiles and cancer-specific pathways/gene sets. Predictive performance of 
our novel multiple kernel learning algorithm (PrognosiT) was comparable or even bet-
ter than random forest (RF) and support vector regression (SVR). It is also notable that, 
to predict tumour volume, PrognosiT used gene expression features less than one-
tenth of what RF and SVR algorithms used.

Conclusions:  PrognosiT was able to obtain comparable or even better predictive 
performance than SVR and RF. Moreover, we demonstrated that during the learning 
process, our algorithm managed to extract relevant and meaningful pathway/gene 
sets information related to the studied cancer type, which provides insights about its 
progression and aggressiveness. We also compared gene expressions of the selected 
genes by our algorithm in tumour and normal tissues, and we then discussed up- and 
down-regulated genes selected by our algorithm while learning, which could be ben-
eficial for determining new biomarkers.

Keywords:  Machine learning, Multiple kernel learning, Support vector regression, 
Gene set analysis, Cancer biology

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Bektaş and Gönen ﻿BMC Bioinformatics          (2021) 22:537  
https://doi.org/10.1186/s12859-021-04460-6 BMC Bioinformatics

*Correspondence:   
mehmetgonen@ku.edu.tr 
2 Department of Industrial 
Engineering, College 
of Engineering, Koç 
University, Istanbul 34450, 
Turkey
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04460-6&domain=pdf


Page 2 of 15Bektaş and Gönen ﻿BMC Bioinformatics          (2021) 22:537 

Background
Cancer is one of the most common causes of mortality in our era, and its treatment may 
extremely be hard to patients, both from a psychological and economical perspective. 
Many genetic, epigenetic and environmental factors are effective in cancer pathogen-
esis and for each type of cancer, these factors play different roles. Therefore, determin-
ing the molecular mechanisms that are related to driver genes and driver pathways is of 
great importance in terms of cancer diagnostics, prognostics and treatment. In recent 
years, projects about large-scale cancer genomics are giving researchers the chance to 
understand the genomic and epigenomic changes in patients. Thus, associated with the 
increasing opportunity of analysing genomic characterizations of tumours biopsied from 
patients, standard machine learning algorithms like random forest (RF) [1] and support 
vector machines (SVM) [2] have been utilized to make predictions related to cancer. 
Even though the predictive performance of these machine learning applications is usu-
ally good, these applications may not be successful in extracting significant and mean-
ingful knowledge from the data since the genomic data sets are high-dimensional and 
highly correlated by their nature. For this reason, designing new machine learning algo-
rithms that are capable of selecting meaningful parts of the genomic data sets and use 
these selected subsets for prediction is necessary.

Tumour volume is considered to be one of the significant prognostic factors for onco-
logical outcome after radiotherapy or chemotherapy [24]. Along with clinical T and 
N stages, tumour differentiation and circumferential tumour extent, tumour volume 
has been identified by numerous retrospective cohort studies as potential predictors 
of pathologic complete response [23]. Rather than TNM staging system, estimating 
tumour volume from the patient’s genomic data while conjointly identifying the molecu-
lar mechanisms that affect tumour progression could be highly useful to foresee cancer 
aggressiveness. Although TNM staging system has been demonstrated to have prognos-
tic information, different cure rates in the literature have raised concern about the effi-
ciency of the T-classification [13].

Even though a reduction in tumour volume after therapy appears to be indicating a 
better prognosis than an unchanged or increasing tumour size, this assumption may 
not be correct in some cases. Tumour size is strongly related to cancer prognosis but 
dynamics of this relation have not yet been fully understood. Since the underlying bio-
logical mechanisms that affect tumour size have not yet been discovered completely, 
there arises a need to determine new ways to predict cancer prognosis using tumour 
volume. In other words, there is a need for models that learn to predict tumour volume 
while determining the important pathways/gene sets that affect the tumour progression 
and agressiveness at the genomic level [26].

Klement et  al. [14] studied SVM-based prediction of local tumour control, but they 
trained their model on only seven potential input features. While there exists standard 
statistical tests and models applied to the clinical outcomes of patients; to our knowl-
edge, there is no study of predicting tumour volume using machine learning while simul-
taneously discovering the hidden molecular mechanisms towards tumour progression 
using genomic characterizations of the patients as input.

Amongst machine learning algorithms, the kernel-based approaches have been shown 
to be successful in problems associated with cancer, such as gene essentiality prediction 
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by Gönen et al. [9], due to their capability of handling high-dimensional genomic input 
data. Using multiple kernel learning framework on multi-omics data, Li et  al. built a 
linear mixed model with adaptive Lasso for phenotype prediction which is capable of 
selecting predictive regions and predictive layers of the data [15]. As another recent 
work, Uzunangelov et al. designed a multiple kernel learning framework, a kernel-based 
stacked learner where kernels are integrated with random forests where each one is built 
from a specific pathway gene set [25].

For genomic data sets that have relatively low number of training instances, the num-
ber of model parameters to be optimized using kernel-based approaches is proportional 
to the number of training instances (N, generally in the order of hundreds); not to the 
number of training features (D, generally in the order of thousands) [20], which is a big 
computational advantage compared to other machine learning algorithms for this spe-
cific problem type.

Most frequently used based learners for multiple kernel learning (MKL) algorithms 
are SVM and support vector regression (SVR) since they have been proven empirically 
successful and they are easily applicable as a building block [10]. In this study, we applied 
MKL algorithm using SVR as base learner on gene sets to discover mechanisms at the 
molecular level related to tumour initiation and progression (see Fig. 1). We tested the 
predictive ability of our novel algorithm PrognosiT on the task of predicting tumour 
volume from genomic data. We also confirmed the relevant pathway/gene set outputs 
from our algorithm with the existing literature about the studied cancer type (i.e., thy-
roid carcinoma). Lastly, we compared the tumour and normal tissue gene expressions 
for the list of genes resulted from our algorithm, which could be beneficial for determin-
ing genomic biomarkers for screening.
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Fig. 1  Our proposed MKL algorithm, named PrognosiT, which takes gene expression profiles of patients, 
denoted as X , tumour volumes of patients, denoted as y , and a pathway/gene set collection as its input. 
Then, it calculates distinct kernel matrices, denoted as K1, . . . ,KP , for input pathways/gene sets on gene 
expression partitions, denoted as X1, . . . ,XP , formed from the input matrix of gene expression profiles. 
Followingly, to have a kernel matrix between pairs of patients which is denoted as Kη and which carries more 
information, multiple kernel matrices are combined with a weighted sum. The resulting kernel matrix is later 
used to learn a function, denoted as f, to predict tumour volumes of out-of-sample cancer patients
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Materials
We gathered genomic characterizations and clinical annotation files of over 10  000 
cancer patients from 33 cancer cohorts in the Genomics Data Commons (GDC) data 
portal offered by The Cancer Genome Atlas (TCGA) consortium at https://​portal.​
gdc.​cancer.​gov. TCGA provided the RNA-Seq measurements of the tumours from 33 
cohorts and pre-processed them with a unified pipeline, which facilitated our analysis 
of tumour gene expression profiles. We downloaded HTSeq-FPKM files of all primary 
tumours from the most recent data freeze (i.e., Data Release 29-March 31, 
2021), which leads to 9911 files in total. Due to the strong elemental and hidden dif-
ferences at the molecular level, we did not add metastatic tumours to our analysis. We 
utilized clinical annotation files of the patients to obtain the tumour volume informa-
tion. We checked the clinical annotation files for tumour dimension information (i.e., 
tumour length, tumour depth and tumour width) and there were only two cohorts 
containing this information, namely SARC​ and THCA. By nature, malignant soft tissue 
tumours (i.e., sarcomas) have numerous subtypes with different prognoses and there-
fore, with different molecular mechanisms related to cancer progression. Concord-
antly, when we checked the histological type information in clinical annotation files, 
we saw that histological types of cancer tissues were highly different within SARC​ 
cohort. Thus, we excluded SARC​ cohort from further analysis, and used THCA cohort 
that has 507 patients in total.

We first calculated tumour volume for each tumour by multiplying neoplasm_
length, neoplasm_width and neoplasm_depth found in the clinical anno-
tation files. Afterwards, we picked the patients that have both tumour dimension 
information and gene expression profile. We then discarded patients having their 
tumour volume non-positive or NA, leading us to 402 primary tumours in THCA 
cohort. Lastly, to compare the gene expressions between tumour and normal tissues, 
we used the normal tissue gene expression profiles found in 58 patients.

In addition to having a predictive model for tumour volume, we aimed to discover 
the molecular processes that play key roles in this volume prediction task. Therefore, 
we used cancer-specific pathway/gene set collections previously depicted in the lit-
erature. Using these collections, we can determine the group of genes having similari-
ties or dependencies in their functionalities.

Using the Molecular Signatures Database (MSigDB), we extracted Hallmark gene 
sets and Pathway Interaction Database (PID), which are specifically curated 
for cancer-related research tasks. Hallmark gene set collection contains computa-
tionally constructed list of genes that convey a particular biological state or process 
and shows coherent expression in cancers [16]. PID is a freely available collection of 
manually curated and peer-reviewed pathways that consists of human molecular sign-
aling and regulatory events and major cellular processes [19]. The Hallmark gene 
set collection contains 50 gene sets with sizes varying between 32 and 200, whereas 
the PID collection include 196 pathways with sizes varying between 10 and 137.

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
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Methods
We approached the problem of predicting the volume of primary tumours at the 
diagnosis while simultaneously determining the molecular mechanisms that affect 
tumour progression by applying machine learning algorithms on gene expression pro-
files extracted from the tumours. For a cohort consisting of N patients, the training 
data set can be represented as {(xi, yi)}Ni=1 , where N denotes the number of tumours, 
xi denotes the gene expression profile related to tumour i, and yi is the volume of 
tumour i.

Aforementioned problem may be formulated using a regression model and can be 
solved using algorithms for regression such as RF [1] and SVR [6]. With these algo-
rithms, it may be possible to have good predictive performances. However, good predic-
tion performance is not enough to extract insightful information about the mechanisms 
that play role in tumour progression. It is shown that, for predicting outcome in cancer, 
size of the training sample set should be at least in the order of thousands [7]. In other 
words, since gene expression data is highly correlated by its nature, if the training sample 
set is not in order of thousands, machine learning algorithms might use different subsets 
of a specific patient cohort to predict and might result with different biomarkers for pre-
diction. Therefore, it would be sensible to utilize our prior knowledge regarding genes, 
information from pathway/gene sets, and discover mechanisms at the molecular level 
using this prior information.

Baseline algorithms

RF algorithm is a combination of weak decision trees, and it uses an ensemble strategy 
to get more robust classification and regression trees than decision trees algorithm [1]. 
Because of its data-adaptive structure, RF is appealing for high-dimensional genomic 
data analysis [3]. We chose RF as a baseline algorithm due to the fact that it is highly 
used in the studies with genomic input data, and it is capable of handling the noise and 
the correlation among features [5, 21, 22]. Despite the fact that predictive performance 
of RF is claimed to be good in certain applications, their capability to extract meaningful 
knowledge from data is highly inadequate. Additionally, since RF models are generally 
built by randomly selecting bootstrap samples, their knowledge extraction process may 
vary remarkably.

SVR is a modified version of SVM algorithm [2] to be used for prediction tasks [6]. 
Our proposed MKL algorithm uses SVR as the base learner. The mathematical details of 
the optimization problem used for SVR is

(1)

min.
1

2
w⊤w + C

N∑

i=1

(ξ
+
i + ξ

−
i )

w.r.t. w ∈ R
D, ξ+ ∈ R

N , ξ− ∈ R
N , b ∈ R

s.t. ǫ + ξ
+
i ≥ yi − w⊤xi − b ∀i

ǫ + ξ
−
i ≥ w⊤xi + b− yi ∀i

ξ
+
i ≥ 0 ∀i

ξ
−
i ≥ 0 ∀i,
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where w is the feature weight vector, C is the non-negative regularization parameter, ξ+ 
and ξ− are the sets of slack variables, D is the number of input features (number of genes 
in gene expression profiles), b is the intercept parameter, and ǫ is the non-negative tube 
width parameter.

Solving the dual of the above optimization problem would decrease the number of 
decision variables and thereby, we could integrate kernel functions in the problem 
formulation, to be able to model non-linear problems. The corresponding dual opti-
mization problem is

In the dual optimization problem, there are 2N decision variables instead of 
(D + 2N + 1) , which is the number of decision variables in the primal problem. To build 
non-linear models, we can add the kernel function to the dual formulation by replacing 
x⊤i xj term with k(xi, xj) , where we encode the similarities between pairs of data points. 
This kernel function is usually selected with a model selection approach by trying several 
alternatives.

Derivation of dual optimization problem for support vector regression

The Langrangian function corresponding to the primal optimization problem shown 
in Equation (1) is calculated as

after that we take the derivative of the Lagrangian function with respect to all the deci-
sion variables of the primal optimization problem, we get

(2)

min. −
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Lastly, by plugging the derivation results back into the Lagrangian function we obtain 
the dual optimization problem shown in Equation (2).

Our proposed algorithm

The predictive ability of machine learning algorithms that uses “kernel trick” to cap-
ture patterns between pairs of data points is quite dependent on the selected kernel 
function. The standard practice for selecting a kernel function consists of first com-
paring the performances of several candidate kernel functions with the aid of a cross-
validation technique on the training data and then selecting the kernel function that 
performs best on the training set to make predictions on the test set. Nevertheless, 
usage of a single kernel function might not be sufficient for handling the complexity 
of the studied machine learning problem, but a combination of different kernels might 
give better predictive results than a single one. Moreover, there exist many algorithms 
that combine multiple kernels to capture the similarity between pairs of data points. 
Different kernels in MKL may correspond to using different measures of similarity or 
they may be using information coming from different sources (i.e., different feature 
representations or different feature subsets) [10]. For instance, MKL algorithms might 
combine kernel functions that have different complexities (e.g., linear, polynomial or 
Gaussian) defined on the same input representation or they might combine kernels 
prepared from different sources of input data (i.e., multiview learning; data fusion 
from multiple feature sets). To be used in cancer research, we can train algorithms 
using the same set of tumours in different representations such as gene expression, 
copy number or methylation profiles.

In this study, one of our purposes was to discover biological mechanisms that define 
tumour prognosis. To that end, we propose a modified version of SVR using multi-
ple kernel learning on pathways/gene sets (PrognosiT). We first form a kernel matrix 
for each pathway/gene set and then we combine these kernel matrices using an MKL 
algorithm. We assume that we are given P kernel functions instead of a single one for 
PrognosiT algorithm, where we calculate a weighted sum of these kernel functions. In 
other words, we get a convex combination of these kernel functions (i.e., sum of non-
negative kernel weights is set equal to one).

To integrate MKL into the SVR model, the dual of the support vector optimiza-
tion model can be used as an inner problem within the following outer optimization 
model:

∂L

∂w
= 0 ⇒ w =

N∑

i=1

(α
+
i − α

−
i )xi

∂L

∂b
= 0 ⇒

N∑

i=1

(α
+
i − α

−
i ) = 0

∂L

∂ξ
+
i

= 0 ⇒ C = α
+
i + β

+
i ∀i

∂L

∂ξ
−
i

= 0 ⇒ C = α
−
i + β

−
i ∀i.
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where η represents the kernel weights, and J (η) is the optimization problem depicted 
in Equation  (2) with a modified objective function, that replaces k(xi, xj) = x⊤i xj term 
with 

∑P
m=1 ηmkm(xi, xj) . It should be noted that the equality constraint in Equation (3), 

which is otherwise known as the unit simplex constraint, represents enforcing ℓ1-norm 
on the kernel weights and leads us to have a sparse solution. The optimization problem 
in Equation (3) is convex with respect to η , and the optimization problem in Equation (2) 
is convex with respect to {α+,α−} , but the nested optimization problem is not convex 
with respect to η and {α+,α−} . Since we cannot solve this nested optimization problem 
globally, we inspire from group Lasso MKL algorithm that was initially constructed for 
binary classification tasks [27]. We initiate the algorithm by setting all kernel weights 
equal to each other. Since the summation of all kernel weights should be one, each ker-
nel weight is 1/P at the initialization. We then solve the inner optimization problem (i.e., 
a standard SVR model) at each iteration t by utilizing the current kernel weights η(t) to 
obtain the support vector coefficients {α+(t),α−(t)} . We then calculate the kernel weights 
at the next iteration using the following update equation:

where α(t)
i = (α

+(t)
i − α

−(t)
i ) , and the superscripts (t) and (t + 1) depicts the current 

and next iterations, respectively. This is an iterative solution methodology and is dem-
onstrated to converge for binary classification problems [27]. In each iteration, we can 
solve the inner optimization problem to optimality since it is a standard SVR formula-
tion when we fix the kernel weights η . We can also solve the outer optimization problem 
to optimality when we fix the sample weights {α+,α−} . These two steps are monotoni-
cally decreasing the objective function, leading to convergence.

Kernel selection

When our algorithm converges, we can note the final η values to identify which ker-
nels are included (i.e., non-zero ηm values) in the final model. We perform kernel 
selection in a supervised manner by conjointly learning regression coefficients and 
kernel weights. Thanks to the ℓ1-norm on the kernel weights, we obtain sparse ker-
nel weights, leading to eliminating irrelevant kernel from the combination. Addition-
ally, we can compare the significance of pathways/gene sets by comparing their kernel 
weights, which could give us valuable information about biological processes towards 
tumour progression.

(3)

min. J (η)

w.r.t. η ∈ R
P

s.t.

P∑

m=1

ηm = 1

ηm ≥ 0 ∀m,

η
(t+1)
m =

η
(t)
m

√
N∑
i=1

N∑
j=1

α
(t)
i α

(t)
j km(xi, xj)

P∑
o=1

η
(t)
o

√
N∑
i=1

N∑
j=1

α
(t)
i α

(t)
j ko(xi, xj)

∀m,
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Results and discussion
For the purpose of testing our PrognosiT algorithm, we performed computational 
experiments on TCGA thyroid carcinoma data set, which contains the volume infor-
mation of tumours. We compared PrognosiT against two baseline algorithms that are 
widely used for genomic data analysis, namely, RF and SVR.

Experimental settings

We split the data set into two parts, 80% of the tumours formed the training set and 
the remaining 20% of the tumours formed the test set. We normalized each feature 
in the training set to have zero mean and unit standard deviation. For the test set, 
we normalized each feature with the mean and standard deviation calculated on the 
original training set. We applied cube root transformation to the tumour volume val-
ues since it is the multiplication of three dimensions. We performed 100 replications 
of our analysis to have more robust results, and we reported the results of these 100 
replications. The hyper-parameters for RF (i.e., number of trees to grow), SVR (i.e., 
regularization parameter C and tube width multiplier) and MKL (i.e., regularization 
parameter C and tube width multiplier) were selected by utilizing a four-fold cross-
validation strategy on the training set.

We used randomForestSRC R package version 2.9.3 [12] for RF experiments. We 
chose the number of trees to grow, ntree, from the set {500, 1000, . . . , 2500} by the 
aforementioned cross-validation approach.

For SVR and our proposed MKL algorithm PrognosiT, we built our own implemen-
tations in R, which use CPLEX version 12.6.3 for solving quadratic optimization prob-
lems [11]. We used Gaussian kernel in our algorithm to form a similarity measure 
between gene expression profiles of primary thyroid tumours. The Gaussian kernel is:

where σ is the kernel width parameter, and we set it to the mean pairwise Euclidean dis-
tances between training samples. For both algorithms, the tube width multiplier param-
eter, which is to be multiplied by the standard deviation of the current training samples 
to form the tube width, is chosen from the set {0, 0.25, 0.50, . . . , 2} , whereas the regu-
larization parameter C is chosen from the set {10−3, 10−2, . . . , 10+3} using the previously 
described four-fold inner cross-validation strategy.

In our implementation, we chose Gaussian kernel to discover the highly non-lin-
ear dependency between the tumour progression and gene expression profiles. The 
Gaussian kernel function was validated previously in two studies as trustworthy to 
be used with high-dimensional genomic data [4, 9]. We calculated the Gaussian ker-
nel matrices on subsets of tumour gene expression profiles by examining the pathway 
and gene set content and selecting the corresponding kernel widths. For PrognosiT 
algorithm, knowing that the algorithm converges in the order of tens of iterations, we 
performed 200 iterations to guarantee the convergence.

kG(xi, xj) = exp

(
−
(xi − xj)

⊤
(xi − xj)

2σ 2

)
,
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Performance metric

We used a form of normalized root mean squared error (i.e., NRMSE) for comparison 
of prediction performances of the three algorithms, namely, RF, SVR and our proposed 
MKL algorithm PrognosiT. NRMSE can be calculated as

where y and ŷ stand for the vectors of observed and predicted tumour volumes, respec-
tively, and y. denotes the mean of y . Note that smaller NRMSE values correspond to bet-
ter predictive performance, and if the value is less than one, it means that the model is 
capable of learning from the data set.

Predictive performance of PrognosiT

We compared three machine learning algorithms in our experiments: random forest 
(denoted as RF), support vector regression (denoted as SVR) and our proposed algo-
rithm PrognosiT that integrates multiple kernel learning (denoted as MKL). For RF and 
SVR algorithms, we provided all the available gene expression features (i.e., 19 814 fea-
tures in total) as the input data. For PrognosiT algorithm, MKL[H] and MKL[P] utilized 
the Hallmark and PID pathway/gene set collections, respectively.

Figure 2 displays the predictive performances of RF, SVR, MKL[H] and MKL[P] algo-
rithms on thyroid carcinoma (i.e., THCA) data set for tumour volume prediction problem 
by using gene expression profiles as the input. The box-and-whisker plots compares the 

NRMSE =

√
(y − ŷ)⊤(y − ŷ)

(y − 1y.)⊤(y − 1y.)
,
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Fig. 2  The predictive performance of RF algorithm (RF), SVR algorithm (SVR), PrognosiT algorithm with the 
Hallmark gene set collection (MKL[H]) and PrognosiT algorithm with the Pathway Interaction Database 
pathway collection (MKL[P]) on thyroid carcinoma (THCA) data set. Comparison of the NRMSE values 
resulted from 100 replications for each of the four algorithms is made using the box-and-whisker plots. RF 
is compared against SVR, MKL[H] and MKL[P] algorithms using the two-tailed paired t-test to check 
whether there is a significant difference between their performances. In addition, SVR is compared against 
MKL[H] and MKL[P]. The resulting p-values are reported. The color of p-values matches with the color of 
the winning algorithm, for each pairwise comparison
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NRMSE values of the four algorithms resulted from 100 random training/test splits. RF 
algorithm is compared against SVR, MKL[H] and MKL[P] algorithms using a two-tailed 
paired t-test to check whether there is a significant difference between their perfor-
mances whilst SVR is compared against MKL[H] and MKL[P] algorithms. The NRMSE 
values of these algorithms resulted from each replication for THCA data set is available in 
Additional file 2: Table S1.

We observed that SVR algorithm outperformed RF in thyroid carcinoma data set. Due 
to having a highly non-linear kernel (i.e., the Gaussian kernel) integrated in its imple-
mentation, SVR performed better than RF in this prediction task. Our algorithm, Prog-
nosiT, which is an extension of SVR algorithm and integrates our prior knowledge about 
pathways/gene sets into the machine learning model with a multiple kernel learning for-
mulation, outperformed both RF and SVR.
MKL[H] and MKL[P] algorithms picked significantly fewer gene expression features 

than RF and SVR algorithms and eliminated uninformative pathways/gene sets from the 
machine learning model thus, identified relevant pathways/gene sets for tumour volume 
prediction. RF and SVR algorithms benefited from all available gene expression features 
(i.e., 19 814 features in total) whereas the average numbers of used gene expression fea-
tures by MKL[H] and MKL[P] algorithms were respectively 1782 and 797. The exact 
numbers of gene expression features that are utilized by these algorithms in each repli-
cation are available in Additional file 2: Table S2.

PrognosiT determines informative pathways/gene sets for tumour progression

In addition to comparing the predictive performances of MKL[H] and MKL[P] algo-
rithms to RF and SVR algorithms, we investigated the pathways/gene sets chosen by 
our proposed PrognosiT algorithm on thyroid carcinoma data set. Additional file  2: 
Table S3 displays the selection frequencies of 50 gene sets in the Hallmark collection 
for 100 replications. We assumed that a gene set/pathway was added in the final model 
in case the corresponding kernel weight was greater than 0.01. The exact kernel weights 
assigned to 50 gene sets in 100 replications for thyroid carcinoma cohort is displayed in 
Additional file 2: Table S4. Moreover, we also reported the selection frequencies of 196 
pathways in the PID collection for 100 replications in Additional file 2: Table S5 and the 
exact kernel weights assigned to these pathways in 100 replications in Additional file 2: 
Table  S6. The selection frequencies in MKL[H] algorithm averaged to 28.5 gene sets, 
whereas those of MKL[P] algorithm averaged to 13.4 pathways.

We checked the column sums of the selection frequencies of the pathways/
gene sets for the Hallmark and PID collections shown in Additional file  2: 
Tables  S3  and  S5 to discover informative and uninformative gene sets for tumour 
volume prediction and showed them in Additional file 1: Fig. S1. In the final model, 
MKL[H] algorithm chose HYPOXIA gene set in 99 replications over 100. Hypoxia 
is known as one of the most important signatures of solid tumours and is related 
to radiotherapy and chemotherapy resistance, which leads to poor clinical progno-
sis [18]. We know that thyroid cancer is highly an ERK-driven malignity and muta-
tions that activate the RAS/ERK mitogenic signaling pathway are responsible for 
up to 70% of thyroid carcinomas [28]. Thus, having high selection frequencies for 
KRAS signaling gene sets in the final model shows that our predictive model is in 
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agreement with the literature. Another gene set that our model selected frequently 
over 100 replications is GLYCOLYSIS. It is known that a near-universal property of 
primary and metastatic cancers is up-regulation of glycolysis, leading to increased 
glucose consumption [8].

One other highly selected pathway that attracted our attention in our final model is 
P53_PATHWAY​. It is well known that there exists a complex network among p53 fam-
ily members and interactions of these members with other elements accelerates thyroid 
cancer progression [17]. High selection frequency over 100 replications by our final 
model of ANGIOGENESIS, INFLAMMATORY_RESPONSE and EPITHELIAL_MESEN-
CHYMAL_TRANSITION gene sets, which are highly associated with tumour progression 
and rapid changes in cellular phenotype, and frequent selection of the metabolism-
related gene sets such as PANCREAS_BETA_CELLS, XENOBIOTIC_METABOLISM, 
FATTY_ACID_METABOLISM, BILE_ACID_METABOLISM show that the results of our 
proposed algorithm are consistent with the existing knowledge and may contribute to 
the discovery of unknown mechanisms towards tumour progression.

PrognosiT reveals significantly up‑ and down‑regulated genes between tumour 

and normal tissues

After comparing predictive performances and analysing highly selected pathways/gene 
sets to check the biological mechanisms that lead to tumour progression, we also ana-
lysed the genes that have been selected frequently by our final model over 100 repli-
cations. We noted the genes that are selected in every replication separately by our 
MKL[H] and MKL[P] algorithms. There were 137 genes resulted from MKL[H] algo-
rithm and 37 genes resulted from MKL[P] algorithm. We then checked whether these 
genes are significantly up- or down-regulated during the tumour progression by com-
paring the gene expressions of tumour tissues to the gene expressions of normal tissues 
collected from the same patients. There were 58 cancer patients that had both tumour 
and normal tissue information. We performed Wilcoxon test, which is a non-parametric 
statistical test that compares two paired groups, to determine whether there is a signifi-
cant difference (i.e., p-value < 0.05 ) between the gene expressions coming from tumour 
and normal tissues. As a result, there were 113 genes that are significantly up- or down-
regulated resulted by MKL[H] and 32 genes resulted by MKL[P].

We showed the scatter plot visualisations of some of the significantly differed expres-
sions of the genes resulted from our MKL[H] and MKL[P] algorithms (see Fig. 3). We 
checked whether these genes are used as prognostic factor for thyroid cancer evaluation 
from The Human Protein Atlas website at https://​www.​prote​inatl​as.​org. The displayed 
genes in Fig. 3 are already in use as prognostic factor for thyroid cancer. This situation 
contributes to the possibility that the remaining genes resulted from our algorithm to 
predict tumour volume might be considered as prognostic factors in the future as well.

Conclusions
Predicting tumour volume while discovering the underlying molecular mechanisms 
towards tumour progression using genomic characterizations of cancer patients is criti-
cal to foresee the disease prognosis and to be able to develop new therapeutic strate-
gies. This study was designed due to scarcity of integrated computational methods 

https://www.proteinatlas.org
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that perform tumour volume prediction and knowledge extraction simultaneously 
on genomic data, to get insightful information related to cancer progression. Instead 
of solving these problems separately (i.e., tumour volume prediction and knowledge 
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Fig. 3  Comparison of mRNA gene expression levels of several genes resulted by our algorithms 
MKL[H] and MKL[P] on thyroid carcinoma data set. Corresponding gene up- and down-regulations 
can be understood by scatter plot visualizations of Tumour and Normal tissues. Red points refers to 
overexpression of the specified gene in tumour whereas blue points refer to underexpression in tumour. 
The p-values are resulted from paired Wilcoxon test that we used to determine whether there is a significant 
difference between the gene expressions of Tumour and Normal tissues
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extraction at separate times), using our integrated approach, we are able to gather robust 
knowledge about the molecular mechanisms that are related to tumour progression.

We tested our proposed algorithm PrognosiT on thyroid carcinoma cohort (i.e., THCA) 
from TCGA using two pathway/gene set collections, which are curated specifically for 
cancer, namely, Hallmark gene set collection [16] and PID pathway collection [19], as 
prior knowledge source. The predictive performance results we obtained showed that 
PrognosiT performed comparable or even statistically significantly better than RF [1] 
and SVR [6] (Fig. 2; Additional file 2: Table S1), which are two standard baseline machine 
learning algorithms used for prediction from genomic data. The power of our method 
comes from the fact that the number of used gene expression features was significantly 
fewer (i.e., less than one-tenth) in PrognosiT while having comparable or even better 
predictive performance results while conjointly extracting the relevant pathways to pre-
dict the tumour volume.

To show the biological relevance of the results of our algorithm, we provided the selec-
tion frequencies of pathways/gene sets for THCA data set (Additional file 1: Fig. S1). We 
also showed the unique genes that are selected in every replication of our algorithm and 
checked their gene expression levels between tumour and normal tissues. Among these 
genes, we displayed several statistically significantly up- or down-regulated ones (Fig. 3; 
Additional file 1: Figs. S2 and S3). We saw that frequently selected pathways/gene sets 
and unique genes in THCA cohort are supported by the existing literature, and some of 
the genes that are resulted from our algorithm are already in use as prognostic factors 
for thyroid carcinoma.

Even though the regression problem in this study is about to predict tumour volumes 
of cancer patients utilizing their gene expression profiles, it is possible to easily adapt the 
used computational framework to other disease types, other phenotypes and other prior 
knowledge sources with slight modifications. However, since there exist different under-
lying mechanisms related to different diseases, the prior knowledge source should give 
us insightful information about the studied prediction task. Thus, the compatibility of 
pathway/gene set collection with the studied prediction problem should be the priority 
to get good predictive performance using PrognosiT.
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