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Background
The study of DTIs has been attracted many researchers’ attention in the field of phar-
maceutical science in recent years [1–4]. In this regard, many efforts have been made to 
investigate drug repositioning as well as the discovery of the interaction between new 
targets and existing drugs. DTI means binding a drug to a target location, that leads to 
a change in its behavior or function. On the other hand, the identification of DTIs mini-
mizes the adverse side effects of drugs [1].
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Performing wet-lab experiments is a significant challenge in terms of cost, time and 
effort [5]. In this regard, Computational Prediction (CP) methods have been used in 
recent years [6]. In addition, there is ample evidence of Disease-Associated Microbes 
(DAM) as well as Long non-coding RNA (lncRNA)-Disease Associations (LDA) [7, 8]. 
Using traditional approaches of experiments to confirm these connections often requires 
a great deal of materials and time which are expected computational methods to be used 
to predict these associations. Many of these algorithms use profile-based methods (for 
example, NCPLP [7] in ADM and BLM-NPAI [8] in LDA) to predict these associations.

Despite the synthesis of many compounds, their target profiles and drug effects are 
still unidentified. Besides, there is no cure for many diseases and many new diseases are 
introduced each year. Therefore, much information has been gathered about various 
compound properties, features, responses and target proteins by researchers. The emer-
gence of a large dataset has led to the use of CP with problems such as high dimensional, 
complex data, which indicates the need for efficient and robust algorithms in DTIs.

Computational methods for DTIs have been used by state-of-the-art researchers. 
Generally, three main categories can be introduced for computational methods in this 
application [1]. In the first category, the concept of that similar molecules tend to share 
similar properties and usually bind similar proteins, is used which these methods are 
called ligand-based approaches [6, 9, 10]. This approach predicts interactions using simi-
larities between identical protein ligands. Since these ligand-based methods do not use 
sequence information of the proteins for prediction, it is possible that a novel interac-
tion restricts to link between known ligands and protein families. On the other hand, 
the performance of these methods is highly dependent on known ligands, and if these 
ligands are low for a candidate protein, the performance of these methods is drastically 
reduced [1, 11].

In the second category, the 3D structures of drugs and proteins are used by a simula-
tion to determine the interaction, known as docking approaches. The main problem is 
that the 3D structure of some proteins is not known [12, 13]. The third category is chem-
ogenomic-based methods that uses information about drugs and targets simultaneously. 
This method has been considered by many researchers in recent years; furthermore, it 
can be used in a broad biological data, which are also used for the prediction of data 
from process information such as chemical structure graphs and genomic sequences for 
the drugs and targets from both sides of the drug and target simultaneously [14]. For 
this purpose, biological information that is available in public datasets can be used. This 
general method can be divided into two categories: Feature-based and similarity-based 
methods [15]. In the feature-based method, a supervised machine learning technique 
is used. In fact, in this method, feature vectors use sets of drug–target pairs with class 
labels that indicate the presence of interaction (positive instance) or no interaction (neg-
ative example). Also, it should be noted that negative samples are samples without non-
interactions or unknown drug–target interactions [16–18]. In similarity-based methods, 
two matrices of similarity related to the drug and similarity of the target along with the 
interaction matrix are used which represent the interaction between the drug and the 
target [19–21]. These similarities are usually created for the drug by chemical structures 
and for the target by protein sequence alignment. Similarity-based methods have several 
apparent advantages [22]:
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1.	 Feature-based approaches require a feature extraction or selection process which is 
complex and challenging, while similarity-based techniques do not require this pro-
cess.

2.	 Computing similarity measures have already been expanded and used extensively 
such as chemical structure similarity for drugs and genomic sequence similarity for 
targets.

3.	 Similarity-based approaches can provide better performance in prediction since 
directly related to kernel methods.

4.	 Similarity matrices represent chemical space and genomic space derived from the 
relationships between drugs and genes, respectively.

These advantages demonstrate the superiority of similarity-based approaches over 
other approaches. Adjacency matrices are commonly used to represent drug-drug and 
target-target similarity.

Another point of view that can be introduced to categorize the available methods in 
DTI is methods which includes classification, network inference and matrix factoriza-
tion groups. Classification-based models are divided into Local Classification Model 
(LCM) [23, 24] and Global Classification Model (GCM) [25, 26]. It is difficult to diag-
nose drugs (resp. targets) that interact with the same target (resp. drug), so the LCM is 
not able to show a link between targets or drugs [27]. Also, GCM cannot show the rela-
tionship between targets or drugs due to the complexity of similarity calculations based 
on the tensor product or high dimensional concatenate feature vectors. Overall, these 
models do not easily capture the underlying structure among drug–target pairs [28].

In recent years, many types of researches have been done based on deep learning 
in DTI [29–31]. A comprehensive deep learning library called DeepPurpose has been 
introduced for DTI prediction [29]. This library includes the implementation of 15 com-
pound and protein encoders and more than 50 neural architectures with other beneficial 
features in DTI.

Convolution Neural Networks (CNNs) were used to obtain 1-dimensional represen-
tations of protein sequences (amino acid sequences) and simplified molecular input 
line-entry system (SMILES) compounds in [30]. The extraction features were claimed 
to show an appropriate representation of local dependencies or patterns and serve as a 
suitable input for a fully connected neural network (FCNN) for the binary classifier. The 
results show that the use of CNNs to obtain data display, as an alternative to traditional 
descriptors, improves performance in DTI.

A deep learning model based on DeepLSTM was developed to predict DTI in [31]. 
Position-Specific Scoring Matrices (PSSM) and Legendre Moment (LM) were used to 
extract the evolutionary features of proteins. The Sparse Principal Component Analysis 
(SPCA) was then used to compress the features of drugs and proteins in a uniform vec-
tor space.

It should also be noted that the use of deep learning also faces with similar problems; 
on the other hand, the use of deep learning has a large dataset for training, which unfor-
tunately in these applications, providing data is expensive and time-consuming.

Interactions between drugs and targets show a significant relationship that is rep-
resented by a bi-partite network [32]. The information in this network is taken from 
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drug–target interactions. A bi-partite network is based on network inference (e.g., 
NBI [19]) which has transformed DTI prediction to link prediction between graph 
nodes. Two-step resource allocation is used by NBI to infer the potential links 
between nodes. Although, it just depends on the local or the first-order topology of 
nodes, it tends to completely bias the high-degree nodes [26]. In addition, NBI cannot 
predict the interaction between the target-drug pair without known accessible path-
ways in the network [32]. The heterogeneous network is a promising model. This net-
work is made by a DTI network and two other networks which is produced by drug 
similarities and target similarities, respectively [28, 33].

The models based on matrix factorization, such as BMF2K [34], CMF [35], NRLMF 
[36] are good models to obtain structural information between drug–target inter-
actions. Accordingly, drugs and targets are planned to a common low-rank feature 
space according to the drug similarity matrix and the target similarity matrix [28]. 
Two networks (dual-network L2,1-collaborative matrix factorization) have been pro-
posed to predict Drug-Disease Interactions (DDI), called the L2,1-network matrix 
factor [37]. In this method, to achieve better results, the Gaussian interaction profile 
kernels and L2,1-norm are presented. Moreover, the network similarities of drugs and 
diseases are combined with their chemical and semantic similarities. In order to iden-
tify potential links in biomedical bi-partite networks, a method called graph regular-
ized generalized matrix factorization (GRGMF) is proposed to predict links [38]. For 
this purpose, a matrix factorization model is formulated to use latent patterns behind 
observed links. It is claimed that the results showed an improvement in the proposed 
method.

In this regard, factorization approaches can be used to predict DTIs [21]. In general, 
based on the reported experiences [6], matrix factorization methods have achieved 
the best results in DTI. Since there are few factors for DTI and these latent factors 
characterize drugs and targets, the DTI matrix can be converted into a latent fac-
tor matrix of drug and target. The DTI matrix is of low-rank which can be solved 
using matrix factorization. Matrix factorization is a bi-linear non-convex problem 
that there are no convergence guarantees [11]. Nuclear Norm Minimization (NNM) 
based methods have also been proposed to improve it. By shrinking all Singular Val-
ues (SVs) uniformly, the NNM is usually used to estimate the matrix rank. Despite the 
precise physical meanings of SVs, NNM cannot accurately estimate the matrix rank.

In this paper, unifying matrix factorization and NNM approaches combined with 
graph regularization penalties are proposed, which will be described in detail in the 
following sections. It should be noted that similarly to Mongia et al. study [11], a sim-
ilarity matrix is used in this proposed method.

The strengths of the proposed method are as follows:

•	 Unifying nuclear norm with bilinear factorization is presented based on the sim-
ilarity of drug-drug and target-target, which has caused the advantages of both 
methods to be combined.

•	 Rank-Restricted Soft Singular Value Decomposition method is used to optimize 
the nuclear norm minimization in the DTI problem.
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•	 The performance of the proposed method based on AUC and AUPR measures had 
the best performance and also the results were suitable in datasets with different fea-
tures.

•	 The time complexity of the running time is O
(

r3 + nb log (n)
)

 for each iteration in 
the proposed algorithm. This complexity is polynomial, which has performed better 
than other new methods.

•	 The proposed method can be widely used in other applications of CP. Using the pro-
posed method does not require a complex process.

The rest of the paper is organized as follows: In “Methods” section, the proposed 
method that includes a novel algorithm for DTI is introduced. The experimental setup 
and results, that include the introduction of datasets, evaluation criteria and comparison 
of methods, are presented in “Discussion” section. Finally, the conclusion and discussion 
are presented in “Conclusion” section.

Methods
The interaction between the target and the drug is shown by the adjacency matrix X, 
where drugs are presented in rows and targets are presented in columns. The value of 
the matrix represents the interactions. Since all DTIs are not known, this matrix is par-
tially observed. This is expressed as follow:

In Eq. (1), P is a sub-sampling operator which in this binary sampling matrix the value 
of 1 means that there is a known interaction and 0 means otherwise. Y is an available 
partially sampled DTI matrix. The purpose of this equation is to estimate the matrix X 
given Y and known P. X is a low-rank that needs to be recovered. Equation (2) can be 
used for this purpose.

Low-Rank Matrix Approximation (LRMA) has been used in many practical cases that 
have low rank properties, so in recent years it has attracted considerable interest in dif-
ferent areas, such as computer vision and machine learning [39–42]. In general, LRMA 
methods are divided into two categories, the low rank matrix factorization (LRMF) 
[43–46] and the rank minimization methods [47–49]. The purpose of the LRMF con-
cerning the input matrix Y is to factorize it to the product of two low rank matrices 
that can be used to reconstruct the low rank matrix X with exceptional fidelity. A vari-
ety of LRMF-based methods, such as classical Singular Value Decomposition (SVD) 
under ’ L2 − norm ’[50, 51], robust LRMF methods under ‘ L1 − norm ’ [52, 53] and other 
probabilistic methods have been proposed [54, 55]. The problem of Low rank models for 
recovering a rank-k matrix Z can be expressed by minimizing Eq. (3).

where f(.) defines a loss function.The rank limitation in Eq.  (3) has typically been 
imposed by a factorization Z = ABT , as

(1)Y = P(X)

(2)min
X

rank(X) such that Y = P(X)

(3)min
Z

f (Y − Z) subject to rank(Z) = k
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based on its intractability. It has been proven that when the loss function is the Least 
Squares (LS) loss, i.e., f

(

Y− ABT
)

=

∥

∥

∥
Y− ABT

∥

∥

∥

2

F
 , then Eq. (4) does not have local min-

ima and a closed form solution can be obtained via the SVD of Y [56]. One of the disad-
vantages of this factorization approach is highly susceptibility of the LS loss to outliers 
and the presence of missing data in Y results in local minima. Factorization with missing 
data is a NP-Hard problem [57], while outliers can be addressed with robust loss func-
tions [58, 59].

In DTI, matrix X can be converted into two matrices as follows:

Here M and N are the numbers of drugs and targets, respectively and k is the pre-
sumed rank of the matrix. The Eq. (4) for DTI is expressed as Eq. (6).

As mentioned earlier, the second category of LRMA methods is based on rank mini-
mization. These methods by setting an additional rank constraint on the estimated 
matrix can reconstruct the data matrix. Direct rank minimization is challenging to solve 
because these are NP-hard. To solve this type of problem, the NNM methodology is 
used. In this methodology, the problem is generally solved by replacement minimizing 
the nuclear norm of the estimated matrix that is a convex relaxation of minimizing the 
matrix rank. �X�∗ is the nuclear norm of matrix X. For example, �X�∗ =

∑

i

σi is the 

nuclear norm which is the sum of its SV that σi represents the i-th SV of the matrix X. 
NNM attempts to recover matrix X, actual low rank, by minimizing �X�∗ from degraded 
observation matrix Y. In recent years, NNM-based methods have been used in many 
applications such as video denoising [60], background extraction [61], data recovery [62] 
and subspace clustering [63, 64]. The matrix rank can be recovered under the conditions 
of the limited and theoretic warranty. However, in some applications, it acts the various 
rank components equally, and therefore it cannot be precise enough to estimate the 
matrix rank. Thus several methods have been proposed to improve NNM performance 
[11, 65].

For noisy input, by solving the NNM problem, the inherent low rank reconstruction 
can be achieved with a high probability. Also, the Nuclear Norm Proximal (NNP) is also 
represented by the following equation:

By using a soft threshold process on the SV of the observation matrix, it can be easily 
solved in closed form:

(4)min
A,B

f
(

Y − ABT
)

(5)XM×N = AM×kBk×N, k << (m, n)

(6)min
A, B

f
(

Y− P(ABT
)

)

(7)min
Z

f (Y − Z)+ ��Z�∗

(8)X̂ = US �

2
(�)VT
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In this equation, Y = U�VT is the SVD of Y, the soft thresholding function on diag-
onal matrix � with parameter �2 is indicated by S �

2
(�) . For each diagonal element �ii in 

� , there is:

λ is considered as a trade-off parameter between the loss function and the low-rank 
regularization, that is created through the nuclear norm. These models have general-
ized the use of low-rank compared to many applications, where Z is low rank but has 
no a priori [40, 66].

In addition to having convexity and theoretic guidance of the λ [40], these models 
also have multiple drawbacks.

To show how to create a determined rank in Z, by setting λ [67], Z has a predeter-
mined rank. It usually gives more undesirable results than its direct usage in Eq. (2). 
Additionally, the “kernel trick” cannot be used because access to the factorization of 
Z in Eq.  (3) is not available. Also, Eq.  (3) is a Semidefinite Program (SDP) and Off-
theshelf SDP optimizers are suitable for low-middle dimensional optimization (i.e., 
hundreds of variables) and are not amenable for large scale datasets with the high 
dimension.

To deal with the limitations, this paper uses a robust method called Rank-Restricted 
Soft SVD (RRSSVD) based on Hastie et al. study [68] for the DTIs. In the following, 
we will describe this method in this application. Based on [69], the nuclear norm can 
be expressed as follows:

In this section, the relationship between factorization and nuclear norm approaches 
is used based on the method presented in [67], that bridges the gap between two 
methods is presented in Eq. (11).

Equation (11) for the DTI problem can be expressed as follows:

In this paper, Eq. (12) is used to solve Eq. (13).

To solve the Eq.  (13), Algorithm  1 is used based on the RRSSVD method in DTI 
prediction. In this algorithm, theorems 1 and 2 [68] are used for DTI.

Theorem 1  For the optimization problem (14), where Ym×n is a fully observed matrix 
and 0 < r ≤ min(m, n).

(9)S �

2
(�)ii = max

(

�ii −
�

2
, 0

)

(10)�X�∗ = min
A,B

1

2

(

�A�2F + �B�2F

)

subject to X = ABT

(11)min
A,B

f
(

Y − ABT
)

+ �

2

(

�A�2F + �B�2F
)

(12)min
A,B

∥

∥Y − P(ABT )
∥

∥

2

F
+ �

2

(

�A�2F + �B�2F
)

(13)min
Z

�Y − P(Z))�2F + ��Z�∗
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a solution provided by

where the rank-r SVD of Y is UrDrV
T
r  and S�(Dr) = diag

[

(σ1 − �)+, . . . , (σr − �)+
]

.

Theorem 2  For the optimization problem (14), where Ym×n is a fully observed matrix 
and 0 < r ≤ min(m, n).

a solution provided by Ã = UrS�(Dr)
1
2 and B̃ = VrS�(Dr)

1
2 , and all solutions satisfy 

ÃB̃T = Z̃ , where Z̃ is as given in (15).
Finally, it should be noted that relative change in the Frobenius norm has been used to 

check convergence. Equation (17) is used to calculate it. This equation is based on a pair 
of iterates 

(

U,D2, V
)

(old) and 
(

Ũ , D̃2, Ṽ
)

(new).

By this algorithm, Z̃ = ÃB̃T is considered as the output.

As mentioned in this paper, the adjacency matrix is used that represents the inter-
action matrix between targets and drugs. In this matrix, if there is a known inter-
action between the drug (dt) and the target ( tj ), the value is 1 and otherwise the 
value is zero. In this article, in addition to the interaction matrix, a drug similarity 
matrix ( Sd ) and a target similarity matrix ( St ) are used. With the number of sub-
structures shared in the chemical structure between the two drugs, the SIMCOMP 

(14)
min

Z : rank(Z) ≤ r
F�(Z) :=

1
2
�Y − Z�2F + ��Z�∗

(15)Z̃ = UrS�(Dr)V
T
r

(16)
min

Am×r,Bn×r

1
2

∥

∥Y − ABT
∥

∥

2

F
+ �

2

(

�A�2F + �B�2F
)

(17)∇F =

∥

∥

∥
UD2VT − ŨD̃2Ṽ T

∥

∥

∥

2

F
∥

∥UD2VT
∥

∥

2

F

=
tr
(

D4
)

+ tr
(

D̃4
)

− 2tr
(

D2UTŨD̃2Ṽ TV
)

tr
(

D4
)
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introduced in [70] is used. In fact, Sd indicates the similarity of the chemical struc-
ture of the drug pair. Similarly, St represents the degree of similarity between the two 
proteins, which is calculated from the similarity of the genome sequence based on 
the amino acid sequence of the target protein. It should be noted that normalized 
Smith-Waterman [71] has been used to calculate this.

In addition to the use of the similarity matrix introduced, there are four other 
types of similarity matrices such as Cosine ( Scos ), Correlation ( Scor ), Hamming 
( Sham ) and Jaccard ( Sjac ) which are used to predict DTI [11]. This paper also uses 
five similarity matrices calculated using the drug–target interaction matrix. The 
similarity matrices are used for DTI prediction, which by this method; Eq.  (13) is 
expressed as follows:

In Eq. (18), α1 > 0 and α2 > 0 are the balancing parameters, Tr(.) is the trace of a 
matrix, nsim indicates the number of similarity matrices (similar reference [11] 
nsim = 5). Ld and Lt are the graph Laplacians [72] for Sd and St, where Ld = Dd − Sd 
and Lt = Dt − St are computed, respectively. Dd and Dt are degree matrices for drugs 
and targets that are calculated as Dii

d =
∑

j

S
ij
d and Dii

t =
∑

j

S
ij
t .

As shown in Algorithm 2, a method proposed by Mongia et al. [11] is used to solve 
this equation. It should be noted that this algorithm uses the RRSVD_DTI method 
that is proposed for DTI prediction in this paper.

In Algorithm  2, Scomd = Sd + Scosd + Scord + Shamd + S
jac
d =

nsim
∑

i=1

Sid and 

Scomt = St + Scost + Scort + Shamt + S
jac
t =

nsim
∑

i=1

Sit represent the combined similarity for 

drug and target, Dcom
d = diag

(

∑

j

SComd

)

 and Dcom
t = diag

(

∑

j

SComt

)

 represent the 

combined degree matrix for the drug and target also Lcomd = Dcom
d − Dcom

d  and 
Lcomt = Dcom

t − Dcom
t  represent the combined Laplacian matrix for the drug and tar-

get, respectively.

(18)
min
Z

�Y − P(Z))�2F + ��Z�∗ + α1Tr

(

ZT
nsim
∑

i=1

LidX

)

+ α2Tr

(

ZT
nsim
∑

i=1

LitX
T

)
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Result

In this section, the experiments and results based on the proposed method are ana-
lyzed separately. In the first step, datasets and how to divide them into training and 
testing sets are presented. All experiments and extracted parameters are performed 
separately for each dataset under different validation settings. The following com-
pares the proposed method with other new methods based on AUC, AUPR and time 
criteria.

Dataset description

Reference [14] examines information on drug and target proteins interactions for the 
public databases; KEGG BRITE [73], BRENDA [74] SuperTarget [75] and DrugBank 
[76]. In this paper, similar to [2, 11, 14], four benchmark datasets are used, which are 
from four different classes of target proteins. In fact, these benchmarks are simulated 
from public databases. The following is a description of these datasets:

•	 Enzymes (Es): In this dataset, 445 drugs, 664 targets and 2926 interactions have been 
extracted.

•	 Ion channels (ICs): In this dataset, 201 drugs, 204 targets and 1476 interactions have 
been extracted

•	 G protein-coupled receptors (GPCRs): In this dataset, 223 drugs, 95 targets and 635 
interactions were extracted

•	 Nuclear receptors (NRs): In this dataset, 54 drugs, 26 targets and 90 interactions 
have been extracted

It should be noted that these datasets are simulated from public databases which at the 
link: http://​web.​kuicr.​kyoto-u.​ac.​jp/​supp/​yoshi/​drugt​arget/ are publicly available.

Experimental setup

In this section, the setting of datasets is based on recent work done on the DTI problem. 
Three cross-validation settings (CVS) as named CVS1, CVS2 and CVS3 are introduced 
[6]. In CVS1, standard setting for evaluation, the target-drug pairs for the test set were 
randomly selected for prediction. In CVS2 and CVS3, settings are performed to evalu-
ate the ability of methods to predict interactions for novel drugs (i.e., drugs for which no 
interaction information is available) and novel targets, respectively. It can be pointed out 
that in CVS2, entire drug profiles and CVS3, total target profiles are selected as a test 
set.

When at least one DTI is known for di and tj respectively in the training data the CVS1 
predicts the unknown pair (di, tj). To prevent using the pairs, CV used the pairs between 
the drugs having at least 2 targets and the targets interacting with at least 2 drugs, which 
should be used in three other scenarios. Some of these pairs are selected randomly for 
testing in each round of CV and the union of the rest of them and other entries are used 
for training.

However, when there are no DTIs for observation of new drugs and new targets in the 
training data, CVS2 and CVS3 predict new drugs and new targets respectively.

http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
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Performance of CV on drugs in CSV2, where the rows corresponding to drugs are 
randomly blinded for testing and the remaining rows are used for training. Perfor-
mance of CV on targets in CSV3, where the columns (accounting for targets) are 
randomly blinded for testing and the resting columns are used for training.

We have made various tasks of CV under 3 scenarios shown in Fig. 1, respectively 
[28].

Similarly to the method presented by Mongia et  al. [11], tenfold cross-validation 
(CV) is used, where data was divided into tenfolds and out of those 10 folds, one 
was selected as a test set while the remaining ninefolds were considered as a training 
set. In experiments, 5 repetitions of tenfold CV for each of the methods under three 
CVS are performed. For a more accurate evaluation, in each repetition, all CVSs for 
each dataset are similar to Mongia and Ezzat study [6, 11].

Evaluation metrics

To evaluate the performance of the proposed method, Area Under the ROC Curve 
(AUC) and Area Under the Precision-Recall curve (AUPR) criteria based on Mon-
gia and Ezzat study [6, 11] have been used. In the following, the requirements are 
introduced:

•	 AUC is a famous quality measure of ranking performance. It uses the ROC curve, 
which is a graphical plot that illustrates the diagnostic ability with a positive rate for 
a method as a function of the false-positive rate. AUC measures all two-dimensional 
areas below the ROC curve. It is also used as a measure of classification performance, 
aggregating over decision thresholds. Interpreting AUC shows a better model that is 
a random positive example more highly than a random negative example.

•	 AUPR is another measure which is used to evaluate the performance of DTI 
methods in this paper. It uses the precision–recall curve, which is a ratio of true 
positives plot that illustrates the positive predictions for each given recall rate. 
AUPR performance evaluation shows this area under the Precision-Recall curve 
punishes more false positives than AUC. The AUPR offers a quantitative assess-
ment of the separation of true interactions from true non-interactions among 
predicted scores. For this reason, due to few true drug–target interactions, AUPR 
is a more important qualitative scale than AUC which finds true drug–target 
interactions among prediction scores.

Fig. 1  Presentation of cross-validation schemes for three scenarios. Each column represents a scenario. Row 
includes the DTI matrices, in which the entries marked with “?” are the pairs of interest to be tested
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Parameter settings

In this paper, cross-validation on the training set is used to set the parameters of the 
proposed method. In fact, experiments are designed under each cross-validation 
setting to find the best parameter for each dataset. The considered parameters are 
P, �,α1,α2, v1, v2, r . It should be noted that the ranges for �,α1,α2, v1, v2 and P, r parame-
ters are considered (0,1) and (1,10), respectively. All the extracted parameters are shown 
in Table 1.

It is necessary to mention, implementations1 were performed in MATLAB program-
ming language on hardware configuration, 4G memory, and Core i7 M620 2.6 GHz CPU.

Interaction prediction

In Fig. 2, the results obtained in each validation set are shown by boxplot. In fact, this 
diagram is drawn based on five different runs on four databases. Two criteria, AUC and 
AUPR, have been considered in drawing this diagram. The results show the performance 
of the proposed method which is appropriate in each run and is without outliers.

Comparison with the others methods

In this paper, to evaluate the proposed method, experiments have been designed to com-
pare this method with 6 state-of-the-art methods introduced in recent years. In the fol-
lowing, we will describe these methods.

Weighted Graph Regularized Matrix Factorization (WGRMF) method [20] was intro-
duced in 2016. In this method, since the data are located on or close to low-dimensional 
non-linear manifolds, two methods of matrix factorization are proposed, which in these 
methods, graph regularization is used. Also, a preprocessing step has been presented to 
improve the predictions of a “new drug” and a “new target” by introducing intermediate 
interaction likelihood scores.

Table 1  Extracted parameters for the proposed method and [11]

Validation 
setting

Datasets Parameters

P � α1 α2 v1 v2 r

CVS1 NR 2 0.1 0.1 0.01 0.1 0.1 4

GPCR 2 0.5 0.5 0.1 0.1 0.5 4

IC 5 0.1 0.01 0.1 0.1 0.01 4

E 5 0.1 0.01 0.1 0.1 0.1 4

CVS2 NR 2 0.01 0.01 0.01 0.01 0.1 4

GPCR 2 0.01 0.1 0.01 0.01 0.01 4

IC 5 0.1 0.01 0.1 0.1 0.1 4

E 5 0.01 0.1 0.01 0.1 0.01 4

CVS3 NR 2 0.01 0.01 0.01 0.01 0.1 4

GPCR 2 0.1 0.01 0.01 0.1 0.1 4

IC 2 0.1 0.01 0.1 0.01 0.1 4

E 2 0.1 0.01 0.1 0.01 0.01 4

1  https://​github.​com/​ali289/​DTI-​GRNNw​BF/

https://github.com/ali289/DTI-GRNNwBF/
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In 2019, an improved graph regularized matrix factorization (GRMF) method was 
proposed to learn DTI flow patterns by combining the matrix analysis method called 
L1,2-GRMF [77]. In this method, WKNKN for preprocessing is used to improve predic-
tion accuracy.

The Collaborative Matrix Factorization (CMF) method [35] was introduced in 2013. 
The main idea of this method is to use more than one target and drug similarity matrix. 
In this method, a weighted matrix for the automatic selection of similarities is estimated 
to improve DTI prediction.

Subsequently, a factor model called Multiple Similarities Collaborative Matrix Fac-
torization (MSCMF) is proposed in which drugs and targets are projected in a common 
low-rank feature space. Finally, these two low-rank matrices and weights associated with 
similarity matrices are estimated by an alternating least squares algorithm.

Regularized Least Square Weighted Nearest Neighbor profile (RLS-WNN) method 
[25] was introduced in 2013. In this method, a simple weighted nearest neighbor 
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Fig. 2  Boxplot diagram based on the proposed method in 5 times run under different validation settings. In 
each diagram, the results are reported on four datasets. The left column shows the AUC and the right column 
shows the AUPR. Each row from top to bottom shows the results under validation setting CVS1, validation 
setting CVS2 and validation setting CVS3, respectively
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procedure is introduced which is claimed that the procedure has performed well in 
DTI prediction, and to improve on previous work, this procedure is combined with 
the recent machine learning method.

Multi Graph Regularized Nuclear Norm Minimization (MGRNNM) method [11] 
was proposed in 2020. In this method, a new framework for predicting DTI from 
three inputs; known drug–target interaction network, similarities over drugs and 
those over targets is proposed. A method for finding a low-rank interaction matrix 
has been introduced. This matrix is made up of graphs that represent the proximities 
of drugs and targets. This paper proposes to capture the proximities exhaustively in 
predicting DTI, various multiple drug-drug similarities and target-target similarities 
as multiple graph Laplacian (over drugs / targets) regularization terms be used.

Four references are introduced specifically for the DTI prediction task. In the fol-
lowing, two references are introduced as baseline references.

Matrix completion (MC) method [78] was introduced in 2011. The paper focuses on 
solving matrix completion problems. In this regard, a non-convex optimization prob-
lem is proposed to solve the matrix completion. The proposed method is a variant of 
convex nuclear-norm minimization, with a fast numerical algorithm to solve it.

Matrix Completion on Graphs (MCG) method [79] was introduced in 2014. This 
paper introduces a novel matrix completion model for several real-world applications 
such as recommender systems. In this new model, the proximity information is used. 
It is stated that the purpose of this method is to find a low-rank solution created by 
the proximities of rows and columns. It should be noted that these proximities are 
encoded by graphs.

Neighborhood Regularized Logistic Matrix Factorization (NRLMF) method [36] 
was introduced in 2016. This method is based on the possibility of interacting a drug 
with a target through the logistic matrix factorization. NRLMF is more important in 
drug–target interaction pairs (positive observations) than in unknown pairs (negative 
observations). Because positive observations have already been experimentally con-
firmed, they are usually more reliable. For this reason, the local structure of drug–tar-
get interaction data has also been used through neighborhood adjustment to achieve 
better predictive accuracy.

DDR method was introduced in 2018 [80]. DDR works by using multiple similarities 
between drugs and considerable similarities between target proteins through a het-
erogeneous graph containing known DTIs.

Triple Matrix Factorization-based model (TMF) [28] was introduced in 2018. This 
model shows a new sight for the effective mechanism of DTIs by indicating prevail-
ing features. TMF assesses the predictions on four benchmark datasets over different 
screening scenarios which represent its considerable priority.

In this section, a comparison between the proposed method and the current predic-
tion methods is performed. AUC and AUPR criteria were used to evaluate the perfor-
mance. Tables 2, 3, 4 and 6 show the results found on AUPR under validation setting; 
CVS1, CVS1 and CVS1 in four data sets, respectively. Tables 3, 5, 6 and 7 also show 
the results based on AUC under validation setting; CVS1, CVS1 and CVS1 in four 
datasets, respectively. In these tables, the best result are shown in bold. As shown 
in the tables, the proposed method performed well in all four data sets and all three 
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validation sets. It should be noted that the SMGRNNM method is the same method 
presented in the Mongia et  al. study [11], which uses only the standard similarity 
matrices.

Time complexity

In this section, the time complexity of the proposed algorithm is compared with 
MGRNNM method [11] as one of the best methods presented in DTI. Since Algorithm 2 
is an iterative solution, in this paper, similar to MGRNNM, the time complexity is calcu-
lated for each iteration. In the proposed method and MGRNNM, in each iteration two.

Sylvester equations and one NNM are solved. According to Kirrinnis et  al. study 
[81], the complexity of solving the Sylvester equation is equal to O

(

nb log (n)
)

 , in which 
the parameter b is between 2 and 3. To solve NNM in MGRNNM, the SVS method is 
used which the complexity of this algorithm is equal to O

(

n3
)

 in each iteration. In fact, 

Table 2  AUPR results for interaction prediction under validation setting CVS1

Method Datasets

E IC GPCR NR

MGRNNM [11] 0.9660 (0.0006) 0.9585  (0.0013) 0.8515 (0.0033) 0.8791 (0.0019)

SMGRNNM [11] 0.9014 (0.0018) 0.9298 (0.0026) 0.7483 (0.0039) 0.6408 (0.0234)

MC[78] 0.7882 (0.0022) 0.8868 (0.0028) 0.6481 (0.0116) 0.3950 (0.0298)

MCG[79] 0.7621 (0.0025) 0.8346 (0.0025) 0.5956 (0.0102) 0.4558 (0.0202)

WGRMF [20] 0.8768 (0.0020) 0.9225 (0.0022) 0.7370 (0.0024) 0.6016 (0.0378)

WKNKN + L1,2-GRMF [77] – – – –

RLS-WNN[25] 0.8093 (0.0045) 0.8459 (0.0106) 0.6933 (0.0226) 0.7072 (0.0290)

CMF [35] 0.8837 (0.0026) 0.9373 (0.0019) 0.7543 (0.0017) 0.6383 (0.0149)

NRLMF [36] 0.892 (0.006) 0.906 (0.008) 0.749 (0.015) 0.728 (0.041)

TMF [28] 0.952 (0.002) 0.952 (0.002) 0.844 (0.006) 0.811 (0.035)

DDR [80] 0.92 0.92 0.79 0.83

Proposed method 0.9687 (0.0007) 0.9670 (0.0005) 0.9159 (0.0036) 0.9253 (0.0091)

Table 3  AUC results for interaction prediction under validation setting CVS1

Method Datasets

E IC GPCR NR

MGRNNM [11] 0.9955 (0.0003) 0.9947 (0.0004) 0.9785 (0.0020) 0.9660 (0.0056)

SMGRNNM [11] 0.9798 (0.0004) 0.9829 (0.0012) 0.9531 (0.0028) 0.9083 (0.0058)

MC [78] 0.9596 (0.0015) 0.9415 (0.0015) 0.8110 (0.0055) 0.5882 (0.0253)

MCG [79] 0.8753 (0.0023) 0.9539 (0.0010) 0.8977 (0.0047) 0.8315 (0.0165)

WGRMF [20] 0.9647 (0.0013) 0.9747 (0.0022) 0.9432 (0.0010) 0.8892 (0.0153)

WKNKN + L1,2-GRMF [77] – – – –

RLS-WNN [25] 0.9635 (0.0014) 0.9786 (0.0026) 0.9458 (0.0044) 0.9329 (0.0114)

CMF [35] 0.9705 (0.0013) 0.9832 (0.0008) 0.9493 (0.0031) 0.8679 (0.0124)

NRLMF [36] 0.987 (0.001) 0.989 (0.001) 0.969 (0.004) 0.950 (0.011)

TMF [28] 0.989 (0.001) 0.989 (0.001) 0.9830 (0.003) 0.978 (0.008)
DDR [80] 0.97 0.98 0.96 0.92

Proposed method 0.9941 (0.0008) 0.9958 (0.0005) 0.9832 (0.0022) 0.9698 (0.0062)
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MGRNNM has time complexity in each iteration O
(

n3 + nb log (n)
)

 . The proposed 
method uses the RRSSVD_DTI algorithm to solve NNM. According to Hastie et al. study 
[68], this algorithm requires O

(

r3
)

 time per each iteration. It can be said that the time 
complexity of the proposed algorithm in each iteration is equal to O

(

r3 + nb log (n)
)

 
and since r ≪ min(m, n) , the time complexity of the proposed algorithm is minor than 
MGRNNM.

In the following, more details of the time complexity are presented. The proposed 
method and MGRNNM are compared on four datasets based on running time. As 
shown in Fig. 3, the proposed method performed well on all the datasets.

It should be noted that in these applications, the online web detection system is 
designed to meet the needs of many people simultaneously. In such scenarios, 

Table 4  AUPR results for interaction prediction under validation setting CVS2

Method Datasets

E IC GPCR NR

MGRNNM [11] 0.8603 (0.0095) 0.9026 (0.0197) 0.8538 (0.0112) 0.8773 (0.0125)

SMGRNNM [11] 0.4089 (0.0104) 0.3650 (0.0178) 0.4175 (0.0076) 0.5620 (0.0262)

MC[78] 0.0114 (0.0005) 0.0473 (0.0035) 0.0404 (0.0017) 0.1120 (0.0206)

MCG[79] 0.0457 (0.0008) 0.0925 (0.0013) 0.1091 (0.0044) 0.2404 (0.0337)

WGRMF [20] 0.4019 (0.0128) 0.3666 (0.0169) 0.4247 (0.0113) 0.5695 (0.0136)

WKNKN + L1,2-GRMF [77] 0.386 (0.013) 0.356 (0.0012) 0.394 (0.007) 0.573  (0.011)

RLS-WNN[25] 0.2409 (00.272) 0.3090 (0.0200) 0.3463 (0.0106) 0.5373(0.0216)

CMF [35] 0.3848 (0.0094) 0.3538 (0.0137) 0.4059 (0.0104) 0.5203 (0.0250)

NRLMF [36] 0.358 (0.040) 0.344 (0.033) 0.364 (0.023) 0.545 (0.054)

TMF [28] 0.438 (0.016) 0.376 (0.017) 0.428 (0.011) 0.541 (0.033)

DDR [80] 0.73 0.69 0.63 0.71

Proposed method 0.8619 (0.0089) 0.9042 (0.0167) 0.8552(0.109) 0.8841 (0.0135)

Table 5  AUC results for interaction prediction under validation setting CVS2

Method Datasets

E IC GPCR NR

MGRNNM [11] 0.9460 (0.0033) 0.9714 (0.0095) 0.9567 (0.0084) 0.9533 (0.0127)

SMGRNNM [11] 0.8260 (0.0108) 0.7913 (0.0090) 0.8805 (0.0024) 0.8452 (0.0215)

MC [78] 0.5060 (0.0090) 0.5512 (0.0034) 0.5855 (0.0039) 0.5294 (0.0200)

MCG [79] 0.7413 (0.0118) 0.7196 (0.0071) 0.7745 (0.0027) 0.6992 (0.0244)

WGRMF [20] 0.7982 (0.0144) 0.7902 (0.0149) 0.8800 (0.0025) 0.8615 (0.0244)

WKNKN + L1,2-GRMF [77] – – – –

RLS-WNN [25] 0.7755 (0.0093) 0.7669 (0.0140) 0.8524 (0.0072) 0.8390 (0.0261)

CMF [35] 0.7952 (0.0110) 0.7576 (0.0125) 0.8067 (0.0067) 0.8124 (0.0228)

NRLMF [36] 0.871 (0.017) 0.813 (0.027) 0.895 (0.011) 0.900 (0.021)

TMF [28] 0.843 (0.012) 0.819 (0.011) 0.882 (0.009) 0.886 (0.017)

DDR [80] 0.84 0.94 0.91 0.90

Proposed method 0.9518 (0.0033) 0.9682 (0.0078) 0.9600 (0.0075) 0.9663 (0.105)
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response time can be very significant, which shows the proper performance of the 
proposed method in time complexity that our approach can be used in DTI.

Discussion
The use of adjacency matrices to represent the interaction between drug and tar-
get has been considered by many researchers in recent years. In DTI prediction, the 
detection of low-rank interaction has been significant. Using LRMA methods to solve 
these problems can improve performance. The results reported in this article showed 
that unifying matrix factorization and nuclear norm minimization approaches based 
on similarity matrix has a good effect on solving low-rank problem.

AUC, AUPR and running time are commonly used to evaluate the performance of 
methods in DTI. It should be noted that the use of a graph to express the adjacency of 

Table 6  AUPR results for interaction prediction under validation setting CVS3

Method Datasets

E IC GPCR NR

MGRNNM [11] 0.9041 (0.0125) 0.9029 (0.0024) 0.7228 (0.0323) 0.5418 (0.0309)

SMGRNNM [11] 0.8087 (0.0156) 0.8079 (0.0096) 0.5963 (0.0336) 0.4356 (0.0177)

MC[78] 0.0124 (0.0005) 0.0421 (0.0043) 0.0549 (0.0105) 0.0850 (0.0227)

MCG[79] 0.0691 (0.0009) 0.2256 (0.0038) 0.1061 (0.0027) 0.2669 (0.0288)

WGRMF [20] 0.8070 (0.0185) 0.8128 (0.0069) 0.6093 (0.0314) 0.4643 (0.0183)

WKNKN + L1,2-GRMF [77] 0.799 (0.016) 0.826(0.008) 0.617 (0.024) 0.519 (0.038)

RLS-WNN[25] 0.5465 (0.0144) 0.7437 (0.0088) 0.5397 (0.0193) 0.4907 (0.0326)

CMF [35] 0.7808 (0.0131) 0.7786 (0.0108) 0.5989 (0.0323) 0.4774 (0.0173)

NRLMF [36] 0.812 (0.018) 0.785 (0.028) 0.556 (0.038) 0.449 (0.079)

TMF [28] 0.866 (0.007) 0.853 (0.008) 0.677 (0.028) 0.675 (0.062)
DDR [80] 0.82 0.80 0.61 0.64

Proposed Method 0.9063 (0.0120) 0.9006 (0.0040) 0.7306 (0.0254) 0.5496 (0.0307)

Table 7  AUC results for interaction prediction under validation setting CVS3

Method Datasets

E IC GPCR NR

MGRNNM [11] 0.9683 (0.0043) 0.9541 (0.0019) 0.8975 (0.0093) 0.7502 (0.0285)

SMGRNNM [11] 0.9246 (0.0091) 0.9346 (0.0041) 0.8798 (0.0134) 0.7263 (0.0211)

MC[78] 0.5234 (0.0057) 0.4724 (0.0065) 0.5683 (0.0310) 0.3767 (0.0204)

MCG[79] 0.8065 (0.0012) 0.7871 (0.0069) 0.6289 (0.0151) 0.6522 (0.0297)

WGRMF [20] 0.9338 (0.0071) 0.9460 (0.0034) 0.8892 (0.0110) 0.7967 (0.0132)

WKNKN + L1,2-GRMF [77] – – – –

RLS-WNN[25] 0.9067 (0.0105) 0.9286 (0.0046) 0.8694 (0.0146) 0.8124 (0.0202)

CMF [35] 0.9272 (0.0050) 0.9368 (0.0032) 0.8966 (0.0073) 0.8373 (0.0083)

NRLMF [36] 0.966 (0.005) 0.964 (0.007) 0.930 (0.012) 0.851 (0.027)

TMF [28] 0.976 (0.001) 0.972 (0.002) 0.959 (0.007) 0.929 (0.029)
DDR [80] 0.92 0.97 0.93 0.88

Proposed method 0.9770 (0.0038) 0.9830 (0.0013) 0.9087 (0.0075) 0.7694 (0.0249)
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the target and the drug in this application has improved the performance of the pro-
posed method. Overall, this paper presents a powerful and fast method for applying 
DTI, which shows improved performance in four benchmark datasets.

To evaluate the proposed method, all four datasets are divided into three cross-valida-
tion settings. Results were reported as mean and variance of AUC and AUPR per 5 runs. 
It should be noted that the proposed method is compared with several methods [11, 20, 
25, 28, 35, 36, 78–80]. The results have been shown the proposed method which was 
based on the similarity matrix, had the best performance. The time complexity of the 
proposed method was more appropriate than other methods.

Conclusion
In drug-related processes such as drug discovery, drug side-effect prediction and drug 
repurposing, the interaction between drugs and targets (proteins) is very important. 
Drugs effect on targets (proteins) by altering the pharmaceutical functions of targets, 
such as enzymes, ion channels, G protein-coupled receptors (GPCRs), and nuclear 
receptors. DTIs analysis requires costly and time-consuming experiments. In this regard, 
CP-based approaches have been used to narrow down the search space and also reduce 
the cost and time of experiments.

In this paper, CP based on chemogenomic methods in DTI is used. It was shown 
that the use of similarity matrices in this application provides the best performance 
compared to the other methods. Also, we presented that the use of unifying of graph 
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Fig. 3  Comparing the running time of the proposed method with Mongia et al. study [11] in four datasets. 
In each bar chart, the blue color shows the running time of Mongia et al. study [11] and the orange color 
indicates the running time of the proposed method. The top row shows the running time in the E and 
IC datasets, respectively, from left to right. The bottom row shows the running time in the GPCR and NR 
datasets, respectively, from left to right
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regularized nuclear norm with bilinear factorization can be very effective in predicting 
DTI. In this paper, the proposed method on four datasets based on three different cross-
validation settings is compared with six state-of-the-art methods. The results show a 
better performance of the proposed method. In general, the superiority of the proposed 
method can be expressed as follows:

•	 There is a trade-off parameter between the loss function and the low-rank regulari-
zation as λ in the NNM approach which is induced by the nuclear norm. The use 
of low-rank priors to many applications has been developed by these models where 
Z (in Eq. (3)) is low rank but its rank is not known a priori. These models also have 
multiple problems despite their convexity and theoretical guidelines for the choice 
of λ [9]. First, it is unclear how to impose a certain rank in Z: adjusting λ so Z has a 
predetermined rank usually produces unpleasant results than imposing it directly in 
Eq. (3) in many works. Second, it is impossible to obtain the Z factorization in Eq. (7) 
Causes not use the “kernel trick”. Third, Eq. (7) is a Semidefinite Program (SDP). Off-
theshelf SDP optimizers just divide into hundreds of variables, not amenable to the 
high dimensionality typically found in DTI problems. While many studies improve 
this issue, they still perform an SVD of Z in each iteration and make them dispro-
portionate for managing dense and large-scale datasets. This paper indicates many 
nuclear norms regularized problems of the form (7) which can be optimized with 
a bilinear factorization of Z = UVT by using the variational definition of the nuclear 
norm. In this paper, a unification of traditional bilinear factorization and nuclear 
norm approaches under one formulation in DTI applications have been proposed. 
Based on this result, we can analyze the conditions that both methods are equal and 
offer the best solution when they are not. This article explains how the proposed 
method can be used in DTI application. In the reference [9], the method based on 
nuclear norm regularization has been used. The optimization equations of the pro-
posed method and its solution are expressed differently.

•	 Unifying nuclear norm with bilinear factorization is presented based on the similar-
ity of drug-drug and target-target, which has caused the advantages of both methods 
to be combined.

•	 Rank-Restricted Soft Singular Value Decomposition method is used to optimize the 
nuclear norm minimization in the DTI problem. This method has not been used in 
this application so far. It was shown that the use of this method could have appropri-
ate performance in data based on graph similarity.

•	 One of the critical parameters in evaluating the performance of these methods 
is the running time. With the increasing growth of this data, the use of computa-
tional methods will increase; on the other hand more similarity measures and sam-
ples with more features can be used. The time complexity of the running time is 
O
(

r3 + nb log (n)
)

 for each iteration in the proposed algorithm. This complexity is 
polynomial, which has performed better than other new methods.

•	 The performance of the proposed method based on the AUC and AUPR measures 
had the best performance and also the results were suitable in datasets with different 
features.
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•	 The proposed method can be widely used in other applications of CP. Using the pro-
posed method does not require a complex process.
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