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Background
Structure-based drug design (SBDD) is widely used for identifying drug candidates. It 
includes docking-pose evaluation and estimation of the interaction strength between 
target proteins and small molecules (ligands) [1]. Interaction strength, also known as 
binding affinity, is calculated using various scoring functions. The stronger the interac-
tions, the more the ligand will affect the physiological function of the target proteins; 
therefore, ligands that bind strongly to the target protein are selected as drug candi-
dates [2]. Because the predicted binding affinity of the ligand in a library can be used for 
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virtual screening or lead optimization, accurate prediction of binding affinity can reduce 
the cost of a de novo drug design [3].

Many scoring functions have been proposed to this end, including force-field-based 
[4, 5], knowledge-based [6, 7], and empirical scoring functions [8, 9]. Empirical scoring 
functions are known to have the best prediction performance among these three catego-
ries [10] and exploit the descriptors of various protein–ligand interactions to calculate a 
binding affinity score. These descriptors generally include hydrogen bonds with desolva-
tion, van der Waals (vdw), and hydrophobic effects. The estimated coefficient of each 
descriptor is based on the known binding affinity of protein–ligand complexes. A limita-
tion of the empirical methods, however, is the poor correlation between the experimen-
tal and predicted affinity scores. This is primarily because the empirical methods only 
use few terms related to protein–ligand complexes for easy interpretation of the results, 
resulting in a failure to describe the actual complexity of protein–ligand complexes [11].

Machine learning-based scoring functions [12–16] have been proposed to overcome 
the limitations of empirical scoring functions and provide a better prediction perfor-
mance. These methods exploit various statistical descriptors calculated from informa-
tion on the chemical and physical structures of known protein–ligand complexes [17]. 
One representative machine learning-based method is RF-Score [12]. This method rep-
resents intermolecular interactions by counting atom pairs with nine heavy-atom types 
(C, N, O, F, P, S, Cl, Br, and I). RF-Score has shown significant improvement over the 
existing methods on the PDBbind [18] v2007 benchmark set. Moreover, RF-Score v3 
[13], which has six additional features, has achieved a higher prediction accuracy than 
the original model. Structural interaction fingerprints (SIFt) [14] is another machine 
learning-based method, which represents the intermolecular interactions in a format 
that resembles fingerprints. However, a limitation of SIFt is that the number of inter-
action types is insufficient to handle the complexity of protein–ligand complexes. To 
overcome this limitation, structural protein–ligand interaction fingerprints (SPLIF) [15] 
and protein–ligand extended connectivity (PLEC) fingerprints [16] have been proposed. 
These two methods are based on extended connectivity fingerprints (ECFPs) [19].

Recent advances of deep learning in computer vision have led to the development of 
deep learning-based scoring functions [20–23]. Compared to traditional machine learn-
ing-based methods, deep learning-based methods do not require domain knowledge for 
feature selection [24] and can identify hidden patterns using nonlinear transformations 
[25]. Pafnucy [20] and KDEEP [21] are two representative methods that use convolu-
tional neural networks (CNNs). In these two CNN-based methods, each channel is com-
posed of chemical information extracted from a three-dimensional sub-grid for each 
protein–ligand complex. A problem is that chemical information includes several fea-
tures such as atomic partial charges, which are calculated using empirical methods such 
as AM1-BCC [26] and can be incorrect [22].

Fingerprints based on interaction descriptors are an alternative to multidimen-
sional channel representations. However, a limitation of these representations is that 
they insufficiently consider the complexity of protein–ligand interactions. We defined 
the descriptors based on the RF-Score features for various interaction patterns. This 
scenario, however, becomes challenging when considering diversity; an increase 
in the fingerprint dimensions makes it difficult for the predictive model to capture 
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information that is highly related to binding affinity. In sequence-based binding affin-
ity prediction studies, an attention mechanism was introduced to learn binding sites 
in the training process from the training data [27, 28]. We introduced an attention 
mechanism to capture important descriptors for the affinity prediction. Another 
concern is the lack of distance information in the descriptors used in this study. To 
supplement the descriptors, we used Vina terms, quantitative numerical values of 
intermolecular interactions reflecting distance information. This idea is borrowed 
from RF-Score v3.

This study proposes a deep learning-based model: binding affinity prediction with 
attention (BAPA), to improve the accuracy of protein–ligand binding affinity predic-
tion. The proposed model has two important features. First, descriptor embeddings 
that contain embedded information on the local structures of a protein–ligand com-
plex are learnable, which means they are constantly updated to ensure proper embed-
ding of local structures. Second, we introduced an attention mechanism to highlight 
important descriptors for the binding affinity prediction. A descriptor vector repre-
sents information about the local structure of a protein–ligand complex. In BAPA, a 
convolutional layer transforms the descriptor vectors into latent representations, and 
an attention layer captures the important descriptors related to binding affinity pre-
diction from these latent representations. This process is illustrated in Fig. 1. When 
compared with the existing methods on four benchmark datasets, BAPA generally 
exhibits a better prediction performance.

Fig. 1  Overview of BAPA experiments. First, we collected training data from the PDBbind database. Second, 
we constructed a deep learning model that captures local structure patterns that can help predict binding 
affinity by using convolutional and attention layers. Third, the optimal parameters were found using the 
validation dataset. Finally, the performance of the model was evaluated using an external test dataset. The 
numbers (#) of protein–ligand complexes are summarized in each step
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Results and discussion
Model performance evaluation metrics

The performance of the binding affinity models was evaluated using five metrics: mean 
absolute error (MAE), root mean square error (RMSE), Pearson’s correlation coefficient 
(PCC), Spearman’s correlation coefficient (SCC), and standard deviation in regression 
(SD). MAE and RMSE compute the average of errors between the true and predicted 
affinity scores. The two correlation coefficients measure the linear correlation between 
true and predicted scores. SD denotes the average distance of the true affinities from the 
regression line.

Selection of an optimal number of descriptors

The initial descriptor vector d is a sparse vector with the number of descriptor occur-
rences as its elements. The following experiment was conducted to select only those 
descriptors that are essential for predicting binding affinity and represent them in a 
compact vector form. First, we trained a random forest model using training data and 
sorted the descriptors according to their priorities. Among the 9,333 descriptors, the 
top 500, 1,000, 1,500, 2,000, 2,500, and 3,000 descriptors were selected. Second, the 
proposed model was trained using the training dataset, and performance evaluation 
was conducted according to the number of descriptors using the validation dataset. As 
shown in Table 1, the best performance was achieved with 2,500 descriptors; therefore, 
the optimal number of descriptors was set to 2500 (= u).

Evaluation of the prediction performance on benchmark datasets

We compared BAPA with four popular prediction models: RF-Score v3 [13], Pafnucy 
[20], PLEC-linear [16], and OnionNet [22]. All model performances were evaluated with 
the test datasets after training with the training and validation datasets in this study. The 
results for the validation dataset are presented in Additional file 1: Table S1.

First, we present the results of the CASF-2016 [29] benchmark set containing 285 
complexes. We confirmed that BAPA has the lowest MAE, RMSE, SD, and the highest 
PCC and SCC, when compared to the other models. For the CASF-2013 [30] bench-
mark set containing 195 complexes, BAPA outperformed the four baseline models with 
PCC = 0.771 and SCC = 0.774. Furthermore, when compared to the second-best model, 
BAPA reduced MAE and RMSE by 0.123 and 0.115, respectively. The results are shown 
in Table 2. Based on these results, we can say that BAPA has the best performance in 
terms of the error metrics on the CASF benchmark sets.

Table 1  Performance for different number of descriptors

# Descriptors # Layer MAE RMSE PCC SCC SD

500 3 1.129 1.394 0.667 0.665 1.369

1000 3 1.094 1.366 0.681 0.682 1.346

1500 4 1.094 1.355 0.682 0.684 1.344

2000 4 1.071 1.330 0.696 0.697 1.320

2500 4 1.052 1.314 0.702 0.701 1.309

3000 4 1.061 1.324 0.695 0.694 1.321
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We performed additional evaluation of the predictive performance using the bench-
mark set obtained from an external database (CSAR NRC-HiQ [31]). For CSAR 
NRC-HiQ set1 containing 50 protein–ligand complexes, BAPA had the second-best 
performance in SCC along with the lowest MAE, RMSE, SD, and the highest PCC. 
Finally, we presented the results for CSAR NRC-HiQ set2 containing 44 complexes; 
BAPA showed the best performance in terms of linearity and error metrics. The 
results are presented in Table 3. These results show that BAPA performs significantly 
better than the other models in the CSAR NRC-HiQ sets.

Evaluation of model generalization

In machine learning, generalization refers to a models’ ability to adapt to new data 
that are not used for model training and verifying generalization performance is 
important for ensuring the practical effectiveness of binding affinity prediction mod-
els. Although our proposed model exhibits better predictive accuracy in previous per-
formance tests with various benchmark datasets, it might be difficult to demonstrate 
its generalization performance with homologous protein–ligand complexes between 
the training and test datasets.

Table 2  Comparison results using the CASF benchmark datasets

Datasets Methods MAE RMSE PCC SCC SD

CASF-2016 BAPA 1.021 1.308 0.819 0.819 1.247

OnionNet 1.137 1.542 0.707 0.715 1.539

Pafnucy 1.327 1.647 0.685 0.681 1.584

PLEC 1.138 1.454 0.760 0.753 1.412

RF-score 1.121 1.395 0.812 0.805 1.269

CASF-2013 BAPA 1.170 1.457 0.771 0.774 1.433

OnionNet 1.423 1.890 0.555 0.605 1.872

Pafnucy 1.503 1.862 0.592 0.592 1.815

PLEC 1.246 1.615 0.716 0.724 1.571

RF-score 1.293 1.572 0.751 0.757 1.487

Table 3  Comparison results using the CSAR NRC-HiQ benchmark datasets

Datasets Methods MAE RMSE PCC SCC SD

HiQ set1 BAPA 1.060 1.453 0.826 0.827 1.329

OnionNet 1.878 2.462 0.448 0.570 2.105

Pafnucy 1.832 2.435 0.594 0.561 2.263

PLEC 1.310 1.772 0.684 0.649 1.717

RF-score 1.162 1.565 0.799 0.848 1.416

HiQ set2 BAPA 0.982 1.294 0.755 0.782 1.294

OnionNet 1.313 1.754 0.610 0.685 1.564

Pafnucy 1.442 1.829 0.722 0.706 1.642

PLEC 1.057 1.356 0.754 0.747 1.296

RF-score 1.092 1.430 0.704 0.707 1.402
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For rigorous generalization testing, Li et al. [32] proposed a method to construct test 
datasets using protein-structural and ligand-structural similarity measures. According 
to the construction process, test datasets include protein–ligand complexes contain-
ing either proteins or ligands that have high structural similarity values with those in 
training datasets, which results in data redundancy, such as for homologous proteins 
and ligands, which are then excluded from the constructed test datasets. The structural 
similarity between two proteins is measured using TM-align [33]. TM-align computes 
a TM-score [34] between 0 and 1; a high TM-score indicates that the two proteins are 
structurally similar. The structural similarity between two ligands is measured using the 
Tanimoto coefficient [35]. A ligand is first represented as a binary vector of chemical 
fingerprints, and the Tanimoto coefficient counts the number of common bits between 
two ligands and then calculates a similarity value between 0 and 1. A high Tanimoto 
coefficient indicates the two ligands are structurally similar. The details of the similarity 
calculations are described in the Methods section.

BAPA outperformed the existing binding affinity prediction models in generalization 
tests for proteins and ligands having a low similarity with the training data. To com-
pare the generalization performances, we exploited four test datasets generated from the 
original benchmark datasets: CASF-2016, CASF-2013, HiQ set1, and HiQ set2, by omit-
ting complexes with high protein-structural or ligand-structural similarities with the 
PDBbind training dataset. For each metric (MSE, RMSE, PCC, SCC), we evaluated the 
generalization performances of BAPA, OnionNet, Pafnucy, PLEC, and RF-score on the 
four test datasets and computed the average rank of each model over the test datasets. 
Figure 2a, b show the comparison of average model rankings on the protein-structure 

Fig. 2  Average ranking comparison results for test datasets. a Protein structure generalization test results 
with lowest pairwise-chains TM-score. b Ligand structure generalization test results
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(lowest pairwise-chains TM-score) and ligand-structure generalization tests, respec-
tively. In both generalization tests, the average ranking score of BAPA was superior to 
those of the other models. RF-Score and PLEC were observed to be the second and third 
best models, respectively. The generalization test results of the highest pairwise-chains 
TM-score are provided in Additional file 2: Fig. S1. The tables are provided in Additional 
file 1: Table S2–S4.

Assessment of module importance via ablation test

BAPA showed a superior performance in various benchmark sets by applying 1D con-
volution to inputs generated from protein–ligand interaction descriptors, adding Vina 
terms, and using an attention layer. In this architecture, an ablation test was performed 
using four cases to find the module with the highest influence on model performance. 
The descriptor vector is denoted as D, the attention layer as A, and Vina terms as V. 
In the table (D + A) indicates that the experiment was conducted by removing the layer 
corresponding to Vina terms from BAPA’s architecture (D + V + A). Similarly, (D + V) 
indicates that the experiment was performed after removing the attention layer.

The worst performance was observed when the descriptors were used alone, as 
expected. However, contrary to our expectations, the use of Vina terms (D + V) led to a 
better performance than the use of the attention layer (D + A). In other words, we con-
firmed that Vina terms have a greater influence on predictive performance improvement 
than the attention layer. However, the best performance was observed when using both 
of these modules, confirming that they complement each other. The results are listed in 
Table 4.

Analysis of attention vectors

BAPA generally showed a good performance in the test datasets, and we confirmed the 
attention layer to be an important module for improving the prediction performance 
in the ablation test. This was presumed to be because BAPA identified the descriptors 
related to the regions of protein–ligand interactions, for example, binding sites, from the 
data. To prove this, the attention vectors of two complexes, (PDB ID: 1EBY) and (PDB 
ID: 3DD0), were calculated, and the attention weights corresponding to the top 10% of 
each complex were then extracted. This is similar to extracting the descriptors with top 
10% attention weights for each complex.

Table 4  Ablation test results with CASF-benchmark datasets

Datasets Methods MAE RMSE PCC SCC SD

CASF-2016 D 1.145 1.442 0.771 0.771 1.384

D + A 1.092 1.389 0.783 0.784 1.351

D + V 1.075 1.367 0.796 0.790 1.317

D + V + A 1.021 1.308 0.819 0.819 1.247

CASF-2013 D 1.292 1.579 0.725 0.723 1.550

D + A 1.270 1.540 0.736 0.731 1.524

D + V 1.246 1.521 0.755 0.755 1.476

D + V + A 1.170 1.457 0.771 0.774 1.433
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The 1EBY complex (HIV protease in complex with inhibitor BEA369) has 38 binding 
site-related interactions based on the sc-PDB database [36]. The inhibitor BEA369 is 
located at the center and is connected by a purple straight line (ligand bond) in Fig. 3a. 
The green dashed lines and the brick-red spoked arcs indicate hydrogen bonds and 
hydrophobic contacts between the two atoms, respectively. For example, (C48, Asp29-
CB) connected by a green dashed line indicates a hydrogen bond between the C48 atom 
of inhibitor BEA369 and the CB atom of aspartic acid, residue 29 of HIV protease. The 
brick-red spoked arc (C33, Val82-CG1) indicates the hydrophobic contact between the 
C33 atom of inhibitor BEA369 and the CG1 atom of valine, residue 82 of HIV protease. 
We confirmed that the extracted top 10% descriptors included all 38 binding sites, which 
are highlighted in yellow. The results are shown in Fig. 3a. The 3DD0 complex has nine 
binding sites-related interactions based on the sc-PDB database. We confirmed that the 
extracted top 10% descriptors include all interactions, except for the following two: (S2, 
Val121-CG2) and (O1, Thr199-N). The first refers to the hydrophobic contact between 
the S2 atom of ethoxzolamide and the CG2 atom of valine, residue 121 of carbonic anhy-
drase 2; the second refers to the hydrogen bond between the O1 atom of ethoxzolamide 
and the N atom of threonine, residue 199 of carbonic anhydrase 2. These results are 
shown in Fig. 3b. We can see that BAPA’s attention layer can capture important interac-
tion regions. The figures were plotted using Ligplot + [37].

Conclusions
In this paper, we proposed BAPA, which can be used for virtual screening and lead opti-
mization in SBDD. The input of the convolutional layers was generated using descrip-
tor information and a learnable embedding matrix. The descriptor is a data structure 
that contains information about the local structure of protein–ligand complex, and 
the embedding matrix contains the embedded descriptor information. The embedding 
matrix is constantly updated for a more appropriate (proper) embedding of the local 
structure. In addition, an attention mechanism was used to improve the model’s predic-
tive performance. The attention module could identify the important descriptors in a 

Fig. 3  Visualization of interactions sites with high attention score. a 1EBY complex, b 3DD0 complex. The 
green dash lines and the brick-red spoked arcs indicate hydrogen bonds and hydrophobic contacts between 
the two atoms, respectively. Interactions sites captured by BAPA are highlighted in yellow
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protein–ligand complex and is expected to help researchers design better compounds. 
BAPA and other existing scoring functions were tested on the CASF-2016, CASF-2013, 
HiQ set1, and HiQ set2 benchmark sets. BAPA exhibited the best performance on all 
benchmark sets. In addition, BAPA showed a good generalization performance for a low 
structural similarity, making it the most suitable method for ligand docking applications 
that select the ligands “best-fit” to the target protein from a vast chemical space over the 
four baseline models.

Methods
Building dataset and preprocessing

In this study, we used the PDBbind database (version 2016) containing 13,308 protein–
ligand complexes. The PDBbind data includes the 3D structure data of protein–ligand 
complexes and their corresponding experimentally determined binding affinities in 
terms of dissociation (Kd), inhibition (Ki), or half-concentration (IC50) constants. Based 
on the PDBbind database, Wang et al. [10] compiled a refined set to provide high-quality 
complexes and binding data according to the following conditions. First, only complexes 
with an X-ray crystal structure resolution better than or equal to 2.5 Å were considered. 
Second, only complexes with known dissociation constants or inhibition constants in 
the affordable range were considered (pKi and pKd values distributed in the 2–12 range). 
Third, only non-covalently bound complexes were considered. Fourth, the ligand mole-
cule did not contain any uncommon elements, such as Be, B, Si, and metal atoms. There-
fore, only complexes with ligand molecules containing the common heavy atoms (C, N, 
O, F, P, S, Cl, Br, and I) were considered. Because the quality of a dataset used to develop 
a scoring function has a significant influence on its performance, we adopted the v2016 
refined set consisting of 4,507 complexes.

We also adopted the PDBbind v2018 refined set (4,463 complexes), CASF-2016 bench-
mark set (285 complexes), and CASF-2013 benchmark set (195 complexes). The latter 
two were used only as test datasets for model performance evaluation. To prevent a pro-
tein–ligand complex’s simultaneous inclusion in the training, validation, and test data-
sets, each dataset was constructed according to the following rules. The training dataset 
comprised 3,689 complexes after removing complexes overlapping with the CASF-2016 
and CASF-2013 datasets from the v2016 refined set. The validation dataset for model 
parameter optimization was composed of 677 complexes after removing complexes 
overlapping with the training, CASF-2016, and CASF-2013 datasets from the v2018 
refined set. The removal was based on PDB ID.

According to previous studies, training and testing with data from a specific database 
tend to yield overly optimized results [38–40]. We collected CSAR NRC-HiQ set1 and 
CSAR NRC-HiQ set2 composed of 176 and 167 complexes, respectively, as external test 
datasets. For each dataset, we removed complexes overlapping with the training, val-
idation, CASF-2016, and CASF-2013 datasets. Then, the four conditions proposed by 
Wang et  al. were applied. This resulted in 50 complexes for the CSAR NRC-HiQ set1 
dataset and 44 complexes for the CSAR NRC-HiQ set2 dataset, which were used as the 
test datasets. A summary of each dataset is shown in Fig. 1, and the PDB IDs for all com-
plexes in each dataset are provided in Additional file 1: Table S5. All water molecules 
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and cofactors were removed from the crystal structure, and USCF Chimera [41] and 
Openbabel [42] were used for preprocessing.

Structure similarity

The protein (ligand) structure similarity of each complex in the test dataset to that in 
the training dataset is explained here. The structural similarity between the two proteins 
is calculated by TM-align and expressed as a TM-score. The TM-score ranges between 
0 and 1, and higher values indicate that the two proteins are structurally more simi-
lar. Since most proteins have multiple chains, all chain structures of each protein were 
extracted, and their corresponding TM-scores were calculated. The structural similarity 
between the two proteins was defined as the lowest pairwise-chains TM-score, depend-
ing on the chain structure. We also calculated the highest pairwise-chains TM-score. 
Finally, the protein structure similarity of each complex in the test dataset to the training 
dataset was defined as the maximum TM-score value. The structural similarity between 
the two ligands was denoted as a Tanimoto coefficient. The Tanimoto coefficient ranges 
between 0 and 1, and higher values indicate the two ligands are structurally more similar. 
As with the proteins, the ligand structure similarity of each complex in the test dataset 
to the training dataset was defined as the maximum Tanimoto coefficient value. Data 
on protein structure similarity and ligand structure similarity for each complex are pro-
vided in Additional file 1: Table S6.

Definition of descriptors

BAPA’s input, a molecular complex, is represented as a 1D vector, which is calculated 
based on descriptor information obtained from the training dataset. Using nine heavy 
atoms commonly observed in protein–ligand complexes, descriptors were generated 
focused on contacted protein and ligand atom pairs in the molecular complex. Let L be 
a list of heavy atoms in ligands [CL, NL, OL, FL, PL, SL, ClL, BrL, IL] where L[i] is the i-th 
atoms type of ligand ( 0 ≤ i ≤ 8 ). Likewise, let P be a list of heavy atoms in proteins [CP, 
NP, OP, FP, PP, SP, ClP, BrP, IP] where P[j] is the j-th atom type of protein ( 0 ≤ j ≤ 8 ). For 
each i and j, a set of contacts X[i][j] is defined by:

where L[i]l and P[j]k are the l-th atom of the i-th atom type in the ligand and the k-th 
atom of the j-th atom type of the protein, respectively. The distance between the pro-
tein atom and the ligand atom pair is calculated by Euclidean distance. We used 12 Å as 
dcutoff, based on previous studies [13, 43]. For example, there are two atom pairs with the 
distance less than 12 Å (in Fig. 4), so X[2][2] = {(L[2]4,P[2]2)} = {(OL4 ↔ OP2)} and 
X[2][0] = {(L[2]1,P[0]21)} = {(OL1 ↔ CP21)}.

The elements of sets X[i][j] form an imaginary edge of which two nodes are 
ligand and protein atom types. A graph that is extended with one-step neighbor-
hoods from the imaginary edge is defined as a descriptor. The edge between the 
extended one-step neighborhoods and the imaginary edge has one of five bond 
types (single, double, triple, amide, and aromatic). Following the previous exam-
ple, (OL4 ↔ OP2) is extended to ′CL6 − (OL4 ↔ OP2) = CP9

′ and (OL1 ↔ CP21) 
is extended to ′CL1 − (OL1 ↔ CP21)− CP20 = CP16

′ . Because the order of the 

X [i][j] =
{(

L[i]l ,P[j]k
)∣

∣d
(

(L[i]l ,P[j]k)
)

≤ dcutof f }
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bonds (edges) is not considered, ′CL1 − (OL1 ↔ CP21)− CP20 = CP16
′ and 

′CL1 − (OL1 ↔ CP21) = CP16 − CP20
′ are the same. Removal of the atom indexes yields 

two descriptors, ′CL − (OL ↔ OP) = CP
′ and ′CL − (OL ↔ CP) = CP − CP

′ in Fig. 4. 
In this way, u unique descriptors were calculated from the training dataset, and each 
protein–ligand complex was represented as a descriptor vector d having the frequencies 
of u unique descriptors as elements.

Autodock Vina‑based additional features

BAPA exploits Vina terms that reflect distance information of intermolecular interac-
tions in a protein–ligand complex. We used five additional intermolecular Vina terms 
and one flexible Vina terms. Intermolecular Vina terms consist of three steric interac-
tions (gauss1, gauss2, repulsion), hydrophobic, and hydrogen bond terms. The flexible 
term is the number of activate rotatable bonds between the heavy atoms of ligand [44].

Proposed model

Overall schema of deep neural network

The proposed model, BAPA, has three kinds of neural network layers (convolutional, 
attention, and dense) for binding affinity prediction. We designed the model to extract 
local structure patterns from descriptor vector d via the convolutional layer. The latent 
representation (encoder vector; e) of the complex is calculated from the output of the 
convolutional layer and Vina terms via feedforward network. Based on this informa-
tion, the attention layer calculates the descriptors important for affinity prediction and 
yields encoded context vector c. Finally, the concatenation of an encoded vector e and 

Fig. 4  Example of descriptor. There are two atom pairs between which the distance less than 12 Å , and from 
which two descriptors can be identified. The frequencies in the protein–ligand complex are counted for all 
the unique descriptors in the training dataset, with the results being d. Note that OH is regarded as O, and 
atoms that are not specified are carbon C 
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an encoded context vector c is input to the feedforward network to predict the binding 
affinity. Every layer was activated with the exponential linear unit (ELU) function and 
the whole network was implemented by TensorFlow (1.12.0). The overall architecture is 
depicted in Additional file 2: Fig. S2.

Convolutional layer with descriptor embeddings

The model starts with the embedding matrix E ∈ R
u×h to transform each descriptor to 

the corresponding embedding vector Ei ∈ R
h where u is the count of descriptors and 

h is the embedding size. An embedding matrix is initialized by the truncated standard 
normal distribution. To add local structure information to each descriptor embedding 
vector, an element of the corresponding descriptor vector (frequency of each descriptor) 
is multiplied by a weight. Then, the input of the convolutional layer is generated through 
a dense layer for each column of embedding matrix to which local structure information 
was added.

To find the pattern in the input, all convolutional layers applied one-dimensional (1D) 
convolution operation. For example, the first convolutional layer used three filters, and 
the stride size of each filter is one, so a feature map with a size of (3 × N × 1) is generated. 
To extract various patterns of the descriptors, five different window sizes (2, 4, 6, 8, and 
10) were used, so that five (3 × N × 1) feature maps were generated in the first convo-
lutional layer. Each of these five-feature map passes through the max pooling layer and 
decreases in size. The depth of the convolutional layer is four and the convolution opera-
tion is the same fashion for all convolutional layers, except that the number of filters is 
six for the second and third convolutional layers, and nine for the fourth convolutional 
layer. Detailed parameters for the convolutional layers are provide in Additional file 1: 
Table S7. The results of the fourth convolutional layer are flattened and concatenated, 
resulting in a single vector of size 513. The single vector and Vina terms are merged 
into the encoded vector e, which is the latent vector of the complex in the feedforward 
network.

Attention layers for important descriptors

In machine translation, the attention mechanism is mainly designed to solve the prob-
lem of long-term dependencies when the input sequence is long. When a word is pre-
dicted using a decoder, an attention mechanism puts more focus on words that are more 
related. In this study, we designed the attention layer to focus on more relevant descrip-
tors. The latent representation of the complex (encoded vector; e) is input as an attention 
layer to calculate the contribution of each descriptor to the affinity prediction.

Encoded vector e and each row of embedding matrix Ei are calculated into query vec-
tor q, key vector ki, and value vector vi through a dense layer. Note that in this study the 
key vector ki and the value vector vi have the same value. The similarity between query 
vector q and key vector ki ( 0 ≤ i ≤ u ) is calculated using the inner product. The similari-
ties are transformed into descriptor weights via softmax. The weighted sum of the value 
vector vi over the descriptor weight is used as the context vector. The context vector is 
input to one dense layer to generate the encoded context vector c, which is used to pre-
dict the binding affinity together with encoded vector e.
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Feedforward network for binding affinity

The encoded context vector c, which is an output of the attention layer, and the 
encoded vector e, are used to predict the binding affinity through the feedforward 
network consisting of 512, 256, and 128 neurons.

Definition of loss function and weight optimization

In the proposed neural network model, the input flows to the output layer in a feed-
forward fashion. The mean squared error was used as a loss function to train the 
weights and biases. To prevent overfitting, we applied L2 regularization, so the norm 
of weights is added to the loss. The Adam optimizer was used for training the network 
(learning rate 0.005, batch size 256).
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