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Abstract 

Background:  The existing studies show that circRNAs can be used as a biomarker 
of diseases and play a prominent role in the treatment and diagnosis of diseases. 
However, the relationships between the vast majority of circRNAs and diseases are 
still unclear, and more experiments are needed to study the mechanism of circRNAs. 
Nowadays, some scholars use the attributes between circRNAs and diseases to study 
and predict their associations. Nonetheless, most of the existing experimental methods 
use less information about the attributes of circRNAs, which has a certain impact on 
the accuracy of the final prediction results. On the other hand, some scholars also apply 
experimental methods to predict the associations between circRNAs and diseases. But 
such methods are usually expensive and time-consuming. Based on the above short-
comings, follow-up research is needed to propose a more efficient calculation-based 
method to predict the associations between circRNAs and diseases.

Results:  In this study, a novel algorithm (method) is proposed, which is based on 
the Graph Convolutional Network (GCN) constructed with Random Walk with Restart 
(RWR) and Principal Component Analysis (PCA) to predict the associations between 
circRNAs and diseases (CRPGCN). In the construction of CRPGCN, the RWR algorithm is 
used to improve the similarity associations of the computed nodes with their neigh-
bours. After that, the PCA method is used to dimensionality reduction and extract 
features, it makes the connection between circRNAs with higher similarity and diseases 
closer. Finally, The GCN algorithm is used to learn the features between circRNAs and 
diseases and calculate the final similarity scores, and the learning datas are constructed 
from the adjacency matrix, similarity matrix and feature matrix as a heterogeneous 
adjacency matrix and a heterogeneous feature matrix.

Conclusions:  After 2-fold cross-validation, 5-fold cross-validation and 10-fold cross-
validation, the area under the ROC curve of the CRPGCN is 0.9490, 0.9720 and 0.9722, 
respectively. The CRPGCN method has a valuable effect in predict the associations 
between circRNAs and diseases.

Keywords:  CircRNA-disease, Graph convolutional network, Heterogenous network, 
Principal component analysis, Deep learning
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Background
With the advancement of science and technology, bioinformatics is increasingly at the 
forefront of scientific research. The relationships between diseases and drugs [1], the 
relationships between RNAs and diseases [2–4] are play an increasingly important role 
in the treatment and development of human diseases. Therefore, more and more schol-
ars begin to invest in research in the direction of bioinformatics [5, 6]. Especially, circR-
NAs as non-coding RNA (ncRNAs), it has higher stability and integrity than other linear 
ncRNAs. Therefore, circRNAs can be used as a biomarker of diseases, it also has great 
potential in the treatment and diagnosis of diseases.

Although the formation and characteristics of circRNAs are basically discovered after 
a plenty of research by scientists, there are still dozens of biological functions that are 
still unclear. A large number of biologists prove the associations between circRNAs and 
diseases through experimental methods. Recently, some researchers point out that cer-
tain functions of ciRS-7 are related to human pathology and the development of cancer 
[7], its regulation of diseases and the mechanism in the development process and relate 
diseases are discovered by more studies. In addition, the functions of various other cir-
cRNAs are also being investigated. Usually, laboratory consumables are disposable, even 
some reusable equipment in the laboratory need manual maintenance. Therefore, as 
the number of experiments increases, such experiments base on experimental methods 
require a large deal of time and resources, resulting in high experimental costs. Conse-
quently, it is more necessary to study the relationships between circRNAs and diseases 
based on computational methods.

Recently, an increasingly large number of researchers invest in research on the rela-
tionships between circRNAs and diseases based on computational methods. Lu et  al. 
propose a method for the associations between circRNAs and diseases based on 
sequence and ontology representation, the k-mers is used to reduce dimensionality and 
the method apply Convolutional Neural Networks (CNN) to extract features, and then 
Long Short-Term Memory (LSTM) algorithm is used to feature learning [8]. Zhang et al. 
propose the PDC-PGWNNM method [9] approach to design circRNA-disease graph 
structure data using circRNA-miRNA interactions and miRNAs regulatory relationships 
in diseases, and the Weighted Nuclear Norm Minimization (WNNM) model is used to 
predict. Lei et al. propose the CDWBMS method [10], which uses a heterogeneous net-
work to integrate the relationships between circRNAs and diseases, and it predicts the 
relationships between circRNAs and diseases based on an improved Weighted Biased 
Meta-Structure (WBMS) search algorithm. Wang et  al. propose a algorithm based on 
Generative Adversarial Networks (GAN), which adopts the Extreme Learning Machine 
(ELM) classifier to predict [11]. Wei et al. propose a method called iCircDA-LTR [12], it 
utilize Learning to Rank (LTR) algorithm to rank the associations based on various pre-
dictive variables and characteristics in a supervised manner.

In addition to the above studies, The Graph Convolutional Network (GCN) [13], The 
Random Walk with Restart (RWR) [14] and The Principal Component Analysis (PCA) 
[15] have also played an indelible role. Jin et al. propose NIMCGCN method to predict 
miRNA-disease associations establish on Neural Inductive Matrix Completion (NIMC) 
with GCN [16]. Wang et al. propose a calculation method is referred to GCNCDA [17] 
based on Fast learning with Graph Convolutional Networks (FastGCN) combine with 
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Forest by Penalizing Attributes (Forest PA) classifier to predict potential circRNA-dis-
ease associations. Pan et al. propose an updated predictor DimiG 2.0 [18], which uses a 
semi-supervised multi-label GCN to infer the relationships between miRNAs and dis-
eases on the interaction network between Protein-coding genes (PCGs) and miRNAs.

RWR can captures the multifaceted relationships between circRNAs or between 
diseases and treats the circRNAs matrix or diseases matrix as a graph structure, and 
RWR is utilised to capture information about the overall structure of the graph. Such 
as RWRKNN [19], IIRWR [20], TRWR-MB [21], MRWMDA [22]. In this paper, the 
RWR algorithm is used to calculate the similarity between circRNAs and the similarity 
between diseases in preparation for the subsequent PCA feature extraction.

In numerous different directions of research [23, 24], PCA played an important role. 
The circRNAs and diseases in this paper have a host of different attributes. If these datas 
are analyzed separately, their information may not be fully utilized, and some datas will 
be isolated. This kind of datas use leads to results that are subject to varying degrees of 
bias. Therefore, the PCA algorithm is required to perform a comprehensive analysis of 
the original data while also perform data dimensionality reduction.

Based on the discretion and research of the above methods, a novel and reliable 
method is proposed in this paper, which is based on Graph Convolutional Networks 
(GCN) to predict the associations between circRNAs and diseases, called CRPGCN. 
Compared to other algorithms, such as the GCNCDA, it uses the GCN algorithm as a 
feature extraction method and uses Forest PA classifier to classify features, but it does 
not consider neighbour nodes associations. In contrast, CRPGCN maximises the per-
formance of GCN by first extracting features and noise reduction from the associations 
between circRNAs and diseases, and then performing feature learning that takes into 
account the associations between neighbouring nodes. Furthermore, in the comparative 
experiments in this paper, it can also be seen that the CRPGCN method outperforms 
some advanced GCN methods.

The main contributions of this work are summarized as follows:

•	 The CRPGCN method incorporates the RWR similarity calculation method and the 
PCA feature extraction method, allowing the calculated nodes to better combine the 
similarity between neighbouring nodes while greatly reducing the impact on the pre-
diction results.

•	 The CRPGCN algorithm improves prediction accuracy and has the highest AUC val-
ues and AUPR values when compared to advanced algorithms.

•	 The GCRGCN algorithm is more stable than some of the advanced algorithms, and 
its AUCs are stable when compared by a variety of methods with different datasets.

•	 By comparing various evaluation metrics, the CRPGCN algorithm outperforms 
other advanced algorithms in terms of overall performance.

Benchmark datasets
The selection of dataset is one of the keys to study and predict circRNA-disease associa-
tions. The gene-based circRNA similarity is the basis for the composition of the com-
prehensive similarity matrix in this paper, and it makes an important contribution in the 
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study by Ding et al. [25]. Meanwhile, circR2Disease [26] can be used to construct gene-
based circRNA similarity based on the study by Hang et al. [27]. In summary, circR2Dis-
ease dataset is used as the benchmark to calculate circRNA-disease associations matrix 
A, gene-based circRNA similarity CGS. circRNA GIP kernel similarity CIS and disease 
GIP kernel similarity DIS are thereafter calculated using A. circBase [28] is considered as 
the benchmark database, which combines the CGR algorithm to calculate the sequence-
based similarity of each circRNA pair. In addition, the DAG information from the MeSH 
database provided the basis for calculating the semantic similarity between diseases.

Methods
In this paper, a novel algorithm is proposed, which is called CRPGCN, show as Fig. 1. In 
this study, the dataset needed to be preprocessed to construct adjacency matrices and 
feature matrices connecting circRNAs to diseases by the following methods:

The adjacency matrix A is obtained from the known circRNA-disease associations in 
the dataset. The circRNA comprehensive similarity matrix CS consists of the circRNA 
GIP kernel similarity matrix CIS, the circRNA gene-based similarity matrix CGS and the 
circRNA sequence-based similarity matrix CES. Thereafter, the disease comprehensive 
similarity matrix DS is composed of the disease GIP kernel similarity matrix DIS and 
the disease semantic similarity matrix DSS. Thereafter, the CRPGCN method is trained 
by constructing heterogeneous adjacency matrices and heterogeneous feature matrices 

Fig. 1  The flowchart of CRPGCN
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from A, CS and DS obtained in the above manner. The CRPGCN algorithm flow is as 
follows: Step 1: The matrices A, CS and DS given by data pre-processing are fed into the 
CRPGCN. Step 2: The RWR algorithm is used to aggregate the CS matrix and DS neigh-
bour node information respectively to obtain the CRS and DRS. Step 3: The CRS matrix 
and DRS matrix are combined with the adjacency matrix A respectively, and the PCA 
is used to reduce the dimension and extract the features to obtain the feature matrices 
CF and DF separately. Step 4: The CS, DS and A are used to form the heterogeneous 
adjacency matrix Acd , after which CF and DF are used to compose the heterogeneous 
feature matrix CD, and finally the GCN algorithm is used for feature learning and scores 
calculation between circRNAs and diseases. The relationships between circRNAs and 
diseases is treated as graph-structured data by CRPGCN, which makes full use of the 
associations between each node and its neighbours to learn informations about similar 
nodes, while isolated nodes can also be well handled. Ultimately, the accuracy and stabil-
ity of the CRPGCN algorithm is demonstrated by comparative experiments. In particu-
lar, the above steps will be described in detail in the following section.

Construct circRNA‑disease adjacency matrix

The establishment of the adjacency matrix A (see Additional file 1) uses the known asso-
ciation relationships between circRNAs and diseases in the CircR2Disease dataset. A(i,j) 
is set to 1 when there is an associations between circRNAs and diseases, otherwise it is 
set to 0, is given by the following:

Construct circRNA GIP kernel similarity

For a circRNA ci , IP1(ci) value is defined as the i-th row of the circRNA-disease associa-
tions matrix A. The calculation method for the GIP kernel similarity between each pair 
of ci and cj is shown as:

where CIS represents the GIP kernel similarity of ci and cj . γc is used to control the 
bandwidth, it represents the regularized Gaussian interaction attribute kernel similarity 
bandwidth based on the new bandwidth parameter γ ′

m . γ ′
m is set to 1. n represents the 

number of circRNA. The disease GIP kernel similarity DIS is calculated in the same way.

(1)A(i, j) =
{
1 ci and dj has related
0 otherwise

(2)CIS
(
ci, cj

)
= exp

(
−γc

∥∥IP1(ci)− IP1
(
cj
)∥∥2

)

(3)γc = γ ′
c/

(
1

n

n∑

i=1

�IP1(ci)�2
)
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Construct gene‑based circRNA similarity

Because similar RNAs tend to regulate similar genes, genes have been widely used to 
infer RNA similarity. In this study, to construct the gene-based circRNA similarity, the 
circRNA-gene associations adjacency matrix Acg must be constructed first. Where Acg 
is set to 1 to indicate that gi and gj are related, otherwise it is set to 0. Similar to the cir-
cRNA GIP kernel similarity calculation method, the GIP kernel similarity matrix GIS of 
the gene is constructed. The gene-based circRNA similarity matrix CGS is constructed 
[27] through the Acg and GIS matrix, it is given by:

where AT
cg is the transpose of Acg.

Construct sequence‑based circRNA similarity

The method rest on Chaos Game Representation (CGR) [29] can transform circRNA 
sequences into the corresponding spectral format. This method can exploit CGR coordi-
nates to convert circRNA sequences into CGR radian sequences.

This method uses the Pearson correlation coefficient to quantify the similarity and 
difference between the position information and the nonlinear information for calcu-
lates the sequence-based circRNAs similarity matrix CES. By combining the method of 
Zheng et al. the CGR space [30] is first divided into 8× 8 grids and the i-th grid can be 
expressed as:

Furthermore, the quantified position information Xi and Yi of gridi is obtained by accu-
mulating the horizontal coordinate value xj and vertical coordinate value yj in each grid 
respectively, which can be presented as follows:

where Numi denotes the number of points in the i-th gridi , Xi denotes the sum of the 
horizontal coordinate values xj for all points in the i-th gridi , and Yi denotes the sum of 
the horizontal coordinate values yj for all points in the i-th gridi . Zi is used to represent 
the z-score of each grid to quantify the non-linear information, which is calculated as:

(4)CGS = Acg × GIS× AT
cg

(5)gridi = (Xi,Yi,Zi)

(6)





Xi =
�Numi

j=1 xj if point
�
xj , yj

�
in gridi

Yi =
�Numi

j=1 yj if point
�
xj , yj

�
in gridi

(7)
Zi =

Numi −
∑Ng

k=1 Numk

Ng√√√√ 1
Ng

∑Ng

h=1

(
Numh −

∑Ng
f=1 Numf

Ng

)2
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where Ng is 64, which means the total number of grids.
Finally, based on the above calculation of the Xi , Yi and Zi attributes of each gridi , the 

following equation is fused to construct a description array des(ci) for all grids of the cir-
cRNA sequence being calculated:

Then, the Pearson correlation coefficient is used to determine the sequence similarity 
CES, it can be presented as follows:

where Cov(∗ ) represents the covariance, D(∗ ) represents the variance, ci represents the 
i-th circRNA.

Constructing disease semantic similarity

The DAG associations between diseases can help to calculate the similarity between each 
pair of diseases. The more DAG correlations between two diseases, the greater their simi-
larity. The contribution value of the diseases can quantify the DAG correlation between the 
two diseases. Calculation of diseases contribution values based on the MeSH dataset, which 
is given by:

Through the contribution value of the diseases, the semantic similarity between the dis-
eases is calculated, DSS is described as follows:

where T (di)∩T(dj) represents the set of common ancestor nodes of the two diseases di 
and dj.

Data fusion

The circRNA comprehensive similarity matrix CS is obtained by fusing the matrices CIS, 
CGS and CES. If the gene-based circRNA similarity is not 0, the average value of CIS, CGS 
and CES is united as the current circRNA comprehensive similarity CS (see Additional 
file 2). Otherwise, the average value of CIS and CGS is used as the CS of circRNA. The 
comprehensive similarity CS is given by:

(8)desc(ci) =
(
grid1, grid 2, . . . , grid Ng

)

(9)CES
(
ci, cj

)
= Cov

(
desc(ci), desc

(
cj
))

D(desc(ci))× D
(
desc

(
cj
))

(10)S
(
di, f

)
= log

(
1+ the number of DAGs including f

the number of disease

)

(11)DSS
(
di, dj

)
=

∑
t∈T(di)∩(dj)

(
S
(
di, f

)
+ S

(
dj , f

))
∑

t∈T(di) S
(
di, f

)
+∑

t∈T(dj) S
(
dj , f

)
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If the diseases has no DAG associations, certain semantic similarities cannot be calcu-
lated. By analyzing disease similarity measures from multifaceted, in order to calculate 
the similarity between diseases more comprehensively, DIS and DSS are needed to be 
fused together. The disease comprehensive similarity DS (see Additional file 3) between 
diseases di and dj is defined as follows:

CRPGCN algorithm

In this section, the implementation of the CRPGCN algorithm is described in detail. The 
adjacency matrix A, circRNA comprehensive similarity matrix CS and disease compre-
hensive similarity matrix DS are used as the input datas for CRPGCN, and the output is 
the score matrix. The specific process is shown in Algorithm 1.

From lines 1–7 of the CRPGCN algorithm, CS and DS are used by the RWR algo-
rithm to fuse the similarity information of neighbouring nodes to obtain CRS and DRS. 
Because the similarity relationships between each node and its neighbours has an impor-
tant influence on the prediction result, the RWR algorithm can combine well to calcu-
late the relationships between nodes and their neighbours. RWR combines the similarity 
[31] between neighbouring nodes by random walk and adjusts the degree of integration 
of the combined neighbouring nodes by edge weights. The calculation method [19] of 
RWR is defined as:

where W = [wi,j] is the transfer probability matrix and W̃  is the matrix after normalisa-
tion of W. �el is the initial vector of k × 1 and is the row vector of the CRS or DRS. c is the 
restart probability. Based on subsequent experiments c is set to 0.4. �rl is the similarity 
vector obtained after the RWR calculation.

With the RWR algorithm, there is a certain probability that the walk process of the 
computed nodes will combine the similarity between the lowly associated neighbouring 
nodes, and the generation of similarity noise is inevitable. In order to reduce the impact 
of similarity noise on the computation results, the PCA algorithm is invoked. In rows 
9–21, by using the PCA algorithm to extract features while noise reduction of the simi-
larity matrix, the final obtained feature matrices CF, DF can be better learned by GCN, 
the calculation [32] of the feature matrix is shown below: 

(12)CS =





CIS(ci ,cj)+CGS(ci ,cj)+CES(ci ,cj)
3 if CES �= 0

CIS(ci ,cj)+CGS(ci ,cj)
2 if CES = 0

(13)DS =





DIS(di ,dj)+DSS(di ,dj)
2 DAG association exists

DIS
�
di, dj

�
otherwise

(14)�rl = cW̃ �rl + (1− c)�el
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In line 22, By using noise reduction on the similarity matrix, the final result is used as 
the feature matrices CF (see Additional file 4), DF (see Additional file 5) for circRNAs 
and diseases. At the same time, the noise reduction matrix is not enough for the GCN 
method to find the associations between nodes more easily [33], the concept of hetero-
geneous adjacency matrix and heterogeneous feature matrix are introduced for better 
feature embedding. Their construction methods are shown as follows:

(15)
Y = PX

(16)Acd =
[
CS A

AT DS

]

(17)CD =
[
CF 0
0 DF

]
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The learning method of the GCN is defined specifically from lines 23 to 32. According to 
the definition of GCN, the formula for the convolution of the adjacency matrix Acd with 
the identity matrix CD is given by:

where the Fourier series matrix We is the training weight matrix, then 
CD

(
I+ D− 1

2AD− 1
2

)
 represents the hidden associations between circRNAs or diseases 

nodes and potential factors. It can be converted into a hidden matrix H through the We . I 
is the identity matrix. By introducing the deviation matrix B into the hidden matrix H 
through the activation function. The initialisation [34] of the trainable matrices We , Wd 
and B is provided by Glorot et al. as follows:

where �p and �n are randomly selected positive and negative samples for this experi-
ment. W is used to minimise the prediction error during the iterative process, and it is 
calculated as shown in Eq. (19). The constraints on the weight matrices in the encoder 
and decoder are defined by the remaining three terms separately. Because the ratio of 
positive and negative samples affects the experimental training results, this experiment 
validates the optimal ratio of positive and negative samples, and the validation results 
and discussion will be given in the next section.

Results
Evaluation method and metrices

The ROC curve is drawn based on TPR and FPR. The calculation method of TPR is as 
follows:

where TPR represents the percentage of all samples that are actually positive that are 
correctly judged as positive. In addition, FPR is calculated as follows:

where FPR is the percentage of all samples that are actually negative that are incorrectly 
judged to be positive.

The experiment used a variety of methods to assess performance, including recall 
(Recall), F1 score (F1), accuracy (ACC), Matthew correlation coefficient (MCC), area 
under the receiver operating characteristic curve (AUC) and area under precision-recall 
curve (AUPR). They are defined as:

(18)F = CD
(
I+ D− 1

2AD− 1
2

)
We

(19)ϒ =W + 1

2
�We�2 +

1

2
�Wd�2 +

1

2
�B�2

(20)W =

√√√√
∑

ij;�p,j=1or�n,j=1

(
M′

ij −Mij

)

∑
ij

(
�p,ij +�n,ij

)

(21)TPR = TP

TP + FN

(22)FPR = FP

FP + TN



Page 11 of 23Ma et al. BMC Bioinformatics          (2021) 22:551 	

where TP is true positive, indicating the number of positive samples that are correctly 
classified, and FN is false negative, indicating the number of negative samples that are 
incorrectly classified. FP is false positive, which means the number of positive samples 
that are incorrectly classified as negative; TN is true negative, which means the number 
of negative samples that are correctly classified.

k‑fold cross validation

In this section, k-fold cross-validation (CV) is used to assess the performance of 
CRPGCN. The dataset used for this experiment is derived from a combined dataset of 
533 circRNAs associated with 89 diseases obtained by screening the circBase, circR2D-
isease and MeSH databases. In order to assess the performance of CRPGCN more 
accurately, the dataset is randomly sampled. According to the AM matrix, when the 
AM matrix is 1, it is a positive sample, otherwise it is a negative sample, after which 
the positive sample is randomly disrupted while it is divided into 5 equal parts, then 
the negative sample data is taken 5 times the positive sample, and finally the positive 
and negative samples are combined as training samples. In addition to the associations 
between circRNAs and diseases in the dataset itself, the potential associations between 
circRNAs and diseases also has a significant impact on the final results, and the lantent 
factor number (LFN) parameter is adjusted to the optimal value, which is presented in 
the next section. In addition, the ratio of positive to negative samples also plays a crucial 
role in the outcome of the experiment. The ROC curves are shown in Fig. 2, with the 
final AUC values of 0.9490, 0.9720 and 0.9722 for the 2-fold CV, 5-fold CV and 10-fold 
CV respectively.

Analysis of parameters

The key parameters of the CRPGCN algorithm have a huge impact on the results [35], 
thus in this section, the three primary parameters will be analysed.

In the CRPGCN, the LFN is one of the foundations on which it is constructed, 
and it plays an integral role in this experiment. Therefore, this subsection evaluates 
the impact on the CRPGCN algorithm based on the variation of LFN, which is set 
to range from 5 to 100 and validated by AUC values. In addition to this, a fivefold 
CV of the dataset is performed by fixing the optimal values of the remaining param-
eters constant. As shown in the histogram in Fig. 3a, the trend of the AUC value is 

(23)F1 = 2× TP

2TP + FP + FN

(24)MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

(25)ACC = TP + TN

TP + TN + FP + FN

(26)Recall = TP

TP + FN
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monotonically increasing as the LFN goes from 5 to 65. From 65 to 100 there is a 
monotonically decreasing pattern. In addition, the best AUC value of 0.9720 is 
obtained at an LFN of 65. By adjusting the LFN to a reasonable value, the associa-
tions between circRNAs and diseases can be strengthened, thus making the predic-
tion more accurate.

In addition, the restart probability c of the RWR and the proportion k of the trun-
cated vector of the PCA also have a large impact on the AUC of the CRPGCN. c 
means the probability of the computed node returning to the original node in the next 
step, and 1-c is the probability of being computed to reach a neighbouring node. k rep-
resents the number of matrix columns of length k of the matrix selected by the PCA 
processing matrix as the columns of the feature matrix. Because the distributions of 

Fig. 2  The ROC curves of the CPRGCN with k-fold corss-validation

Fig. 3  Analysis of parameters a Compare the AUC values with different c and k, b compare the AUC values 
with different lantent factor number
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both c and k are between 0 and 1, the experiments in this section set their step sizes 
to 0.1. From the results, it is shown that when c is between [0.3,0.5] and k is between 
[0.1,0.9], the average AUC values are 0.9643, 0.9658, and 0.9645, respectively. when 
c is 0.5 and k is between [0.4,0.8], the AUC values reached one of the peaks, with a 
range average AUC value of 0.9676, but they did not reach the highest value. The best 
AUC value is 0.9720 when c=0.4 and k=0.3. The experimental validation shows that 
although there are some outstanding AUC values in different ranges, the highest AUC 
values can only be obtained by setting the values of c and k reasonably, and the results 
are shown in Fig. 3b.

To further demonstrate the validity of the parameters, the results of the experiments at 
twofold CV, fivefold CV and tenfold CV of different LFN will be presented here, and the 
results prove the conclusions in the CRPGCN article to be correct. As shown in Fig. 4 
and Table 1 (Tables 2, 3).

Comparison with existing methods

In order to verify the reliability of the algorithm, CRPGCN algorithms is used in this 
experiment to compare it with other excellent prediction method. As shown in Fig. 5. 
The GCMDR [36] is developed by Huang et al. to predict the relationships between miR-
NAs and drugs, and GCN to be used by it for extraction feature and final scores cal-
culation. The AE-RF [37] is developed by K. Deepthi et  al. to predict the associations 
between circRNAs and diseases, the Deep Auto-encoder (DAEN) algorithm is used by 

Table 1  Compare the AUC values with different LFN

LFN Twofold CV Fivefold CV Tenfold CV

5 0.7705 0.7833 0.7882

15 0.8548 0.8750 0.8820

25 0.8950 0.9183 0.9247

35 0.9321 0.9475 0.9500

45 0.9352 0.9647 0.9573

55 0.9434 0.9694 0.9641

65 0.9490 0.9720 0.9722

75 0.9442 0.9685 0.9647

85 0.9434 0.9655 0.9628

95 0.9401 0.9630 0.9675

100 0.9401 0.9623 0.9612

Fig. 4  Comparison of ROC curves for different LFN under k-fold CV
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it to extract features and thereafter the Random Forest (RF) classifier is used to clas-
sify and predict the results of the score matrix. GCNMDA [38] is developed by Long 
et  al. to predict the associations between human micro-organisms and drugs, with a 
Conditional Random Fields (CRF) layer added to the GCN process for feature extrac-
tion and final scores calculation. The SIMCCDA [39] is developed by Li et al. to predict 
the associations between circRNAs and diseases, which uses the PCA algorithm for fea-
ture extraction and dimensionality reduction, after which the Speedup Inductive Matrix 
Completion (SIMC) algorithm is used by it to perform the calculation of the prediction 
score matrix. The VGAELDA [40] integrates variational inference and graph autoencod-
ers for lncRNA-disease associations prediction. The GATMDA [41] using graph atten-
tion networks with inductive matrix completion for human microbe-disease associations 
prediction. After fivefold CV, the AUC values of GCMDR, AE-RF, GCNMDA, SIMC-
CDA, VGAELDA, GATMDA and CRPGCN are 0.6882, 0.8653, 0.7714, 0.8291, 0.5114, 
0.9254, 0.9720, respectively. The AUPR values are 0.1203, 0.8062, 0.1465, 0.1756, 0.6367, 
0.9067, 0.9418, respectively. In addition, the results of performance evaluation indica-
tors such as F1, MCC, ACC and RECALL are shown in Fig. 6 and Table 4. This study 

Fig. 5  The ROC and P–R curves of different models under 5-fold cross-validation

Fig. 6  Comparison with multiple evaluation metrics
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effectively combines circRNA sequence informations, circRNA gene informations, and 
disease DAG data by fusing multiple datasets. Thereafter, the RWR algorithm is used 
by CRPGCN for comprehensive similarity calculation, which allows each node being 
calculated to better fuse informations from neighbouring nodes with higher weights. 
PCA is then used for feature extraction and dimensionality reduction, and the similarity 
informations of the nodes is further enhanced. It allows each pair of circRNA-disease 
nodes with high similarity to perform more prominent features while also performing 
data noise reduction, so that the pre-processed datas can be used by the GCN for faster 
feature learning and to obtain a higher accuracy scores prediction matrix.

In summary, the CRPGCN algorithm has a higher accuracy and greater advantage in 
predicting the associations between circRNAs and diseases than many other excellent 
comparative algorithms.

Comparison with different datasets

In order to verify the reliability of the CRPGCN algorithm under different datasets, this 
experiment provides 4 types datasets for comparison, as shown in Table  2. DataSet-1 
has 330 types of circRNAs and 354 types of associations with 48 diseases; DataSet-2 
has 661 types of circRNAs and 736 types of associations with 100 diseases; DataSet-3 
has 512 types of circRNAs and 609 types of associations with 71 diseases; DataSet-4 has 
533 types of circRNAs and 612 types of associations with 89 diseases. DataSet-4 is the 
benchmark dataset for this study.

The histogram of AUC values in Fig. 7a. and Table 3 shows that the AUC values of the 
CRPGCN method under fivefold CV are consistently stable at around 0.95, with little 
fluctuation. Whereas CRPGCN-I also performs well on the DataSet-1 and DataSet-2, the 
AUC values produce a significant drop on the DataSet-3 and DataSet-4, indicating that 
for different datasets the CRPGCN-I method produces large fluctuations in its effective-
ness, which implies that the CRPGCN-I algorithm is not stable. For CRPGCN-II, the 
results in the figure show that it performs relatively poorly in all four datasets, which 
implies that CRPGCN-II basically fails to make accurate predictions. The AUC values of 

Table 2  Details of four datasets

DATASET circRNAs Diseases Associations

DataSet-1 330 48 354

DataSet-2 661 100 736

DataSet-3 512 71 609

DataSet-4 533 89 612

Table 3  Compare the AUC values with different models

DATASET CRPGCN CRPGCN-I CRPGCN-II

DataSet-1 0.9554 0.9335 0.6686

DataSet-2 0.9512 0.9458 0.5681

DataSet-3 0.9461 0.7441 0.6347

DataSet-4 0.9720 0.7552 0.6097
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CRPGCN algorithm for twofold, fivefold and tenfold CV in the four datasets are shown 
in Table  5, while the average AUC values of them are calculated and they are 0.9375, 
0.9562 and 0.9621 respectively. In summary, it can be shown that the CRPGCN algo-
rithm has the same stable, efficient and accurate prediction both under different datasets 
and in comparison with other computational methods.

The four ROC curves in Fig. 8 show that the ROC curves of the CRPGCN algorithm 
all rise rapidly, with the TPR reaching above 0.9 before the FPR value of 0.1, which indi-
cates that the CRPGCN algorithm is extremely efficient. For the CRPGCN-I method, 
the ROC curves under DataSet-1 and DataSet-2 are also rise fast, with TPR values reach-
ing around 0.9 before the FPR value of 0.1. However, the curves of CRPGCN-I under 
the DataSet-3 and DataSet-4 are significantly flatter, with TPR values basically reaching 
0.9 after the FPR value of 0.9. This performance indicates that for different datasets, the 
prediction accuracy of CRPGCN-I fluctuates somewhat. For the CRPGCN-II method, 
the curve trend is remarkably flat for either of the four datasets, along with low AUC 
values, which indicates that the CRPGCN-II method basically does not have accurate 
predictions for the associations between circRNAs and diseases. Furthermore, because 

Fig. 7  Comparison of the three algorithm modes of 4 different datasets under GRPGCN. a CRPGCN is the 
method proposed in this paper, which undergoes RWR for similarity aggregation and PCA feature extraction. 
The CRPGCN-I method is a direct fusion for feature extraction by PCA algorithm after comprehensive 
similarity calculation; CRPGCN-II is a direct fusion after comprehensive similarity calculation, without RWR for 
similarity aggregation and PCA feature extraction. b Represents the AUC values of twofold CV, fivefold CV and 
tenfold CV of the three models under four datasets

Table 4  Comparison with multiple evaluation metrics

Bold indicates the Area Under the receiver operating characteristic Curve (AUC) is plot by TPR and FPR, and the Area Under 
Precision-Recall curve (AUPR) is plot by Recall and Precision. Precision = TP/(TP + FN)

DATASET AUC​ AUPR F1 MCC ACC​ RECALL

GCMDR 0.6882 0.1203 0.9543 0.0806 0.2002 0.0420

AE-RF 0.8653 0.8062 0.7436 0.7359 0.4928 0.7870

GCNMDA 0.7714 0.1465 0.9403 0.1485 0.1311 0.1092

SIMCCDA 0.8291 0.1756 0.6839 0.1992 0.0083 0.2358

VGAELDA 0.5114 0.6367 0.8364 0.0370 0.1255 0.0188

GATMDA 0.9254 0.9067 0.8487 0.8604 0.7075 0.9327
CRPGCN 0.9720 0.9418 0.9907 0.8959 0.8940 0.8319
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of the inclusion of the PCA algorithm for extraction feature, the CRPGCN algorithm 
and the CRPGCN-I algorithm had higher AUC values than CRPGCN-II, which suggests 
that the PCA feature extraction algorithm is equally essential for this experiment. Mean-
while, although Dataset-4 is not the dataset with the most circRNA-disease associations, 
CRPGCN obtained the highest AUC value because this algorithm incorporates gene-
based circRNA similarity for circRNAs composite similarity calculation, which shows 
that gene-based circRNA similarity is crucial for this algorithm.

Fig. 8  Fivefold cross-validation ROC curve compare with CRPGCN, CRPGCN-I and CRPGCN-II under different 
datasets

Table 5  Compare the AUC values of CRPGCN with different datasets under k-fold CV

DATASET Twofold CV Fivefold CV Tenfold CV

DataSet-1 0.9263 0.9554 0.9498

DataSet-2 0.9407 0.9512 0.9653

DataSet-3 0.9392 0.9461 0.9611

DataSet-4 0.9490 0.9720 0.9722

Mean 0.9375 0.9562 0.9621
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Comparison with different comprehensive similarity calculation method

In order to study the influence of different similarity calculation methods on CRPGCN 
algorithm, in addition to RWR, DeepWalk [42], Line [43], Node2vec [44] and Struct2vec 
[45] algorithms are selected for comparison.As shown in the Fig. 9, the AUC values of 
CRPGCN using RWR, DeepWalk, Line, Node2vec and Struct2vec similarity calculation 
methods reached 0.9720, 0.8480, 0.8586, 0.9522 and 0.7724 under fivefold CV respec-
tively. This means that the RWR algorithm has better performance compared to other 
similarity calculation methods in this study.

In the data pre-processing stage, the comprehensive similarity between circRNAs 
and the comprehensive similarity between diseases is calculated for feature learning. 
However, simply calculating the comprehensive similarity is not sufficient to fuse the 
datas between similar nodes for feature learning, so it is necessary to fuse the neigh-
bouring nodes based on the comprehensive similarity to help the subsequent feature 
extraction. Compared to the other similarity calculation algorithms in this study, the 
RWR algorithm focuses more on the influence of the weights of neighbouring nodes 
on the similarity calculation, and it uses the comprehensive similarity as the similar-
ity weights of neighbouring nodes for datas fusion. In contrast, Struct2vec focuses 
more on the calculation of structural similarity, which does not have much influ-
ence on this experiment, so the AUC value of Struct2vec is the lowest. On the other 
hand, Node2vec is closer to the RWR algorithm in terms of computational results 
because it is also more concerned with the weights of neighbouring nodes. How-
ever, compared to the RWR algorithm, Node2vec uses either a Depth-First-Search 
(DFS) strategy or a Breadth-First-Search (BFS) strategy to calculate similarity which 
combines more informations from low similarity nodes, whereas the RWR algorithm 
may return to the original nodes for similarity calculation which allows the neigh-
bouring nodes with high similarity to be combined more closely. Overall, the RWR 
algorithm is the best choice for the computation of similarity in this study.

Fig. 9  Compare the ROC curves with different calculation methods models under fivefold cross-validation
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Case study

To further validate the predictive performance of CRPGCN for diseases, the case study 
is conducted on breast cancer alone. Breast cancer is a common disease and is one of 
the more lethal diseases especially for women. This case study may allow researchers 
to better study breast cancer and develop drugs or methods for effective treatment. 
The circR2Disease database and circFunBase [46] database are selected for validation. 
By removing circRNAs associated with breast cancer and then training them using 

Table 6  Prediction of the top 40 predicted circRNAs associated with Breast cancer

Rank circRNA Evidence (PMID)

1 circBCL11B 29221160

2 hsa_circ_0108942 29045858

3 hsa_circ_0001875 28484086

4 hsa_circ_0001982 28933584

5 hsa_circ_0000893 28744405

6 hsa_circ_0001667 28803498

7 hsa_circ_0006054 28484086

8 hsa_circ_0003838 28803498

9 hsa_circ_0002874 28803498

10 hsa_circ_0001721 28744405

11 circDENND4C 28739726

12 hsa_circ_0000732 28744405

13 hsa_circ_0092276 28803498

14 hsa_circ_0068033 29045858

15 hsa_circ_0085495 28803498

16 MCF7_circ_000595 27829232

17 circBRIP 29221160

18 hsa_circ_0001824 28484086

19 circVRK1 29221160

20 circMED13 29221160

21 circOLA 29221160

22 hsa_circ_0008945 28744405

23 hsa_circ_0004214 28622299

24 hsa_circ_0008717 28744405

25 hsa_circ_0001283 28744405

26 hsa_circ_0004619 28484086

27 hsa_circ_0000981 28744405

28 hsa_circ_0001785 29045858

29 hsa_circ_0006528 28803498

30 hsa_circ_0093859 29593432

31 hsa_circ_0000098 28744405

32 hsa_circ_0004771 Unconfirmed

33 hsa_circ_0000911 28744405

34 circETFA 29221160

35 hsa_circ_0086241 28803498

36 hsa_circ_0091702 Unconfirmed

37 hsa_circ_0011946 29593432

38 hsa_circ_0008305 Unconfirmed

39 hsa_circ_0080210 Unconfirmed

40 hsa_circ_0041946 Unconfirmed
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CRPGCN, the final experiment predicted the unassociated data. The top 40 circRNAs 
are confirmed in descending order of prediction scores according to the CRPGCN 
method, as shown in Table 6 (see Additional file 6). There are some unidentified asso-
ciations between circRNAs and breast cancer that may be able to be validate in future 
studies. The experimental results demonstrate the excellent predictive performance of 
the CRPGCN algorithm.

Conclusions and discussion
In this paper, CRPGCN is proposed for predicting the relationships between circRNAs 
and diseases using GCN constructed with RWR and PCA based on heterogeneous net-
work. In CRPGCN, data from multiple datasets are used for similarity fusion, which 
includes information on circRNA sequences, genes, DAG of diseases, and circRNA-dis-
ease associations . By filtering the dataset, 533 circRNAs with 89 diseases are obtained.

With above information provided by the datasets, the circRNA GIP kernel similar-
ity matrix CIS, the sequence-based circRNA similarity matrix CES, the gene-based 
circRNA similarity matrix CGS, the disease GIP kernel similarity matrix DIS, and the 
disease semantic similarity matrix DSS are calculated. After that, the circRNA compre-
hensive similarity matrix CS is obtained by fusing CIS, CGS and CES, and the disease 
comprehensive similarity matrix DS is obtained by the fusion of DIS and DSS. There-
after, the RWR algorithm is used to allow each node to learn the information of neigh-
bouring nodes with higher correlation. However, the simple splicing matrix inevitably 
generates noise, and the PCA method not only enables feature extraction but also noise 
reduction for the splicing matrix. The datas processed by these methods are fused 
into a heterogeneous adjacency matrix and a heterogeneous feature matrix, which are 
used by the GCN algorithm for feature learning and calculation of associations scores 
between circRNAs and diseases. The results and comparative experiments show that the 
CRPGCN algorithm proposed in this paper has good performance and can accurately 
predict the associations between circRNAs and diseases. It can provide useful help to 
biologists and save their time in experiments.

Also, in the comparison experiments of this paper, the CRPGCN method has an out-
standing performance in comparison with the best published algorithms. The results 
show that the CRPGCN method is the best among the comparative methods in this 
paper. In order to demonstrate the stability of the CRPGCN method, different datasets 
are used for the comparison. In conclusion, the different comparison experiments show 
that the CRPGCN algorithm is a stable and accurate prediction performance for the 
associations between circRNAs and diseases.

Abbreviations
circRNA: Circular RNA; GCN: Graph convolutional network; RWR​: Random walk with restart; PCA: Principal component 
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