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Abstract

Background: The research landscape of single-cell and single-nuclei RNA-sequencing
is evolving rapidly. In particular, the area for the detection of rare cells was highly facili-
tated by this technology. However, an automated, unbiased, and accurate annotation
of rare subpopulations is challenging. Once rare cells are identified in one dataset, it is
usually necessary to generate further specific datasets to enrich the analysis (e.g., with
samples from other tissues). From a machine learning perspective, the challenge arises

article from the fact that rare-cell subpopulations constitute an imbalanced classification
problem. We here introduce a Machine Learning (ML)-based oversampling method
that uses gene expression counts of already identified rare cells as an input to generate
synthetic cells to then identify similar (rare) cells in other publicly available experiments.
We utilize single-cell synthetic oversampling (sc-SynO), which is based on the Local-
ized Random Affine Shadowsampling (LoRAS) algorithm. The algorithm corrects for the
overall imbalance ratio of the minority and majority class.

Results: We demonstrate the effectiveness of our method for three independent

use cases, each consisting of already published datasets. The first use case identifies
cardiac glial cells in snRNA-Seq data (17 nuclei out of 8635). This use case was designed
to take a larger imbalance ratio (~1 to 500) into account and only uses single-nuclei
data. The second use case was designed to jointly use snRNA-Seq data and scRNA-Seq
on a lower imbalance ratio (~1 to 26) for the training step to likewise investigate the
potential of the algorithm to consider both single-cell capture procedures and the
impact of “less” rare-cell types. The third dataset refers to the murine data of the Allen
Brain Atlas, including more than 1 million cells. For validation purposes only, all datasets
have also been analyzed traditionally using common data analysis approaches, such as
the Seurat workflow.

Conclusions: In comparison to baseline testing without oversampling, our approach
identifies rare-cells with a robust precision-recall balance, including a high accuracy
and low false positive detection rate. A practical benefit of our algorithm is that it

can be readily implemented in other and existing workflows. The code basis in R and
Python is publicly available at FairdomHub, as well as GitHub, and can easily be trans-
ferred to identify other rare-cell types.
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Background

Single-cell RNA-sequencing (scRNA-Seq), as well as single-nuclei RNA-sequencing
(snRNA-Seq), open up a transcriptome-wide gene expression measurement at single-
cell level, enabling cell type cluster identification, the arrangement of populations of
cells according to novel hierarchies, and the identification of cells transitioning between
individual states [1]. This facilitates the investigation of underlying structures in tissue,
organism development, diseases, as well as the identification of unique subpopulations
in cell populations that were so far perceived as homogeneous.

Using the single-cell technology for the identification of rare cells

Classifying cells into cell types or states is essential for many biological analyses [2]. For
example, investigating gene expression changes within a cell type or cell subpopulation
can be of high interest across different biological conditions, time-points, or in patient
samples. To be able to compare these different cell types, reliable reference systems,
especially in sparse-cell states, are necessary. However, the lack of markers for rare-cell
types motivates the use of unsupervised clustering approaches. Method development
for such unsupervised clustering of cells has already reached a certain level of maturity
[3-5]. Furthermore, many studies are interested in specialized cells (e.g., cancer cells,
cardiac pacemaker cells) with an occurrence of less than 1 in 1000. The identification of
such clusters, solely based on unsupervised clustering of a single dataset, remains very
challenging [6]. For this reason, almost every cell clustering characterization approach is
driven by manual cluster annotation, which is time-consuming and involves a bias of the
annotating domain expert, thus limiting the reproducibility of results (Fig. 1). One pos-
sible solution requires a so-called cell atlas, as a curated reference system that systemati-
cally captures cell types and states, either tissue specific or across different tissues [7].

It is noteworthy that there is a class of algorithms developed over recent years that are
dedicated to discovery of rare-cell types. Some examples of these are RacelD [9], GiniClust
[10], and FIRE [6]. However, the predictions of these techniques rely on mostly unsuper-
vised clustering algorithms. Thus, there is always a degree of uncertainty associated with
such approaches. An alternative approach to annotate rare-cells from scRNA-Seq data
would be a supervised approach. If there is an expert annotated rare-cell population in a
scRNA-Seq dataset, we propose to train an ML algorithm that can detect similar cells in
novel datasets arising from future experiments or unseen datasets from data repositories,
such as Arrayexpress or SRA. This will enable users to customize a supervised model as-per
a satisfactory annotation instead of relying on unsupervised clustering methods or a com-
plete time-consuming reanalysis of the novel data. To justify our claim, we devise a simple
motivating experiment. For the experiment, we use a snRNA-Seq dataset with 8635 nuclei,
out of which 17 are expert annotated as glial cells. We used the top 50 pre-selected markers
for the glial-cells. Using such data, we employed the GiniClust approach to look for rare cell
populations in the data in an unsupervised manner. We first calculated the Gini-index for
the top 50 markers and normalized them. Then we chose the top 15 markers among them
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Synthetic oversampling of rare cells by sc-SynO

a) Rare-cell type identification in single-cell RNA-Seq data c) Cell generation with sc-SynO improves classification results
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Fig. 1 Visualization of the workflow, demonstrating a step-by-step explanation for a sc-SynO analysis. a
Several or one snRNA-Seq or scRNA-Seq fastq datasets can be used as an input. Here, we identify our cell
population of interest and provide raw or normalized read counts of this specific population. This can be
done with any single-cell analysis workflow, e.g., Seurat. b Further information are extracted for cluster
annotation that serve as improved input for the subsequent training with sc-SynO. ¢ Based on the data
input, we utilize the underlying LoRAS [8] synthetic oversampling algorithm of sc-SynO to generate new cells
around the former origin of cells to increase the size of the minority sample. d The trained Machine Learning
classifier is validated on the trained, pre-annotated dataset to evaluate the performance metrics of the actual
model. The sc-SynO model is now ready to identify the learned rare-cell type in novel data. This figure was
solely created by the authors

and employed the DBSCAN algorithm on the data restricted to these top 15 markers with
a high Gini-index. The eps value for the DBSCAN algorithm was chosen to be 0.5 and the
minimum size of clusters was chosen to be 5. Interestingly, we observed that with such a
setup, the expert-annotated cluster for Glial cells was perceived as noise by the DBSCAN
algorithm. We demonstrate this in Fig. 2. Assuming that a reliable annotation for a rare-cell
type is available, a supervised learning approach could thus be an alternative to automati-
cally annotate such rare-cell types in unseen datasets than an unsupervised rare-cell discov-
ery approach. Motivated by this, in this article, we focus on a supervised machine learning
approach that can be reliably used to automatically annotate rare cells on an unseen dataset
based on its learning experience on a previously annotated dataset.

Here, we show how the limitation of identifying already annotated rare-cell types in
newly generated scRNA-Seq data can be overcome, by using a single-cell synthetic over-
sampling approach (sc-SynO). sc-SynO uses the LoRAS oversampling algorithm along with
a cell-type-specific marker/feature selection step. The LoRAS algorithm generates synthetic
samples from convex combinations of multiple shadowsamples generated from the rare cell
types. The shadowsamples are obtained by adding Gaussian noise to features representing
the rare cells. The convex combination can be intuitively thought of as a weighted aver-
age of the shadowsamples [8]. For more details about the algorithm and its sample genera-
tion, we refer to the Methods section. sc-SynO is able to automatically annotate and thereby

identify rare-cell types in an unbiased and precise manner in novel data.

Using machine learning algorithms to generate cell types in silico
Machine learning (ML) algorithms are widely used to deal with classification problems and,

thus, are used here to automate the annotation of rare-cell types from single-cell or nuclei
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Fig. 2 a Figure showing expert annotated rare cardiac glial cell population. b Figure showing rare-cells
populations detected by the DBSCAN clustering algorithm used as a part of the GiniClust approach

RNA-Seq data. However, the scarce number of these cells within samples (less than 1 out
of 1000 cells) often results in highly imbalanced data. An imbalanced dataset is a type of
dataset where one or more classes have a significantly less number of samples compared
to other classes (e.g., sinus node cells in the heart, cancer cells in the blood). A class hav-
ing such a low number (minority class) is difficult to detect for unsupervised clustering
approaches or classification algorithms in general [6]. The reason behind this is the inabil-
ity of ML algorithms to perceive or learn underlying patterns from the minority class due
to the scarcity of samples and thereby failure of these algorithms to classify them properly
[11].

To overcome the problem of imbalance, oversampling techniques have been an area of
research in the field of ML for more than a decade. Among several approaches proposed
to deal with such issues is the approach of synthetic oversampling [12]. The philosophy of
generating synthetic samples is to impute minority class instances, here cell types, in an
attempt to enhance the capacity of an ML algorithm to learn. The idea of oversampling is
thus commonly used to re-balance the classes [11].

In our study, we compared and benchmarked the ML-based annotation of rare cells with
no oversampling against our own approach sc-SynO, which is based on our recently devel-
oped LoRAS algorithm applied to single-cell data [8]. Due to our knowledge, this is the
first time that an oversampling approach is applied to single-cell RNA-Seq data for rare-cell
detection improvement. The workflow can be obtained in Fig. 1 and is available on GitHub
(https://github.com/COSPOV/sc-SynO). For more details, please see the Methods section.

Results

Use case preparation

To evaluate the potential of sc-SynO to precisely annotate cell populations in newly gen-
erated data, we demonstrate three use cases by utilizing already published single-cell and
nuclei RNA-Seq datasets. Normalized read counts were processed with Seurat [13] (any
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other normalization method like SCT is also applicable). These are then used as an input
to generate the synthetic samples and train the different ML classifiers. In addition, we
tested the influence of using all transcripts for a classification, or only the top 20, 50,
or 100 pre-selected ones (basic feature selection functions of Seurat were used [logistic
regression, t-test, roc]). This helps us to investigate the influence of further downstream
information obtained from standard feature selection workflows that are usually applied
during scRNA-Seq analysis. If specific markers for a rare-cell type are known based on
further external sources (e.g., databases, experiments, more advanced ML-based selec-
tion approaches), these can be also utilized as input features for sc-SynO.

The first use case identifies cardiac glial cells in snRNA-Seq data (17 nuclei out of
8635) [14], which were used as a training set. The trained sc-SynO ML-classifier was
subsequently applied to independently generated snRNA-Seq data sets of Wolfien et al.
[15] and Vidal et al. [16] to automatically detect the cardiac glial cells (Glial cells). This
use case was designed to take a larger imbalance ratio (~1 to 500) into account and only
uses single-nuclei data.

In contrast to this, the second use case was designed to jointly use snRNA-Seq data
and scRNA-Seq on a lower imbalance ratio (~1 to 26) for the training step to likewise
investigate the potential of the algorithm to consider both single-cell capture procedures
at the same time and the impact of “less” rare-cell types. In particular, studies of Galow
et al. [17] (snRNA-Seq) and Linscheid et al. [18] (scRNA-Seq) were used to identify pro-
lifertive cardiomyocytes (Prl cardio).

The third data set refers to the murine data of the Allen Brain Atlas (https://celltypes.
brain-map.org/), which serves as an example for a large dataset. Here, the expression of
the first 300,000 cells have been used as a model training input to identify cells in the
119_Pvalb Vipr2 cluster (Fig. 3). Only models based on previously selected features were
used for a downstream comparison because training on such a large dataset including
all available transcriptomic features demands excessive computational resources. The
validation of the trained model was performed on additional 300,000 cells of the murine
Allen Brain Atlas dataset.

For validation purposes only, all datasets have also been analyzed traditionally using
common data analysis approaches, such as the Seurat workflow, as already described
elsewhere [15]. These additional experiments have been conducted to manually evaluate
the identified cells from sc-SynO via traditional unsupervized clustering. The computa-
tional scripts for data pre-processing in R and sc-SynO model generation in Python can
be retrieved from our FairdomHub instance (https://fairdomhub.org/assays/1368) and
GitHub (https://github.com/COSPOV/sc-SynO). Key statistics, such as the imbalance
ratio (Imb. ratio), number of minority samples, cross-validation folds, and oversampling
neighbors of the use cases, are presented in Table 1.

Based on analyzed data of all three use cases, our study shows that the pre-selec-
tion of features (e.g., marker gene identification via Seurat or ML-based or manually
driven) is an important pre-processing step for rare-cell type detection. Pre-selection
of features not only results in faster classification models, but also produces more
reliable results than using all possible features. In Table 2 we show the comparison of
runtimes for several pre-selection scenarios using a knn model. We observe a much

higher runtime without pre-selection of features. Moreover, the performance of the
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Representation of the Allen Brain Atlas Reanalyzed data and sc-SynO input (300k cells)
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Fig. 3 Comparison of the Allen Brain Atlas mice data of the whole dataset from (https://celltypes.brain-map.
org/) and our reanalysis. The 119_Pvalb Vipr2 cluster, consisting in total of 1720 cells, was chosen as a rare-cell
type of interest. The sc-SynO input was 624 cells of this cell type obtained from the first 300,000 cells in the
data

Table 1 Key statistics of the datasets used during this study

Dataset Imb. ratio Minority samples CV folds Oversampling
nbd

Glial cells 506.94 17 3 3

Prl cardio 26.21 625 10 30

Brain atlas 3485 624 10 30

The column ‘Oversampling nbd’ shows the number of nearest neighbours considered for each minority class data points to
generate synthetic samples

predictive model on both validation datasets without pre-selection is highly unrelia-
ble. In validation dataset VD1 and VD2 there are only five and three cardiac glial cells
respectively as per expert annotations. In contrast, pre-selection of features based
on prior marker identification per cluster yields much more accurate results [14, 16].
Without pre-selection the predictive model uses a large amount of features leading to
an overfitted model. For example, without feature selection the predicted number of
glial cells in VD1 is 0 without any oversampling and 2423 using sc-SynO. For this rea-
son, we recommend using our workflow based on pre-selected features obtained from
manually curated feature selection methods in our in-depth comparisons.

For simplicity, we have chosen the in-build marker gene identification methods
(logistic regression, t-test, roc) from Seurat as a feature input in sc-SynO. Other
commonly available methods, such as Random Forest or any other feature selection
methods to derive important transcripts for the rare-cell type of interest, are also
suitable. Analyses of population-specific marker genes are commonly performed


https://celltypes.brain-map.org/
https://celltypes.brain-map.org/

Bej et al. BMC Bioinformatics (2021) 22:557 Page 7 of 17

Table 2 Table showing comparisons among several feature pre-selection scenarios in terms of run
time and efficiency in detection of glial cells for two different validation datasets (VD 1 & 2)

Dataset Pre-selection Pre-processing Data generation Training Detected/
Actual
cells

VD1 All features None - 11 min 56s 0/5

VD2 All features None - 2min 19s 0/3

VD1 All features sc-SynO 4 min 3s 28 min 24s 2423/5

VD2 All features sc-SynO 4 min 19s 5min 8s 299/3

VD1 50 features None - 245 4

VD2 50 features None - 408 ms 2

VD1 50 features sc-SynO 1235 1945 5/5

VD2 50 features sc-SynO 1125 484 ms 3/3

VD1 20 features None - 706 ms 4

VD2 20 features None - 240 ms 1

VD1 20 features sc-SynO 1125 679 ms 6/5

VD2 20 features sc-SynO 1115 236 ms 3/3

for all single-cell pipelines and can contribute to the biological explainability of the
model. For this reason, we have shown different case studies with different numbers
of pre-selected features (e.g., 20, 50, and 100).

However, we deliberately refrain from recommending a fixed number of features for
using sc-SynO because every dataset has different characteristics, and it is a common
practice to tune model parameters in a dataset-specific way in machine learning. To fully
understand the specific sc-SynO synthetic cell generation of a dataset, users should test
different parameters, including the best amount of features by using methods, such as
random grid search. Here, our results show that even with less than 100 features, the
models are able to detect rare cells successfully.

In general, we observed that our synthetic cells were generated close to the original
minority class data using UMAP visualizations (Fig. 4). To show the newly introduced
cells by sc-SynO, we highlighted the generated cells for the proliferative CM cluster
(50, 500, 1000, and 2000 cells respectively) and the original cells. We observed that the
increased amount of ix silico generated cells result in a stretch of the cell cluster because
with larger amounts of synthetic cells the space stretches to maintain the assumption of
uniformity of data distribution in UMAP.

The results for all model training use cases, including pre-specified cellular markers
and 5-fold stratified cross validation, are presented in Fig. 5 and more detailed in Table 3.

ML model description

For our benchmark study, we chose the k-nearest neighbors (knn) and logistic regres-
sion model (Ir) as our ML classifiers. The reason behind choosing knn is that this
model is known to perform well for imbalanced datasets, especially while using over-
sampling algorithms [19]. We also used the Ir model because we observed that the
effectiveness of the model in other benchmarking studies using different imbalanced
datasets is performing well jointly with the LoRAS oversampling algorithm [8]. The
knn model was used with k = 30 as parameter value. After oversampling, there are
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Fig. 4 Figure showing a comparison between the distribution of synthetic cells (purple) generated by
sc-SynO and original input cells (blue) for model training. The LoRAS algorithm creates synthetic cells by
generating convex combinations of Gaussian noise added to rare-cell samples. This can be thought of as a
random weighted average of multiple cells. In this figure, we highlight the generated synthetic and real cells
to enable a visual comparison
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Fig. 5 Comparison of the baseline classification and sc-SynO visualized as mean outcome for the used
quality parameter: F1-Score (grey), Precision (blue), and Recall (purple). Detailed results can be obtained in
Table 3. We observe that in every case, sc-SynO improves the recall compared to the Baseline model (see
dotted boxes in the figure). This ensures that oversampling with sc-SynO improves the detection rate of
rare-cell types (recall of the classification). Five-fold cross validation is repeated five times with five different
shuffles of the dataset, which is shown as error bars to represent the variance of the performance measures
over five readings

almost equal data points in the majority and the minority class. For the knn classifier
model, we choose a k value of thirty to ensure that the classifier’s decision is made
on a statistically significant number of samples. The Ir model was used with default

parameter settings.
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Table 3 Table showing F1-Scores/Precision/Recall for sc-SynO against baseline classification for our
two ML classifiers (Ir and knn) and for several numbers of pre-selected features (Marker genes). 119_
Pvalb represents a small subpopulation of the Allen Brain atlas

Dataset ML Features Baseline sc-SynO
Glial cells Ir 20 96/.94/1 .96/.94/1
Glial cells knn 20 97/1/.95 .94/.90/1
Glial cells Ir 50 .90/.94/.88 94/.94/.95
Glial cells knn 50 .89/1/.81 .94/.90/1
Prl cardio Ir 20 80/.87/.74 .72/.62/.86
Prl cardio knn 20 86/.91/.81 85/.79/.92
Prl cardio Ir 100 .86/.88/.84 84/.81/.87
Prl cardio knn 100 86/.95/.79 .79/.68/.95
119_Pvalb Ir 50 A3/45/41 65/.49/.99
119_Pvalb Ir 100 A5/48/42 65/.49/.99

Given the proliferative cardiomyocyte dataset, for every ML model, we use a 5 x 10
-fold stratified cross-validation framework to judge model performances. For the cardiac
glial cell dataset, due to the extremely small minority class of only 17 cells, we used a
5 x 3-fold stratified cross-validation. First, we shuffle the dataset randomly. We divide
the dataset into k-folds depending on the dataset as described above. The folds are kept
distinct, maintaining approximately the same imbalance ratio in each fold. After we train
and test our models using stratified cross validation, we identify an appropriate model
for a given dataset based on the F1l-score, precision, and recall. The selected model is
then trained over the whole dataset and is then used to detect rare cells in two corre-

sponding validation datasets.

sc-SynO can detect extremely rare glial cells

Training data

For the cardiac glial cell dataset, all models except for the knn-Baseline model produce
an F1-Score of more than 90 percent. For the Ir model with 20 features, we observe that
the recall is 1 irrespective of the model used. The reason behind the superior perfor-
mance of all models in this case is that, even though the glial cell cluster is extremely
rare, it is also very well separated from the rest of the clusters, making it easy for machine

learning models to detect cells.

Validation

We tested the baseline case (without oversampling) against sc-SynO using the Ir model
with 20 features, which was trained on snRNA-Seq normalized read count data of two
independent snRNA-Seq datasets. Both, the baseline model and sc-SynO, identified four
out of five cardiac glial cells in the first validation set of Wolfien et al. [14] (Fig. 6a). For
the second validation dataset from Vidal et al. [16] (Fig. 6b) sc-SynO was able to detect
three out of three glial cells, whereas, the baseline model was able to detect only one.
Figure 6¢ shows the average gene expression of particular cardiac glial cell markers that
are highly expressed in the identified clusters and weakly in other clusters. Although
sc-SynO was effective in finding rare cells, as we have observed in this case study, the
case study itself does not deterministically prove the advantage of oversampling over the
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Fig. 6 Validation of the sc-SynO model for the first use case of cardiac glial cell annotation. a UMAP
representation of the manually clustered BI6 dataset of Wolfien et al. [15]. Predicted cells of sc-SynO are
highlighted in blue, cells not chosen are grey. b UMAP representation of the manually clustered dataset
of Vidal et al. [16]. Precicted cells of sc-SynO are highlighted in blue, cells not chosen are grey. ¢ Average
expression of the respective top five cardiac glial cell marker genes for both validation sets, including the
predicted clusters and those in proximity

baseline case. The reason behind this is as we have discussed before that the cluster of
the glial cell is already well-separated within the dataset. That is why, to appreciate the
effectiveness of our tool, we provide the next case study on proliferative cardiomyocyte
detection. Although this cell type is not as rare as the glial cells, it is a transient cell type
that is not well separated from the neighboring cluster and, thus, can appropriately show

the variation in performances of the considered models.

Sc-SynO achieves a low false negative rate for the identification of proliferative
cardiomyocytes

Training data

For the proliferative cardiomyocytes dataset, we notice that the performance of the clas-
sifiers clearly improves with including more marker genes as features (Fig. 7a, b). Note
that, for all baseline models in this case, the precision is quite high. In contrast, the recall
in turn is low. Due to the high precision, a high F1-Score is also maintained for the base-
line models. However, given that the goal is to detect rare cells, a low recall means that
the baseline models are not very effective to execute this task, even though they produce
low false negatives. Interestingly, sc-SynO in turn, improves the recall, which facilitates
the detection of rare cells, compromising on the precision of the classifiers. Clearly, in
this case, the knn classifiers produce a higher recall and F1-score compared to the Ir

Page 10 of 17
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cells not chosen are grey. ¢ Average expression of the respective top five proliferative cardiomyocyte marker
genes for both validation sets, including the predicted clusters and those in proximity

classifiers. With 20 features using knn for sc-SynO an improved recall to 92% can be
observed, while the F1-Score remains comparable to baseline.

Validation

We applied the baseline model and the sc-SynO algorithm on the two validation datasets
for proliferative cardiomyocytes, using the knn classifier with 20 features. While with sc-
SynO we were able to identify 10 out of 11 cells, the baseline case could not detect any
cells from the first validation dataset. Interestingly, the model using the top 100 genes
identifies 48 cells, including all 9 cells from the top 20 model, which may imply that
this higher set of transcripts can detect a larger, yet similar, set of cells that are closely
related to the cells of investigation. Since the second use case was about a transient cell
type, the assigned cells of the model might indicate related cells that have already been
or closely to enter the actual state of a proliferative cardiomyocyte. The second valida-
tion set assigned 40 cells out of 67 correctly (top 20 features). By using 100 features, the
amount of correctly assigned cells increased further. In both cases, the capability of the
baseline model to detect numerous cells was limited (None with 20 features and only 29
with 100 features).

Page 11 of 17
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Sc-SynO can detect rare-cell populations from large-scale datasets

Training data

To test the effectiveness of sc-SynO on large-scale datasets, we performed our approach
on the murine data of the Allen Brain Atlas (https://celltypes.brain-map.org/), which
includes more than 1,000,000 cells. In our third case study, we chose a small population
of cells (119_Pvalb Vipr2, see Fig. 3) and tested the effectiveness of baseline classifiers
and sc-SynO on detecting this rare cell-population. The rare-cell population of interest
has an imbalance ratio of 348.5. Since the dataset was very large, we performed a pilot
study to notice that Ir is not only the fastest among the models, but performs signifi-
cantly better than knn in this case (dns). Thus, we used only the Ir model for our classifi-
cation task. We noticed that sc-SynO significantly improves the classifier performances.
With 20 features, the precision, recall, and F1-Score for the baseline model were 0.486,
0.424, and 0.450 respectively, while with 50 features the values were 0.456, 0.416, and
0.433. For sc-SynO, with 20 features the precision, recall and F1-Score were 0.492, 0.988,
and 0.655 respectively, while with 50 features the values were 0.496, 0.990, and 0.665.

Validation

For validation, we tested the baseline and sc-SynO oversampled trained model for an
additional 300,000 cells of the Allen Brain Atlas dataset. A manual analysis of the dataset
served as ground truth and resulted in ~1,500 cells of the target cluster 119_Pvalb Vipr2.
Using the top 10 features, the baseline model identified 388 cells correctly in comparison
to 491 correctly assigned cells of sc-SynO (375 cells in common). In addition, sc-SynO
mis-classified around 200 fewer cells in comparison to the baseline model (915 vs. 734

cells).

Discussion

Note that, from the results, use of oversampling increases the recall or sensitivity of the
classification. This means that oversampling can improve the true-positive detection rate
or the rate of detection of the rare-cells in this case. For the first two case studies, where
the baseline classifier can already detect the rare cell population reliably, oversampling
still improves the recall. However, its real usability can be observed from the third case,
where the rare-cell population is not well-separated from a similar population, which is
characterized by a lower Vipr2 gene expression.

Our tool is the first oversampling approach to identify and annotate rare-cell pop-
ulations from scRNA-Seq and snRNA-Seq data. The LoRAS algorithm has been
benchmarked against other popular oversampling techniques like SMOTE or Border-
line-SMOTE, and present LoRAS as the underlying algorithm of sc-SynO as a robust
algorithm for a broad set of applications in terms of F1-score and balanced accuracy [8].
For the baseline models trained without oversampling, we observe a clear limitation on
the validation datasets. Since the identification of rare cells in new unseen data is a key
requirement, a high recall, as obtained from oversampling approaches, would be essen-
tial. Moreover, oversampling with sc-SynO produces comparatively balanced ML model

performances on average, in the sense that, in most cases, our algorithm produces less
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mis-classifications on the majority class with a reasonably small compromise for mis-
classifications on the minority class. This is why, we would suggest using our algorithm
for rare-cell detection instead of the baseline model without oversampling.

We also investigated the similarity of the original cells in comparison to the synthetic
cells. We visualized the results using UMAP plots represented in Fig. 4. We noticed that
plotting the synthetic samples of the minority class data space along with the synthetic
samples looks stretched. We assume this phenomenon can be explained by investigat-
ing the mathematical assumptions underlying the UMAP algorithm. Note that, the
full name of UMAP is 'Uniform Manifold Approximation and Projection’ The word
"Uniform’ is very important in this context. The UMAP algorithm relies on building a
neighborhood graph in the process of clustering and the basic assumption behind this
construction is the uniformly distributed data over the whole data space, even though
it is not the reality. Now what happens when we oversample on a very small population
is that, within a very small volume of the data space we synthetically generate numer-
ous data points. Whereas during clustering, we assume that they are all uniformly dis-
tributed. Since there are a lot of data points, congested in a small volume, under the
assumption of uniform distribution, this volume in the space itself stretches. That is why,
in the 2-D plot the distribution of synthetic data points looks stretched and spread over
a lot of the space. In summary, with a higher density of points in a data subspace it will
be more stretched to satisfy the assumption of uniformity. Thus, if we ignore the stretch-
ing effect caused by UMAP due to a high density of synthetic samples in a small data
neighborhood, we can observe that the synthetic samples are indeed quite similar to the
original minority class samples as shown in Fig. 4.

Our tool facilitates the identification of very similar cells for smaller sets of feature
genes and biologically related cells for larger sets of genes. The initial clustering of the
training data plays an essential role, in which we observed that smaller clusters with a
distinct border to other clusters are better suited for an analysis in comparison to larger
cell populations with transient borders. However, the algorithm still has high accuracies
in identifying those cells, but the rate of false positive predictions likewise increases.

In comparison to other current tools, such as cscGAN [20], scANVI [21], MARS [22],
FiRE [6], and ELSA [23], sc-SynO uses synthetic oversampling of previously, manually
curated cell populations to identify such rare cells of interest in novel unseen data. In
addition, sc-SynO is easily applicable and only requires a single, well-curated dataset of
any size, including only a few cells of interest, to be able to achieve already a high predic-
tive accuracy. In conclusion, our algorithm can be used on both scRNA-Seq and snRNA-
Seq representing the underlying biological heterogeneity of the sample in an improved
manner [15].

Conclusion

sc-SynO can be seamlessly incorporated in any single-cell and single-nuclei data analysis
workflow after the identification and annotation of cell populations on raw or normal-
ized read count data and important transcripts per cluster. As a potential perspective,
it might be even possible to generate synthetic cells/samples out of homogeneous bulk-
RNA-Seq data by treating a single sample as one single cell that needs to be identified
within a single-cell dataset. Once a rare-cell population has been identified and carefully
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checked by a domain expert, sc-SynO can be used on this highly curated dataset to train
the specific cell type. Based on our experience with the application of the oversampling
models, we would see individual models for single rare-cell types as the preferred solu-
tion rather than embedding multiple minority class cell types in one data augmenta-
tion model. Applying sc-SynO on a novel dataset to identify the same rare-cell type is
magnitudes less time-consuming than manually curated data processing and annota-
tion of scRNA-Seq data. This facilitated cell enrichment can be used for more in-depth
downstream analyses with the cell type of interest, without re-analyzing all the datasets.
Such a scenario can be of high interest for single-cell identification in cancer, hypoth-
esis testing on larger cell sets, cell homology search across tissues, or further individual
applications.

Methods

Single-cell data analysis

Typical data processing of scRNA-Seq involves alignment, quality control, normaliza-
tion, confounding factor identification, dimensionality reduction, and cell-gene level
analysis [24]. Alignment of the raw data was conducted by using kallisto (v.0.46.1) for
use case 1 and the CellRanger Software (v.6.1.1) provided by 10x Genomics for use case
2. All investigated scRNA-Seq and snRNA-Seq fastq data files were aligned to the mm10
genome (Ensembl release 93) index, annotated via the respective GTF file, and grouped
by barcodes and UMIs resulting in a feature-barcode matrix. The third use case relied
on already counted files that have been publicly deployed at the Allen Brain atlas plat-
form. Downstream analysis was performed using Seurat (v.4.0.0). After following the
standard pipeline of normalization (normalization.method = LogNormalize, scale factor
= 10000), finding variable features (selection.method = vst, nfeatures = 3000), scaling,
and dimensionality reduction by principal-component (PC) analysis, the datasets were
annotated based on descriptions that have been already published elsewhere [14, 15, 17].
In brief, to assign the underlying cell types of the generated clusters, we utilized sev-
eral approaches accounting for the complexity of the dataset. Sets of well-known marker
genes, as well as novel cell cluster markers recently identified by other groups working
with single-nuclei data, were applied as indicated in our provided computational script
[16, 18]. In addition, the top 100 transcripts per cluster and the identified cell cluster
markers from the specific datasets served as reference points for the full characterization
of all clusters. A detailed R script is available at GitHub (https://github.com/COSPOV/
sc-SynO) and FairdomHub (https://fairdomhub.org/assays/1368).

The LoRAS algorithm as a basis for sc-SynO

The LoRAS algorithm is designed to create a better approximation of the underlying
data manifold by a rigorous modelling of the convex data space compared to pre-existing
algorithms, like SMOTE and several of its already presented extensions [25, 26—28, 29].
To generate a synthetic sample, the algorithm first considers the k-nearest neighbors
of a minority class data point from a two-dimensional embedding of the minority class
achieved by using t-SNE. When there are enough data points in the minority class, this
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provides the algorithm a better approximation of the local data manifold for the minor-
ity class.

Once the k-nearest neighbors are decided for a minority class data point p and thereby
the neighborhood of p is identified, Gaussian noise is added to all the data points in the
neighborhood of p. The pseudo data points generated by the Gaussian noise are called
shadowsamples. A random convex combination of multiple shadowsamples is used to
create a Synthetic LoORAS sample. A mathematical explanation of the algorithm asserts
that, using convex combination of multiple shadowsamples in LoRAS, can produce a
better estimate of the local mean considering the synthetic samples generated in a neigh-
borhood are random variables [8]. A brief outline of the sample generation of sc-SynO
approach, as well as the resulting benefits, are shown in Fig. 1.

Oversampling procedure

Although there are several other oversampling strategies, convex combination based
oversampling can work particularly well when there are too few data points in the
minority class due to a lesser chance of overfitting. For every test fold, we oversample
only on the training fold, so that the test fold is completely unseen to the classifiers.
We specify the most important parameter values of the oversampling model to ensure
full reproducibility of our models. For the proliferative cardiomyocytes dataset having
625 minority class samples, we choose 30 of the nearest neighbours of a minority class
sample, as the oversampling neighbourhood for sc-SynO. sc-SynO has some additional
parameters, such as Ng, Ly, and Ng,, enabling a better approximation of the minority
class data manifold. For the Glial cell dataset, with only 17 minority class samples, we
use three of the nearest neighbours of a minority class sample, as well as the oversam-
pling neighbourhood. The num_afcomb parameter is chosen to be 23 and 100 for the
two cases studies of the proliferative cardiomyocytes dataset with 23 and 100 prioritized
marker-genes, respectively. For the Glial cell dataset, num_afcomb is chosen to be 50 in
both case studies. For detailed parameter values, please see the code published on Fair-
domHub (https://fairdomhub.org/assays/1368).

Choosing proper performance metrics are also often a challenge for imbalanced data-
sets. The usual performance measures, such as accuracy or area under the curve (AUC)
of receiver operating characteristic (ROC) might be unreliable in this scenario [30].
In our studies, we used three performance measures, precision, recall, and F1-Score
(Harmonic mean of precision and recall). Here, a high precision model indicates a low
number of false negative cells, relative to the number of true-positives and a high-recall
model indicates a higher proportion of true positive cells. These two measures can pro-
vide in combination a fair understanding of a classifier performance on the underlying
datasets. However, in the specific case of detecting rare cells, the primary priority can
be user assigned to either prefer a high recall or precision score by appropriately choos-
ing above-mentioned parameters during the training step. The F1-Score determines how
well the model is balanced in terms of precision and recall. In combination, these scores
can indicate how appropriate the classification model has performed.
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Model implementation, execution, and distribution

To allow for an enhanced reusability and transparency of our analysis we provide Jupy-
ter notebooks, which can be easily utilized to rerun our analyses or adapt our proposed
algorithm to other sc/snRNA-Seq experiments. We used Python version 3.7.4. The initial
code basis of LORAS is described in Bej et al. [8] and can be accessed at GitHub (https://
github.com/narek-davtyan/LoRAS). To ensure a broad and versatile use of the proposed
algorithm, we performed our benchmarking study on a basic personal computer (Pro-
cessor: Intel(R) i7-8550U CPU @ 1.80GHz, 4 core(s), 16 GB RAM). In addition, for the
computation of the Allen Brain Atlas dataset, we utilized a CentOS Linux compute node
equipped with 64 cores and 754 GB RAM.
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