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Background
RNA sequencing (RNA-seq) was developed more than a decade ago and has since revo-
lutionized our understanding of biology [1]. During this time, RNA-seq from bulk tissue 
has become the standard approach to investigate the transcriptome of a wide range of 
organisms. However, bulk tissue RNA-seq is not suitable for the characterization of rare 
cell types or distinguishing cell to cell variability [2]. Due to these limitations and recent 
technological advances, a growing number of studies have adopted single-cell RNA 
sequencing (scRNA-seq) as a replacement for bulk tissue experiments [1].
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Single-cell technologies dramatically enhanced our capacity to characterize tissues 
and their cell types. By quantifying individual cells’ gene expression, scRNA-seq sub-
stantially increases the resolution of transcriptome profiles by disentangling the data 
derived from each cell [1–3]. The application of scRNA-seq to humans, animals, and 
plants has led to the discovery of new cell types and a better understanding of organ-
ismal development. Moreover, single-cell analysis is crucial in uncovering cellular 
heterogeneity, identifying rare cell populations, distinct cell-lineage trajectories, and 
mechanisms involved in complex cellular processes [2]. Single-cell RNA-seq public 
resources are expanding rapidly, and the accumulation of massive cellular transcrip-
tome data is in progress [2]. The EMBL-EBI Single Cell Expression Atlas [4] currently 
contains more than 180 studies from 14 species (February 2021).

Due to the great potential of scRNA-seq technology, several computational tools 
have been developed to address the different aspects of data analysis. While these 
tools apply various programming languages, the most widely used are written in R 
or Python [4]. Among them, Seurat [5] is an R package widely used for scRNA-seq 
data processing, cell clustering, and detecting differentially expressed genes (DEGs) 
from single or multiple samples. Follow-up analyses, including single-cell lineage 
development trajectory inference (TI) tools, are provided by other software such as 
the dynverse collection of R packages [6]. Using dynverse, multiple TI models can be 
evaluated, and DEGs within the inferred trajectory can be identified.

Seurat’s and dynverse’s functions aim to be simple to use, and their results are 
reported in a series of plots and tables that are intuitive to interpret. Nevertheless, 
the dependency on command-line interface and R programming language proficiency 
poses a significant barrier for researchers with limited computational expertise, 
impacting their capacity to explore the data. Besides, each analytical step outcome is 
strongly influenced by data quality and execution parameters, requiring the continu-
ous manipulation of these parameters and reevaluation of subsets of data to uncover 
their biological meaning. Tools that simplify the iterative scRNA-seq analysis process 
and the integration across analysis platforms are essential for biologists. Recently, 
several such tools have been developed for scRNA-seq [7–14]. While these tools 
aim to solve similar issues—providing a graphical user interface as an alternative to 
command-line—they often address different aspects of the analysis, contain differ-
ent underlying software, and may not encompass all analytical steps. For example, 
SCiAp [13] contains many of the most common software used in scRNA-seq. Still, 
its reliance on the Galaxy framework [15] makes its installation and use difficult for 
scientists without a computational background. ASAP [7], BingleSeq [10], and Seurat 
Wizard (now part of NASQAR [11]) offer Seurat’s capabilities, but lack TI analysis 
support. Others, such as SC1 [14] and PIVOT [8], provide tools for many of the ana-
lytical steps but are based on methods that are less widely adopted by the community 
than the Seurat toolkit and only offer one model for TI. Tools such as alona [12] do 
not provide the interactive selection of parameters and evaluation of results. There-
fore, a complete workflow encompassing the most critical stages of data analysis and 
their interpretation is still lacking.

Here we present Asc-Seurat (Analytical single-cell Seurat-based web applica-
tion), an easy-to-install interactive web application that provides a comprehensive 
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scRNA-seq analysis workbench. Below, we showcase Asc-Seurat’s architecture and 
capabilities by analyzing two publicly available datasets.

Implementation
Overview

Asc-Seurat is a modular web application implemented using R language and user 
interface provided by the Shiny framework [16] and R [17]. The main modules are 
described in Fig.  1 and encapsulate several analytical procedures including: (1) the 
algorithmic capabilities of Seurat for cell clustering, differential expression analysis, 
and expression visualization; (2) Dynverse functionalities offering dozens of mod-
els for TI, combined with (3) gene functional annotation using BioMart [18] via the 
biomaRt package [19]. We provide a platform-independent installation that can han-
dle all dependencies and configuration for software execution using the Docker virtu-
alization platform.

After the installation, users can access and use Asc-Seurat via their web browser. 
For a complete description of the installation steps, including the command line to 
download and execute the Asc-Seurat’s Docker image, visit Asc-Seurat’s documenta-
tion [20].

Fig. 1  Asc-Seurat workflow overview. Asc-Seurat is built on three analytical cores. Using Seurat, users explore 
scRNA-seq data to identify cell types, markers, and DEGs. Dynverse allows the evaluation and visualization of 
developmental trajectories and identifies DEGs on these trajectories. Asc-Seurat also implements BioMart for 
functional annotation and GO term enrichment analysis
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Input

During the first execution of Asc-Seurat in a working directory, two folders are cre-
ated: (1) data/, which is used as the location for the input files, and (2) RDS_files/ that 
is used to save intermediate files, allowing their usage through the multiple modules 
of the application.

Asc-Seurat requires, as input files, the feature-barcode matrices generated by Cell 
Ranger (10× Genomics [21]). If using alternative software, users can convert the out-
put to the Cell Ranger format by applying other freely available tools. For example, 
the DropletUtils package [22, 23] can be used to generate the 10× Genomics feature-
barcode matrices from any count matrix.

Clustering module (Seurat): quality control, clustering, differential expression analysis, 

and visualization tools

The Asc-Seurat’s clustering module is based on the Seurat (v4) package and provides 
a rich graphical user interface (GUI), allowing the interactive manipulation of the 
data and execution of many of Seurat’s functions. Asc-Seurat can be used to analyze 
an individual sample or analyze multiple samples by deploying Seurat’s integration 
algorithm [5]. Through its GUI, Asc-Seurat provides all steps for: (1) quality control, 
by the exclusion of low-quality cells and potential doublets; (2) data normalization, 
including log normalization and the SCTransform [24], (3) dimension reduction via 
principal component analysis (PCA), (4) clustering of the cell populations, including 
the selection or exclusion of clusters and re-clustering, and (5) differential expression 
analysis to identify markers for specific clusters, or DEGs among clusters or samples 
in a cluster when using the sample integration method (Fig. 2).

During these analytical steps, several plots are generated in real-time, allowing 
users to inspect the results and, if necessary, to adjust the parameters and re-execute 
the analysis accordingly. Moreover, users can download all results as comma-sepa-
rated values (CSV), high-resolution plots, or an intermediary file containing the clus-
tered data to use as input in the other modules of Asc-Seurat.

Once clusters are defined, users can plot the gene expression at the cluster or cell 
level. To visualize the expression plots, users provide a list of gene identifiers. Usually, 
these genes are known markers for specific cell types or DEGs identified using Asc-
Seurat. A heatmap is generated showing the average of the expression of each gene 
per cluster, with the possibility to select groups of genes for further exploration. For 
each selected gene, a uniform manifold approximation and projection (UMAP) plot 
showing its expression in each cell is generated, as well as a violin plot and a dot plot 
showing the expression profile in each cluster (Fig. 2).

In addition to the plots described above, Asc-Seurat also includes the option to gen-
erate “stacked-violin” plots to compare the expression distribution of multiple genes 
in distinct clusters (Fig. 3A). Moreover, dot plots comparing multiple genes can also 
be generated (Fig. 3B). To generate these plots, users only need to input the clustered 
dataset (as generated by Asc-Seurat) and select the order in which genes and clusters 
should be displayed in the y-axis and x-axis, respectively (Fig. 3).
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Trajectory inference module (dynverse): trajectory inference, visualization, 

and identification of genes governing the trajectory

Besides the analytical capabilities of the Seurat package, Asc-Seurat also allows the infer-
ence of developmental trajectories by taking advantage of dozens of TI models imple-
mented in the dynverse collection of R packages [6]. Users are encouraged to review 
Saelens et  al., 2019 [6] to compare the TI models. For this analysis, users provide the 
clustered dataset and select the model to be executed. Users can also provide the clusters 
expected to be at the beginning and end of the trajectory, according to the lineage expec-
tations for the cell population. Note that this information is optional for some models 
but required for others.

Users also need to visit the documentation of their model of choice to understand 
the required inputs and estimate the necessary computational resources and amount of 
time to execute the model in their datasets. Three trajectory representations are gener-
ated after executing the selected model, showing the distribution of cells in the inferred 

Fig. 2  Asc-Seurat iteratively generates supporting plots based on the Seurat package through the analysis 
steps. Several plots are generated in each step of the analysis, allowing quick interpretation and parameter 
tuning. A Violin plot showing the distribution of the cells on the loaded data, allowing the exclusion of 
low-quality cells. B Elbow plot generated to support the choice of the number of PCs to be used during 
clustering. C UMAP plot showing the distribution of cells and clusters. D Heatmap showing the averaged 
gene expression in each cluster, providing a quick overview and selection of genes for further visual 
exploration. E UMAP plot showing the expression profile of a gene at the cell level. F, G Violin and dot plot, 
respectively, showing the expression profile at the cluster level and facilitating the inter-cluster comparison
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trajectory according to the clustering (Fig. 4A). Alternatively, the cells can be colored by 
sample if an integrated dataset is used. Users can also select genes to create plots show-
ing their expression in the cells within the trajectory (Fig. 4B).

Inferred trajectories can be further analyzed to identify genes that are critical in defin-
ing their topology. Genes involved in regulating the transition among cell types or sub-
types within a trajectory are often of interest. Asc-Seurat allows users to search for such 
genes by deploying the dynfeature package [6] to classify the genes accordingly with 
their importance in defining the inferred trajectory. In addition, users can visualize the 
expression of selected genes within the trajectory as a heatmap showing the expression 
per cell following their order in the trajectory (Fig. 4C).

Gene annotation module: gathering gene annotation information and gene ontology (GO) 

enrichment analysis

After identifying genes of interest using the clustering and trajectory inference mod-
ules, users can obtain information about their function to interpret the data further 
and generate follow-up hypotheses. Asc-Seurat provides this capability to hundreds 
of species by deploying BioMart [18]. Using a list of genes as input, it is possi-
ble to recover their functional annotation from multiple databases, including Gene 

Fig. 3  Asc-Seurat enables the comparison of the expression profile of multiple genes by generating stacked 
violin plots (A) and multiple-genes dot plots (B). Both A and B show the expression profiles of three gene 
markers for each of the clusters 8, 5, 3, and 6
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Ontology (GO) terms [25]. The table containing the genes annotation can then be 
explored within the application or downloaded.

Users can also perform GO term enrichment analysis to identify over (or under) 
representation in a set of genes of interest compared to the expected frequency based 
on the annotation of a reference group of genes. For example, to investigate the cell 
type represented by a cluster, users can perform GO enrichment analysis to iden-
tify terms over-represented in the set of markers identified using Asc-Seurat for that 
cluster. This analysis is particularly interesting when a set of validated gene markers 
is not available in the literature to assign the cluster’s cell-type, and the information 
needs to be gathered from the dataset at hand. The list of enriched GO terms can be 

Fig. 4  Asc-Seurat provides options for visualization of gene expression profiles within the inferred 
trajectories. For each trajectory, three visualization plots are generated, facilitating its interpretation (A). Users 
can also visualize the expression profile of any gene of interest within the trajectories (B) or as a heatmap (C). 
In A and B, arrows indicate the direction of the trajectory. In C, at the bottom of the heatmap, the dashed 
lines connect the clusters (shown inside squares) according to different branches of the inferred trajectory
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downloaded, and a plot showing the most enriched terms in each category can be 
download as a high-resolution image.

For a step-by-step utilization guide refer to Asc-Seurat’s webpage [20].

Results
To demonstrate Asc-Seurat’s functionalities, we analyzed the publicly available 
10× Genomics’ 3k Peripheral Blood Mononuclear Cells (PBMC) dataset [26], showcas-
ing the analysis of an individual sample. In addition, we used a second PBMC dataset to 
demonstrate the analysis integrating multiple samples in Asc-Seurat. The second PBMC 
dataset was generated by Hang et al., 2018 [27] and distributed as part of the SeuratData 
package [28]. It contains two samples and approximately fourteen thousand cells. Both 
samples contain a pool of PBMC cells from eight patients. However, one sample was 
stimulated by treatment with IFN-β (Treatment) while the second sample is a control 
(Control). Moreover, we provide a detailed comparison among the available web applica-
tions. While these web applications partly overlap with Asc-Seurat’s capabilities, none to 
date comprises the range of essential tools available in Asc-Seurat.

Asc‑Seurat use case 1—analysis of an individual sample

Loading the data, quality control, data normalization and clustering

For analysis using Asc-Seurat, all scRNA-seq datasets should be stored in a subdirectory 
inside the directory data/, generated during the installation. Asc-Seurat’s interface will 
display compatible files stored within the data/ folder, from where the data of interest 
can be selected. Next, users can provide a name for the project and define the initial 
parameters to select cells to be loaded in the web application. For the 10×  Genom-
ics’ PBMC dataset, we selected only cells expressing at least 200 genes, and only genes 
expressed in three or more cells. These parameters are fully adjusteable in Asc-Seurat.

After loading the dataset, a violin plot shows the distribution of the number of 
expressed genes, the number of Unique Molecular Identifiers or independent transcript, 
and the percentage of mitochondrial genes detected in each cell (Additional file 1: Fig. 
S1). Users can then define more restrictive parameters to remove undesirable cells based 
on the observed distribution. For the PBMC dataset, we selected only cells expressing 
more than 250 and less than 2500 genes. We also excluded cells with more than 5% of 
transcripts from mitochondrial origin (Additional file 1: Fig. S1).

Subsequently, users select the normalization procedure to be applied to the dataset 
(log-normalization or SCTransform), as well as parameters for the dimension reduction 
using PCA. For the PBMC dataset, we performed the log normalization using a scale 
factor of 10000. Also, the dimension reduction by PCA was performed using the 2000 
most variable genes selected by the “vst” method. Default values sufficient for most of 
the datasets are provided. After executing the PCA, an elbow plot is generated to help 
users define how many principal components (PCs) should be used for clustering the 
data. For the PBMC dataset, we used the first 10 PCs (Additional file 1: Fig. S2).

Before executing the clustering step, it is necessary to inform the resolution param-
eter, which strongly influences the profile and number of clusters identified for a dataset. 
Selecting larger values will favor splitting cells into more clusters while selecting smaller 
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ones has the opposite effect. For the PBMC dataset, a resolution of 0.5 was selected, and 
nine clusters were identified (Additional file 1: Fig. S3).

Differential expression analysis and gene marker identification

Asc-Seurat provides an assortment of algorithms to identify gene markers for individual 
clusters or DEGs among clusters. As an example, we searched for gene markers for clus-
ter 3 of the PBMC dataset. When using the non-parametric Wilcoxon rank-sum test, 
filtering for genes expressed in at least 10% of the cells in the cluster, with a (log) fold 
change higher than 0.25 and an adjusted p value smaller than 0.05, 397 gene markers 
were identified (Additional file 1: Fig. S4).

Gene expression visualization

Asc-Seurat provides a variety of plots for gene expression visualization. From a list of 
selected genes, it is possible to visualize in a heatmap the averaged expression of each 
gene in each cluster (Fig. 2D) and, in a UMAP plot, the expression of the gene at the cell 
level (Fig. 2E). Moreover, violin plots (Fig. 2F) and dot plots (Fig. 2G) provide a tool for 
the visualization of the expression profile of each cluster, with emphasis on the inter-
cluster comparison. As an example, we generated a heatmap plot for the five most signif-
icant markers identified in cluster 3 (Additional file 1: Fig. S5) and show their expression 
profile at the cell level (Additional file 1: Fig. S6) and the cluster level (Additional file 1: 
Fig. S7).

Trajectory inference and identification of genes defining the trajectory

Identifying genes affecting the developmental trajectory is critical for understanding 
how cells differentiate from one type to another. Therefore, after exploring the clusters, 
users may want to identify the developmental trajectory between cells in different clus-
ters, subclusters, or states (i.e., cells responding to treatment). Moreover, it can be of 
interest to identify genes that vary in their expression within a trajectory.

To infer a developmental trajectory, users can either execute the capabilities of the 
embedded slingshot R package or select from dozens of models contained in dynverse. 
The choice of the model is important since some models are designed to perform well 
when the inferred trajectory follows a specific topology but perform poorly in others [6]. 
After executing the analysis, three plots showing different inferred trajectory representa-
tions are generated (Fig. 4A). For the PBMC dataset, a developmental trajectory contain-
ing three lineages was identified using the nine clusters as input (Additional file 1: Fig. 
S8).

After inferring the developmental trajectory, it is possible to visualize the expression 
of genes of interest in the cells within the trajectory. Asc-Seurat provides two options 
for the visualization of gene expression within the trajectory: (1) the visualization of 
the same three trajectories represented in Fig. 4A, but colored by the gene expression 
(Fig. 4B), and (2) a heatmap displaying the expression of genes in each cell, ordered by 
the cell position within the trajectory (Fig. 4C).

For the PBMC dataset, we opted to show the 50 most significant DEGs within the tra-
jectory, as ranked by their importance value estimated by dynverse (Additional file  1: 
Fig. S9). We selected three representative genes to show their expression using the three 
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approaches mentioned above; NKG7, expressed in cells at the beginning of the trajec-
tory; and LST1 and MS4A1, expressed in alternative branches in later parts of the trajec-
tory (Additional file 1: Fig. S10).

Recovering functional annotation information and GO enrichment analysis

In many instances, users are interested in obtaining more information about a gene, or 
a set of genes, to support the interpretation of the data and the development of new 
hypotheses. For example, Asc-Seurat produces lists of gene markers, DEGs, and DEGs 
within a trajectory that might be of particular interest. By providing the capacity of 
querying BioMart servers via the biomaRt package [19], Asc-Seurat allows recovering 
the functional annotation for genes of several species. Furthermore, GO term enrich-
ment analysis is also provided to verify if one or more GO terms are over-represented or 
under-represented in a set of selected genes.

As an example, we executed the GO term enrichment analysis for the set of 50 most 
important DEGs within the trajectory inferred for the PBMC dataset, according to dyn-
feature’s importance value, using all expressed genes as the universe (background) of the 
analysis. We identified two terms related to the immune system as significantly enriched 
(Additional file 1: Fig. S11).

Asc‑Seurat use case 2—analysis of multiple samples using the integration approach

Using Seurat’s integration approach, the analysis of multiple samples is, in many ways, 
similar to the analysis of an individual sample. Therefore, while mentioning all required 
steps, we will focus on the steps where the analysis of multiple samples diverges the most 
when using Asc-Seurat.

Data loading, quality control, normalization, and integration

For the integration of multiple samples, the steps of loading the data are different from 
when using a single sample. Users still need to add their datasets in the data/ directory, 
creating a subdirectory for each sample. However, users also need to provide a configu-
ration file containing the parameter values for each sample. An example of the config-
uration file is generated during the installation. We also provide the configuration file 
used to integrate the two samples from the PBMC IFN-β dataset in Additional file  1: 
Table S1. These parameters include the name of the sample and the values used in the 
quality control. Therefore, users need to explore each sample individually and define 
these parameters before starting the integration of the samples. Moreover, within Asc-
Seurat’s interface, users also need to select the normalization to be performed in the 
dataset and other parameters for the integration. The selected parameters for the PBMC 
IFN-β dataset are shown in Additional file 1: Fig. S12 and are extensively described in 
Asc-Seurat’s documentation.

Clustering, differential expression, and expression visualization

After the integration is completed, the analysis is similar to the described above for a 
single sample. A violin plot showing the distribution of cells is generated, and users can 
select more strict filtering parameters, then perform the PCA and clustering. For the 
PBMC IFN-β, we did not apply cell filtering after the integration. Next, 20 PCs and a 
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Table 1  Comparison of Asc-Seurat’s capabilities with the most relevant web applications currently 
available

Asc-
Seurat

NASQR 
[11]

SCiAp 
[13]

PIVOT 
[8]

SC1 [14] Stream 
[9]

alona 
[12]

ASAP 
[7]

BingleSeq 
[10]

Usability

Is it a 
web 
applica-
tion?

Yes Yes Yes (2) Yes Yes Yes Yes Yes Yes

Easy to 
install 
(Docker)?

Yes Yes No Yes No Yes No No No

Easy to 
use by 
wet-lab 
biolo-
gists?

Yes Yes Yes (3) Yes Yes Yes Yes Yes Yes

Clustering

Does the 
cluster-
ing?

Yes Yes Yes Yes Yes No Yes Yes Yes

Does the 
cluster-
ing using 
Seurat?

Yes Yes Yes No No No Yes Yes Yes

Is it 
capable 
of inte-
grating 
multiple 
samples?

Yes Yes (1) NA Yes Yes (7) No No NA No

Offers 
the 
SCtrans-
form 
normali-
zation?

Yes Yes No No No No No No No

Allows 
the filter-
ing of 
clusters 
of inter-
est?

Yes No Yes (4) No NA No No No No

High-
quality 
plots 
of the 
cluster-
ing and 
expres-
sion?

Yes Yes Yes Yes (6) Yes No Yes Yes Yes

Trajectory inference

Performs 
trajectory 
inference 
(TI)?

Yes No Yes Yes Yes Yes No No No

Offers 
multiple 
models 
for TI?

Yes No Yes No No No No No No
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resolution of 0.5 were used for clustering, and 15 clusters were identified (Additional 
file 1: Fig. S13 and Additional file 1: Fig. S14).

Two significant differences exist when searching for gene markers or DEGs using mul-
tiple samples. First, the search for gene markers identifies those that are also conserved 
among samples. Second, it is possible to identify DEGs between samples for each cluster. 
For example, we identified 182 DEGs between the treatment and control for cluster 7 
(Additional file 1: Fig. S15).

In terms of expression visualization, the main difference of using an integrated data-
set is that the UMAP plot showing the gene expression per cell is separated by sam-
ple, allowing a visual comparison between them. For example, we selected the five most 
DEGs that are more highly expressed in the treatment sample for cluster 7 (Additional 
file 1: Fig. S16 and Additional file 1: Fig. S17).

Trajectory inference and identification of genes defining the trajectory

For the trajectory inference, the analysis is conducted similarly for both an individual 
sample or an integrated dataset containing multiple samples. The only difference is that 
the user can indicate that the dataset contains multiple samples and, therefore, visualize 
the distribution of the cells within the trajectory colored by sample. The distribution of 
the cells of the PCMB IFN-β within the trajectory and colored by sample is shown in 
Additional file 1: Fig. S18.

NA (not available): the authors could not address this question with the information available in the manual, tutorials, or 
publications related to the web application. 1—It is not clear how the integration is performed, but it appears not to use 
Seurat’s integration approach. 2—It is based on the Galaxy framework. 3—Requires training in the Galaxy framework. 4—
Users need to provide the cell IDs manually for exclusion. 5—It is possible when using other Galaxy modules. 6—Does not 
provide UMAP, which has become the most used visualization method for scRNA-seq clustered data. 7—It is capable of 
analyzing multiple samples. However, it seems not to apply Seurat’s integration approach. 8—Available only for a limited set 
of model organisms

Table 1  (continued)

Asc-
Seurat

NASQR 
[11]

SCiAp 
[13]

PIVOT 
[8]

SC1 [14] Stream 
[9]

alona 
[12]

ASAP 
[7]

BingleSeq 
[10]

Differ-
ential 
Expres-
sion 
analysis 
within 
the tra-
jectory?

Yes No Yes Yes No Yes No No No

Expres-
sion visu-
alization 
within 
the tra-
jectory?

Yes No Yes Yes No Yes No No No

Annotation

Gene 
annota-
tion?

Yes Yes Yes (5) Yes Yes No No Yes Yes (8)

GO terms 
enrich-
ment

Yes Yes Yes (5) Yes Yes No No Yes No
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Conclusions
With the increasing usage of scRNA-seq to investigate the transcriptome, there is a criti-
cal need to generate tools that allow biologists to efficiently perform data analysis and 
interpretation. Here we described Asc-Seurat, a complete workbench for scRNA-seq 
with a rich and easy-to-use interface that can be used by all biologists, regardless of their 
computational expertise. In Table 1, we describe a comparison of Asc-Seurat’s capabili-
ties relative to the most relevant web applications currently available.
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