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Abstract 

Background:  Supervised classification methods have been used for many years for 
feature selection in metabolomics and other omics studies. We developed a novel 
primal-dual based classification method (PD-CR) that can perform classification with 
rejection and feature selection on high dimensional datasets. PD-CR projects data onto 
a low dimension space and performs classification by minimizing an appropriate quad‑
ratic cost. It simultaneously optimizes the selected features and the prediction accu‑
racy with a new tailored, constrained primal-dual method. The primal-dual framework 
is general enough to encompass various robust losses and to allow for convergence 
analysis. Here, we compare PD-CR to three commonly used methods: partial least 
squares discriminant analysis (PLS-DA), random forests and support vector machines 
(SVM). We analyzed two metabolomics datasets: one urinary metabolomics dataset 
concerning lung cancer patients and healthy controls; and a metabolomics dataset 
obtained from frozen glial tumor samples with mutated isocitrate dehydrogenase (IDH) 
or wild-type IDH.

Results:  PD-CR was more accurate than PLS-DA, Random Forests and SVM for clas‑
sification using the 2 metabolomics datasets. It also selected biologically relevant 
metabolites. PD-CR has the advantage of providing a confidence score for each 
prediction, which can be used to perform classification with rejection. This substantially 
reduces the False Discovery Rate.

Conclusion:  PD-CR is an accurate method for classification of metabolomics datasets 
which can outperform PLS-DA, Random Forests and SVM while selecting biologically 
relevant features. Furthermore the confidence score provided with PD-CR can be used 
to perform classification with rejection and reduce the false discovery rate.
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Introduction
Among the different omics fields, metabolomics is the most recent and provides new 
insights for a global study of biological systems. Metabolomics is a rapidly growing and 
promising field of research in biology and healthcare. Metabolomics approaches are 
based on the determination of the levels of different small molecules or metabolites in 
biological samples (tissue, cells, serum, urine...). Interestingly, ever since the early metab-
olomics studies, supervised classification methods have been used for the analysis of the 
related datasets. One of the initial aims of metabolomic studies was to establish useful 
biomarkers, indicative of specific physiological states or aberrations. The challenge now 
is to understand the mechanisms by which changes in the metabolome are implicated in 
different phenotypic outcomes in a complex systems biology approach [1, 2].

Most metabolomics studies generate complex multivariate datasets including varying 
correlations between features and systematic noise. Therefore, multivariate data analysis 
methods are needed to explore these datasets. One of the most frequently used methods 
for metabolomics analyses is Partial Least Squares-Discriminant Analysis (PLS-DA) [3, 
4].

PLS-DA is a chemometric technique used to optimize separation between different 
classes of samples, which is accomplished by linking two data matrices: X (raw metabo-
lomic data) and Y (class membership). It has the advantage of handling highly collinear 
and noisy data. Yet, it has some drawbacks and needs to be handled with caution. Indeed 
it has been reported that PLS-DA can: 1. Lead to over-fitting when the number of vari-
ables significantly exceeds the number of samples. Indeed, in this setting, the model 
is likely to lead to accurate classification by chance, based on irrelevant features [5]; 2. 
Have difficulties when few variables are responsible for the separation between two or 
more classes and, therefore, require a larger number of variables to achieve a good pre-
diction accuracy [6]; and finally, 3. Lead to an over-optimistic understanding of the sepa-
ration between two or more classes [7].

Continuous effort is being made to provide new statistical tools to tackle these 
drawbacks [8]. Some authors use Random Forests [9] as an alternative to PLS-DA for 
metabolomics studies [10]. Random Forests are based on the bagging algorithm and 
use an Ensemble Learning technique. Random Forests create a large number of deci-
sion trees and combine their outputs. Yet, Random Forests have significant drawbacks. 
For instance, they tend to over-fit when using noisy datasets. Furthermore, the main 
disadvantage of Random Forests is their complexity. Indeed, they are much harder 
and time-consuming to construct, require more computational resources and are less 
intuitive than decision trees. Furthermore this complexity significantly hampers their 
interpretability. Support Vector Machines (SVM) are another option [11, 12] but have 
similar drawbacks as Random Forests and are particularly consuming in computational 
resources.

Mathematics I3S partner has recently introduced a new tailored, constrained primal-dual 
method for supervised classification and feature selection [13]. This method has the signifi-
cant advantage of providing a trustworthy confidence index with each prediction, which we 
use to define a new classifier with rejection. This is particularly useful in the context of clini-
cal decision making as it diminishes the number of false positive and false negative results. 
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Moreover, we believe this method out-performs other methods in terms of accuracy and 
feature selection.

Although there are many machine learning methods for feature selection such as LASSO 
[14, 15], Discriminant analysis [16], Proximal methods [17, 18] and Boosting [19, 20], here 
we compare our novel Primal-Dual method for Classification with Rejection (PD-CR) 
to the state of the art PLS-DA and Random Forests and SVM classification methods fre-
quently used in metabolomics studies.

Methods
Mathematical background

Robust classification and regression using ℓ1 centers

Mathematically, classification problems can be described as follows:
Let X be the m× d data matrix made of m line samples x1, . . . , xm that belong to the 

d-dimensional space of features.
Let Y ∈ {0, 1}m×k be the matrix of labels where k ≥ 2 is the number of clusters. Each line 

of Y has exactly one nonzero element equal to one, yij = 1 indicating that the sample xi 
belongs to the j-th cluster. Projecting the data in lower dimension is crucial to be able to 
separate them accurately.

Let W be the d × k projection matrix, where k ≪ d . (Note that the dimension of the pro-
jection space is equal to the number of clusters.)

The goal of the supervised classification method is to find the best possible values for the 
projection matrix W.

Sparse learning based methods have received a lot of attention in the last decade because 
of their high level of performance. The basic idea is to use a sparse regularizer that forces 
some coefficients to be zero. To achieve feature selection, the Least Absolute Shrinkage and 
Selection Operator (LASSO) formulation [14, 21–25] adds an ℓ1 penalty term to the clas-
sification cost. An accurate criterion is based on the sum of the square difference (used in 
k-means [26]) and can be cast as follows:

where Cj ⊂ {1, . . . ,m} denotes the j-th class, and where the row vector µj is the cen-
troid of this class. Therefore, the matrix of centers µ is a square matrix of order k. It is 
well known that the Frobenius norm is sensitive to outliers. To address this, we have 
improved the approach by replacing the Frobenius norm by the ℓ1 norm of the loss term 
as follows:

where Cj ⊂ {1, . . . ,m} denotes the j-th cluster, and where µj := µ(j, :) is the j-th line of 
µ . In our method, we simultaneously optimize (W ,µ) , adding some ad hoc penalty to 
break homogeneity and avoid the trivial solution (W ,µ) = (0, 0).

(1)�Yµ− XW�2F =

k
∑

j=1

∑

l∈Cj

�(XW )(l, :)− µj�
2
2,

(2)�Yµ− XW�1 =

k
∑

j=1

∑

l∈Cj

�(XW )(l, :)− µj�1.
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Using both the projection W and the centers µ learnt during the training step, a new 
query x in the test set (a dimension d row vector) is classified according to the following 
rule: it belongs to the cluster number j∗ if and only if

Primal‑dual scheme, constrained formulation

To handle features with a high correlation, we consider a convex constrained supervised 
classification problem. However the drawback of the term �Yµ− XW�1 is that it enforces 
equality of the two matrices out of a sparse set: hence it tunes the parameters to enforce a 
perfect matching of the training data. We replace the 1-norm with the robust “Huber func-
tion” [13]. If hδ(t) = t2/(2δ) for |t| ≤ δ and |t| − δ/2 for |t| ≥ δ.

We obtain the following criterion

We can tune a primal-dual method to solve this problem with Algorithm 1 (See [13] and 
[27] for details) 

Algorithm 1 Primal-dual algorithm, constrained case—proj(V, η) is the projection on
the �1 ball of radius η
1: Input: X,Y,N, σ, τ, τµ, η, δ, ρ, µ0,W0, Z0
2: for n = 1, . . . , N do
3: Wold := W
4: µold := µ
5: W := W + τ · (XTZ)
6: W := proj(W, η)
7: µ := 1

1+τµ·ρ (µold + ρ · τµIk − τµ · (Y TZ))

8: Z := 1
1+σ·δ (Z + σ · (Y (2µ− µold)−X(2W −Wold))))

9: Z := max(−1,min(1, Z)))
10: end for
11: Output: W,µ

Classification with rejection using a confidence Score for the Prediction (CSP)

False positive (FP) and false negative (FN) results are an important issue for diagnostic tools 
in medicine. One way to diminish the number of FP and FN results is to use classification 
with rejection [19, 28] for which classifiers are allowed to report “I don’t know”. This type 
of classification enables the incorporation of doubt in the results if the observation x is too 
hard to classify. Here, we propose to use a confidence score for the prediction (CSP) to 
devise a classifier with rejection.

In our analysis we only had two clusters with centers µ1 and µ2 Lets recall that the pre-
dicted label j∗ of a sample x is given by

(3)j∗ ∈ arg min
j=1,...,k

�µj − xW�1.

(4)min
(W ,µ)

hδ(Yµ− XW )+
ρ

2
�Ik − µ�2F s.t. �W�1 ≤ η.

(5)j∗ ∈ arg min
j=1,...,2

�µj − xW�1.
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We can compute the distances of sample x to the two centroids, respectively. 
d1 = �µ1 − xW�1 and d2 = �µ2 − xW�1 and we propose a confidence indicator for 
sample x as follows:

Thus, the CSP ρ(x) is a value ranging from -1 to 1. The closer the CSP ρ(x) is to +1 or -1 
depending on the predicted class, the higher the confidence for the prediction will be.

Thus if ǫ is a given threshold parameter, we can perform classification with rejection by 
rejecting binary classification for samples with an absolute value of CSP ρ(x) under this 
threshold. The labels will then be predicted as follows:

We can then study the False Discovery Rate (FDR) FDR = FP + FN  as a function of 
parameter ǫ.

Comparison to PLS‑DA, Random Forests and SVM using 2 datasets
To compare PD-CR to the standard PLS-DA, Random Forests and SVM classification 
methods in terms of accuracy and feature selection, we tested the four methods on two 
metabolomic datasets named “BRAIN” and “LUNG”. Accuracies and feature selection 
for each method were obtained using 4 fold-cross validation with varying random seeds. 
We also provide the results with a a new version of PD-CR minimizing the ℓ2 norm 
PD-CR ℓ2 (See Algorithm 6 https : //arxiv.org/pdf/1902.01600.pdf).

LUNG dataset

The LUNG dataset was provided by Mathe et  al. This dataset includes metabolomics 
data concerning urine samples from 469 Non-Small Cell Lung Cancer (NSCLC) patients 
prior to treatment and 536 controls collected from 1998 to 2007 in seven hospitals and 
in the Department of Motor Vehicles (DMV) from the greater Baltimore, Maryland area. 
Urine samples were analyzed using an unbiased metabolomics LC-MS/MS approach. 
This dataset is available from the MetaboLights database (study identifier MTBLS28)

Mathe et al. used Random Forests to classify patients as lung cancer patients or con-
trols [10]. The aim was to create a new screening test for lung cancer, based on metabo-
lomics data from urine. Lung cancer is one of the most common cancers and it is well 
established that early diagnosis is essential for treatment. An efficient screening method 
based on urinary metabolomics would be of great benefit.

BRAIN dataset

The BRAIN dataset was obtained from a metabolomic study performed by our biologi-
cal team (TIRO) on frozen samples of glial tumors. The samples were provided by the 
university hospitals of Nice and Montpellier (France). Metabolite extracts were prepared 
and analyzed in the TIRO laboratory (Nice, France). With this dataset, the goal was to 
create a model that accurately discriminated between mutated isocitrate dehydrogenase 

(6)ρ(x) =
d1 − d2

d1 + d2

(7)Label =







−1 if ρ(x) < −ǫ

0 if − ǫ < ρ(x) < ǫ

1 if ρ(x) > ǫ
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(IDH) and IDH wild-type glial tumors. This mutation is a key component of the World 
Health Organization classification of glial tumors [29]. The mutational status is usually 
assessed by IDH1 (R132H)-specific (H09) immunohistochemistry. Yet this technique 
can lead to False-Negative results [30], which can only be identified by sequencing. An 
accurate metabolomic based test, able to assess the IDH mutational status, could be a 
promising solution to this problem.

These samples were retrospectively collected from two declared biobanks from the 
Central Pathology Laboratory of the Hospital of Nice and from the Center of Biologi-
cal Resources of Montpellier (Plateforme CRB-CHUM). Consent or non-opposition 
was verified for every participant. For every participant, the IDH mutational status was 
assessed using immunohistochemistry and pyrosequencing for immunonegative cases.

Samples of brain tumors were analyzed using Liquid Chromatography coupled to tan-
dem Mass Spectrometry (LC-MS/MS) in an unbiased metabolomics approach, as per-
formed in a previous metabolomics study [xxx].

The details of the analysis are available in Additional file 1.

Data Filtering and Pre‑processing

Our laboratory performed the LC-MS/MS analysis for the BRAIN dataset. Therefore, 
we could apply different levels of filtering on this dataset. After processing of the raw 
data using MZmine 2.39 software, two types of filtering were applied to the BRAIN 
dataset, minimal and maximal filtering. The minimal filtering only removed metabolites 
for which a spike was detected in less than 10 percent of the samples. The maximal fil-
tering removed all unidentified metabolites as well as metabolites that did not have an 
isotopic pattern. This filtering method is frequently used for metabolomic studies and 
diminishes the number of noisy features in the dataset. Furthermore, it diminishes the 
time necessary for data processing because it diminishes the data volume. Unfortunately, 
any filtering will necessarily come with a high risk of removing some relevant features 
which is also the case with this filtering method. Using the two BRAIN datasets, we 
aimed to assess how the filtering affected the results of the different classification meth-
ods. The LUNG dataset was used as it was published, without additional normalization 
or filtering.

Comparison to other methods

Before comparison, the data were pre-processed as follows: 
	(i)	 Log-transformation for the following benefits: Reducing heteroscedasticity and 

thus the bias on regression and transforming multiplicative noise into additive 
noise,

	(ii)	 Mean centering and scaling [31].

PD-CR [13] was compared to PLS-DA [32], Random Forests (with 100 and 400 trees) [9] 
and SVM using the sklearn python package.

Additionally, we evaluated the impact of the use of the Huber loss in PD-CR compared 
to the use of the ℓ2 loss.

Parameters σ , τ , δ and ρ were set according to results obtained using various datasets 
in an initial step [13] and were not further tuned. Parameter η , which affects the feature 
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selection step was manually tuned to fit the number of features in the datasets and to 
maximize accuracy after cross validation.

We computed the accuracy of the 4 classification methods for the two metabolomics 
datasets using 4-fold cross-validation (Script “PD-CR vs PLS-DA, RF and SVM” on 
https://​github.​com/​tirol​ab/​PD-​CR). The selected metabolites were analyzed and com-
pared between methods for the metabolomics datasets.

For PD-CR, we plotted the histograms of the CSP ρ(x) and the probability distribution 
function (PDF) as well as the False Discovery Rate (FDR =(FP+FN)/total) and the rate 
of rejected samples (RRS = rejected samples/total samples) depending on epsilon (the 
CSP threshold) (Script “rhoComputing” on https://​github.​com/​tirol​ab/​PD-​CR).

Results
The characteristics of the two metabolomics datasets are presented in Table 1.

The LUNG dataset included a large number of patients (a little over 1,000) with an 
equivalent number of features (a little under 3,000) and the BRAIN dataset included a 
smaller number of patients (88) with a much higher number of features. While obtain-
ing metabolomics data concerning as many patients as there are in the LUNG dataset 
is remarkable, the number of patients in the BRAIN dataset is closer to the number of 
patients in most metabolomics studies.

LUNG

As shown in Table 2, PD-CR outperformed PD-CR ℓ2 , PLS-DA, Random Forests (400 
trees) and SVM by 1.1% , 2.8% , 7% and 3.1% respectively.

Even though an accuracy of 79.44% may be high enough to consider using our 
PD-CR method and urinary metabolomics for the screening of lung cancer, Fig.  1 
shows that the accuracy may be even higher if the CSP is taken into account and 
if it is used to perform classification with rejection. Indeed, in Fig.  1 the top left 
shows the histogram of the CSP and the top right the kernel probability distribu-
tion function (PDF). We can see that healthy controls and cancer patients are pre-
dicted with an equally high confidence. On the bottom left the False Discovery 

Table 1  Overview of the datasets

Dataset No. of samples No. of features Sample type

LUNG 1005 2944 Urine

BRAIN 88 25,286 Glial tumor tissue

Table 2  LUNG dataset: mean accuracy using 3 seeds and 4-fold cross validation: comparison with 
PLS-DA, Random forest and Best SVM

LUNG PD-CR PD-CR ℓ2 PLS-DA RF (100 trees) RF (400 trees) SVM

Accuracy % 79.44 78.3 76.56 71.31 72.44 76.25

AUC​ 79.97 −  74.05 73.38 74.50 76.64

Time (s) 0.11 0.11 0.09 0.89 3.47 85.6

https://github.com/tirolab/PD-CR
https://github.com/tirolab/PD-CR
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Rate ( FDR = (FP + FN )/total samples ) decreases as the confidence score thresh-
old increases, but as shown in the bottom right, the rate of rejected samples 
( RRS = rejected samples/total samples ) increases.

As shown in Table 3, PD-CR selected “MZ 264.1215224” for a molecular ion at m/z 
264.1215224 and “MZ 308.0984878” for a molecular ion at m/z 308.0984878 as the 
top two features.

These features “MZ 264.1215224” and “MZ 308.0984878” most likely correspond 
to creatine riboside (expected m/z value in the positive mode: 264.1190; mass error: 
10 ppm) and N-acetylneuraminic acid (expected m/z value in the negative mode: 
308.0987; mass error: 1 ppm), respectively. These two metabolites were described by 
Mathé et al. [10] as the two most important metabolites to discriminate between lung 

Fig. 1  Distribution of the confidence score for the prediction (CSP) on the Lung dataset and impact of using 
CSP for classification with rejection on the false discovery rate (FDR). From Left to right and top to bottom: 
Histogram of the CSP, Kernel density estimation; FDR as a function of CSP after classification with rejection, 
rate of rejected samples as a function of CSP after classification with rejection. As expected for a pertinent 
confidence score, the FDR diminishes when using a higher CSP threshold for classification with rejection

Table 3  Top 10 features selected by random forests, PLS-DA, PD-CR and SVM in the LUNG dataset

RF PLS-DA PD-CR SVM

MZ 264.1215224 MZ 264.1215224 MZ 264.1215224 MZ 264.1215224

MZ 656.2017529 MZ 126.9069343 MZ 308.0984878 MZ 308.0984878

MZ 441.1613664 MZ 170.0605916 MZ 126.9069343 MZ 247.0970455

MZ 584.2670695 MZ 613.3595637 MZ 613.3595637 MZ 613.3595637

MZ 247.0970455 MZ 243.1004849 MZ 243.1004849 MZ 615.0353192

MZ 486.2571336 MZ 486.2571336 MZ 247.0970455 MZ 372.9232556

MZ 308.0984878 MZ 308.0984878 MZ 332.0963401 MZ 441.1613664

MZ 204.1345526 MZ 561.3432022 MZ 441.1613664 MZ 370.0525988

MZ 247.1384435 MZ 94.06574518 MZ 94.06574518 MZ 423.0084949

MZ 447.10803 MZ 269.1280232 MZ 561.3432022 MZ 332.0963401
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cancer patients and healthy individuals using Random Forests on metabolomic data 
from urine samples. Indeed, these two metabolites were significantly higher in the 
urines of lung cancer patients, as shown in Fig. 2.

BRAIN

Minimally filtered dataset

As shown in Table 4, PD-CR outperformed PD-CR ℓ2 , PLS-DA, Random Forests (400 
trees) and SVM by 1.1% , 7.7% , 2.7% and 4.3% , respectively for the BRAIN dataset. For 
this high dimensional dataset, the number of features (25,286) significantly exceeded the 
number of samples (88) giving a significant drop in the PLS-DA accuracy.

Furthermore, as shown in Fig. 3 the accuracy obtained with PD-CR could be further 
improved by using the CSP to perform classification with rejection. Indeed, most of the 
samples were classified with a high CSP and if we apply a CSP threshold ǫ of 0.45, the 
FDR drops to 0 while only rejecting 10% of the samples. This shows that all the miss-
classified samples had a low CSP.

As shown in Table  5, most of the top features selected with the 3 methods cor-
respond to different isotopes and adducts of 2-hydroxyglutarate. Indeed, POS_
MZ131.0342, POS_MZ132.0375 and POS_MZ133.0384 all correspond to the 

Fig. 2  Boxplots concerning relative abundances of features MZ 264.1215224 and MZ 308.0984878 of the 
LUNG dataset, most likely corresponding to creatine riboside and N-acetylneuraminic acid respectively. Fold 
changes: 2.57 and 1.43 respectively. Label 1 indicates urine samples of patients without lung cancer. Label 2 
indicates urine samples of patients with lung cancer

Table 4  BRAIN dataset Accuracy using 3 seeds and 4-fold cross validation: comparison with PLS-DA, 
Random Forest and best SVM

BRAIN PD-CR PD-CR ℓ2 PLS-DA RF (100 trees) RF (400 trees) SVM

Accuracy % 92.04 90.9 84.09 88.63 89.39 87.78

AUC​ 92.08 – 84.33 88.70 89.02 88.53
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[M+H-H2O adduct]+ of 2-hydroxyglutarate with C12, and two C13 isotopes respec-
tively. NEG_MZ147.0288, NEG_MZ148.0321 and NEG_MZ149.0329 correspond to 
the [M-H]- adduct with C12, and two C13 isotopes respectively. POS_MZ166.0713 
corresponds to a [M+NH4]+ adduct. POS_MZ171.02645 corresponds to the 
[M+Na]+ adduct. POS_MZ243.9903 had the same retention time and chromato-
graphic profile as POS_MZ131.0342, suggesting that it was an unknown fragment or 
adduct of 2-hydroxyglutarate.

2-Hydroxyglutarate is a well-known oncometabolite produced in high quantities by 
mutated IDH1/2 in gliomas [33]. It is therefore expected that this compound will have 
a high weight when classifying mutated vs wild-type gliomas as it should be signifi-
cantly increased in IDH mutated gliomas (as shown in Fig. 4).

Fig. 3  Distribution of the confidence score for the prediction (CSP) on the BRAIN dataset and impact of using 
CSP for classification with rejection on the false discovery rate (FDR). From left to right and top to bottom: 
Histogram of the CSP, Kernel density estimation; FDR as a function of CSP after classification with rejection, 
rate of rejected samples as a function of CSP after classification with rejection. As expected for a pertinent 
confidence score, the FDR diminishes when using a higher CSP threshold for classification with rejection

Table 5  Top 10 features selected by random forests, PLS-DA, PD-CR and SVM on the BRAIN dataset 
with 25,286 features

Random forests PLS-DA PD-CR SVM

NEG_MZ147.0867 POS_MZ131.0342 POS_MZ131.0342 POS_MZ131.0342

POS_MZ133.0384 POS_MZ132.0375 POS_MZ132.0375 POS_MZ132.0375

POS_MZ166.0713 POS_MZ166.0713 POS_MZ243.9903 POS_MZ166.0713

POS_MZ228.0182 NEG_MZ147.0288 POS_MZ166.0712 NEG_MZ147.0288

POS_MZ132.5234 NEG_MZ148.0321 NEG_MZ147.0288 NEG_MZ148.0321

POS_MZ173.0306 NEG_MZ149.0329 NEG_MZ148.0321 POS_MZ171.0265

POS_MZ219.0082 POS_MZ171.0265 POS_MZ123.5181 POS_MZ132.0375

NEG_MZ215.0168 POS_MZ132.0375 POS_MZ171.0265 POS_MZ247.9616

POS_MZ171.0265 POS_MZ243.9903 NEG_MZ149.0329 POS_MZ243.9903

POS_MZ319.0510 POS_MZ123.5181 POS_MZ133.0384 NEG_MZ149.0329
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Here all four methods selected this important feature among a high dimensional data-
set (25,287 features in this case). Adducts and isotopes of 2-hydroxyglutarate with low 
levels are top selected features using PD-CR indicating that our method is a very sensi-
tive way to identify significant molecules. This result on the minimally filtered dataset 
also suggest that PC-CR avoids overfiting as no unexpected feature was selected.

Comparison to the highly filtered dataset

As shown in Table 6 the accuracies of the different methods were equivalent and very 
high when using the highly filtered version of the BRAIN dataset (accuracy being a little 
lower with SVM).

When PD-CR was used on the highly filtered BRAIN dataset, it lead to similar results 
as with PD-CR using an ℓ2 loss, PLS-DA, Random Forests and SVM. In contrast, it out-
performed these methods when using the minimally filtered dataset. In this case, as 
shown in Table 7 more features were selected. When using the BRAIN dataset for the 

Fig. 4  Boxplots concerning relative abundances of features POS_131.0342, POS_132.0375 POS_243.9903 and 
POS_166.0712 of the BRAIN dataset, most likely corresponding to different adducts of 2-Hydroxyglutarate. 
Fold changes: 32.9, 35.6, 14.6 and 33.7 respectively. Label 1: samples of tumors with wild type IDH, Label 2: 
samples of tumors with mutated IDH

Table 6  Mean accuracy using 4-fold cross validation with 3 different seeds: comparison of methods 
on the BRAIN highly filtered  data set

PD-CR PD-CR ℓ2 PLS-DA Random Forests SVM

Accuracy % 94.31 92.8 93.18 92.04 89.20

Table 7  Top 10 features selected by PD-CR in the highly and minimally filtered versions of the 
BRAIN dataset

Identified (495 features) Large (25,287 features)

POS_M131.0342 POS_MZ131.0342

NEG_M147.02882 POS_MZ132.0375

POS_M85.0291 POS_MZ243.9903

POS_M149.0450 POS_MZ166.0713

NEG_M112.0220 NEG_MZ147.0288

POS_M154.0864 NEG_MZ148.0320

NEG_M171.0847 POS_MZ123.518

NEG_M320.0627 POS_MZ171.0265

POS_M113.0350 NEG_MZ149.0329

POS_M147.1170 POS_MZ133.0384
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IDH-mutated vs wild-type classes, most of these additional features were adducts of 
2-hydroxyglutarate and are therefore known to be biologically relevant. The additional 
features that are not adducts of 2-hydroxyglutarate will be investigated in a future study.

Discussion
Machine learning methods are of particular interest for metabolomics studies and are 
being used increasingly for other omics studies. Herein we introduce a new primal-dual 
method for supervised classification and feature selection. To our knowledge, a primal-
dual method had never been used in this way. We compare this method to three of the 
most frequently used methods: PLS-DA, Random Forests and SVM, on two metabo-
lomics datasets. Metabolomics datasets tend to be sparse datasets including highly 
correlated features. PD-CR is particularly suited for this data structure. Hence, for 
metabolomics, PD-CR appears to be more accurate than the three other methods while 
selecting biologically relevant features and providing a confidence score for each predic-
tion. An important upside associated with the inclusion of a confidence score for each 
prediction is that it enables classification with rejection.

We believe that this confidence score is of great value, particularly for applications in 
medicine. Metabolomics approaches are of particular interest for medical applications. 
Indeed, they could be used in routine clinical practice as they are relatively inexpensive 
and can be performed rapidly compared to proteomics, transcriptomics or genomics 
analyses. More and more studies suggest that metabolomics associated to classification 
methods are very promising tools for individual personalized medicine [10, 34]. To use 
metabolomics in routine clinical practice it is paramount to obtain robust, rapid and 
trustworthy predictions. The confidence score provided with PD-CR adds considerable 
value to the prediction as it includes a metric that is implicitly used by every physician 
when they make a medical decision: the probability to make the wrong choice. So far, 
one of the main obstacles to the use of machine learning in medicine resides in the fact 
that it is harder to trust the decision of a machine learning method than that of a physi-
cian when it comes to health issues. We believe that providing a confidence score asso-
ciated to the decision would make these new tools more convincing if used in routine 
clinical practice. Furthermore, this confidence score can be used to perform classifica-
tion with rejection and reduce the false discovery rate.

Furthermore, this confidence score could be extended to more than 2 classes as fol-
lows: We can compute the distances of sample x to all the centroids, respectively. 
d1 = �µi − xW�1 and we propose a confidence indicator for sample x as follows:

Thus, the CSP ρ(x) is a value ranging from 0 to 1. The closer the CSP ρ(x) is to +1 for a 
predicted class, the higher the confidence will be.

We have shown that PD-CR outperformed the common PLS-DA, Random Forests and 
SVM methods on both LUNG and BRAIN datasets. We believe that this is partly due 
to the fact that PD-CR uses a Huber loss. Indeed, the use of the Huber loss with PD-CR 
leads to a better accuracy than the use of a common ℓ1 or ℓ2 loss [13]. Note that the l1 
loss is not derivable in zero. Moreover the drawback of the term �Yµ− XW�1 of the l1 

(8)ρ(x) = 1− k
Min(d1, d2..., dk)

d1 + d2 + ...dk
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loss is that it enforces equality of the two matrices out of a sparse set. Moreover the use 
of the Huber loss reduces the impact of the presence of outliers in the training set, and 
therefore leads to a better accuracy than the ℓ2 loss, as shown in Tables 2 and 4.

Furthermore we show in Tables 2 and 4 that using PD-CR with an ℓ2 loss provides bet-
ter results than PLSDA which uses the same ℓ2 loss. This is probably due to the fact that 
PLS-DA does not perform feature selection and is known to be prone to overfitting [5].

Moreover, when comparing methods with the minimally filtered and the more fil-
tered versions of the BRAIN dataset, all methods suffered a decrease in accuracy with 
the minimally filtered dataset (PD-CR keeping the higher accuracy). However the 
results obtained using the PLS-DA method appeared to be more impacted than those 
of the Random Forests, SVM and PD-CR. Indeed, the accuracy of PLS-DA significantly 
decreased when the less filtered dataset was used dropping from 93.18% to 84.09%, com-
pared to a mild decrease in accuracy for the other methods. This can also be explained 
by the fact that PLS-DA does not perform feature selection and is known to be prone 
to overfitting [5]. For this reason, several strategies are commonly used to reduce the 
number of features in metabolomics datasets. Features can be filtered according to the 
number of detected peaks in all samples, the correct identification of the compound 
(using the most common adduct) or the presence of isotopes. Working with filtered 
data has some advantages, including the fact that it appears more biologically relevant 
to work on less noisy and more reliable data. However, filtering also has some important 
drawbacks, the most important being the high risk of removing interesting metabolites 
from the dataset. In the case of the BRAIN dataset, 2-Hydroxyglutarate is a well known 
metabolite associated to IDH mutation. However, in many metabolomic studies, the 
goal is to discover potentially unidentified metabolites associated to particular condi-
tions which can only be achieved by including unidentified metabolites. As shown in this 
work, PD-CR can be applied to both minimally filtered and highly filtered metabolomics 
datasets.

As it has been previously reported, when designing prediction models, some meth-
ods may lead to a more accurate model for a specific dataset while others may be more 
adapted with other datasets [35]. Indeed, even though we can discuss which machine 
learning method is the best, most often, researchers try out several machine learning 
methods on their metabolomics datasets and report the results of the most accurate 
one. This process has even been automated by some authors [36]. PD-CR is an advanced 
method, based on recent development in convex optimization and we believe it should 
be considered by researchers when designing prediction models for metabolomics 
studies.

Much like the commonly used methods PLS-DA, Random Forests and SVMs, avail-
able with [37], our python implementation of PD-CR only requires the tuning of one 
parameter: η . This makes the use of PD-CR quite simple, even for non machine learning 
experts, much like PLS-DA. Note that the tuning of the η parameter must be done care-
fully since it modifies feature selection.

When comparing misclassified patients between methods in an additional analysis, it 
appeared that in the minimally filtered BRAIN dataset 16/88 tumors were misclassified 
with at least one method. 2 tumors were misclassified with all methods, 6 with two or 
three methods and 8 with only one method (3 were misclassfified only with PLS-DA, 
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4 with Random Forests, 1 with SVM and none with PD-CR). In the LUNG dataset 
702/1005 patients were misclassified with at least one method. 68 patients were misclas-
sified with all methods, 240 with two or three methods and 394 with only one method 
(15 were misclassfified only with PLS-DA, 63 with Random Forests, 305 with SVM and 
11 with PD-CR). It therefore appears that PD-CR is the method with the smallest num-
ber of false discoveries.

While prior metabolomic studies did not necessarily focus on validating which fea-
tures the prediction models relied on, it is now admitted that to be trustworthy a model 
must be based on biologically relevant features and must therefore be interpretable [38]. 
Indeed, interpretability of machine learning methods [39] is crucial to assess if selected 
features are biologically relevant. PD-CR offers a straightforward, reliable metric based 
on the weights of each feature in the model (matrix W).

Conversely, non-linear methods such as Random Forests or non-linear SVM and the 
linear methods PLS-DA and linear SVM are usually associated to method-specific met-
rics which makes it difficult to compare features between methods. For Random Forests, 
the Mean Decrease Impurity (MDI) is usually the default metric for variable importance 
[40]. It is computed as a mean of the individual trees’ improvement in the splitting crite-
rion produced by each variable. For PLS-DA, the Variable Importance for the Projection 
(VIP) score is often used. The VIP score is computed by summing the contributions VIN 
(variable influence) over all model dimensions. For a given PLS dimension a, (VIN )2ak is a 
function of the squared PLS weight w2

ak [41].
While these metrics offer some insight into the importance of each metabolite in the 

model these are indirect metrics whereas the weights provided with PD-CR represent 
the direct quantitative measure of the importance of each feature in the model, very 
close to regression parameters and can thus directly be used to classify a new sample.

Furthermore, relevant feature selection is necessary for a correct understanding of 
the biological mechanisms underlying classification. It is well established that when 
expressed, mutant IDH 1/2 reduces 2-oxo-glutarate to 2-hydroxyglutarate [42]. It was 
therefore expected for 2-hydroxyglutarate to be a feature of importance as was the case 
when using PD-CR on the BRAIN dataset for the classification of IDH-mutated vs wild-
type gliomas. As the biologically relevant features are known in advance, the BRAIN 
dataset is a good testing set for this new method. Furthermore, as we described, the fea-
tures selected with PD-CR in the LUNG dataset are identical to the ones described by 
Mathé et  al. in their original study, which also validates the accurate feature selection 
performed by PD-CR.

Conclusion
Herein we propose a recently introduced primal-dual method (PD-CR) for feature selec-
tion and classification with rejection. To our knowledge, the primal-dual method has 
never been used in such fashion. PD-CR includes a sparse regularization factor which 
is particularly appropriate for high dimensional sparse datasets such as metabolomics 
datasets.

We highlight the two main results. First, PD-CR is more accurate than PLS-DA, 
Random Forests and SVM and leads to the selection of biologically relevant features. 
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Second, our method provides a confidence score for each prediction and allows classifi-
cation with rejection, which can help reduce false discovery rates.
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