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Background
Currently, the National Center for Biotechnology Information’s (NCBI) GenBank [1] 
hosts 7978 eukaryotic genomes, with 3,208 of these genomes lacking an annotation of 
protein-coding genes. Notably, 746 genome annotations out of existing 4770 ones were 
generated by NCBI [2, 3]. The original authors frequently omit an annotation step and 
many publicly available genomes remain not annotated. Furthermore, re-annotation 
may be in order for many of the annotated genomes as more related sequence data 
has become available, or annotation methods have been improved since their initial 
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application. Thus, there is a need for accurate automated annotation methods that use 
all available data and are easily accessible to bioinformatics teams.

The most useful data to support accurate genome annotation are transcriptomic 
sequence data, e.g. RNA-sequencing (RNA-seq) data, from the same species and protein 
sequences from species that are sufficiently closely related to the target species in the 
tree of life. RNA-seq reads spliced aligned to a genomic region are used to infer likely 
intron intervals [4] in protein-coding genes. In a similar way, likely exon and intron 
boundaries can be inferred using homologous proteins because segments of gene struc-
tures are often highly conserved [5]. Protein evidence has the advantage that it maps 
only to protein-coding genes, but with the downside that it depends on the degree of 
sequence conservation, which may differ between genes and available species. In con-
trast, RNA-seq is usually obtained from the same species and then, free of this depend-
ency, covers only genes and spliced isoforms that are expressed in a sample. However, 
RNA-seq could be generated from non-coding genes; sequencing errors may render 
accurate alignments difficult. Ever-increasing throughput has resulted in large databases 
of RNA-seq. For example, the NCBI Sequence Read Archive (SRA) [6] hosts more than 
36 petabytes of data, while the protein database OrthoDB [7] contains more than 37 mil-
lion sequences.

Genome annotation methods that use statistical models of gene structures such as 
splice site patterns in addition to the evidence from RNA-seq and homology, are argu-
ably best suited for whole-genome annotation [8]. BRAKER, a popular pipeline of com-
petitive accuracy [9], has two modes of a genome annotation process supported by 
extrinsic evidence. BRAKER1 uses GeneMark-ET [10–12] together with AUGUSTUS 
[13–17] and relies on RNA-seq data to support gene finder training and accurate predic-
tion of gene structures. BRAKER2 [18] exploits spliced alignments of homologous pro-
teins as a source of extrinsic evidence for genome annotation with GeneMark-EP+ [19] 
and AUGUSTUS.

When heterogeneous extrinsic evidence sources are available, some genome annota-
tion tools like MAKER2 [20] and GeMoMa [21] integrate these different sources directly 
into the annotation protocol. Some, like the recent FINDER [22], perform protein-
spliced alignments only with proteins that are mapped to genes missed by RNA-seq-
based methods. On the other hand, FINDER does not use RNA-seq evidence to assess 
or compare homology-based gene models. A different approach is to first generate mul-
tiple whole-genome annotations and then to use a combiner tool that takes various gene 
predictions as input with diverse sources of extrinsic evidence and constructs a genome 
annotation that is on average more accurate than any input genome annotation. Some 
previously developed combiner tools built their own gene structure model in the form 
of a graph and report a gene structure either based on the consensus of all available data, 
e.g. IPred [23], or as the result of a machine learning procedure such as most likely parse 
of an HMM, e.g. Combiner [24], JIGSAW [25], Evigan [26], ExonHunter [27]. A promi-
nent combiner tool is the openly accessible EVidenceModeler (EVM) [28]. It uses a 
weighted consensus from all available evidence sources to predict a gene structure. EVM 
was successfully used to produce several high-quality annotations of novel genomes [29, 
30].
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In our approach, we first generate several sets of whole-genome gene predictions based 
on a single type of extrinsic evidence (i.e. by BRAKER1 and BRAKER2). We use a new 
combiner tool that scores and ranks these predictions (transcripts) based on heteroge-
neous evidence. Then, we select those with higher rank into a newly constructed genome 
annotation which is on average more accurate than any whole-genome annotation pro-
vided in the input. Up to now, the BRAKER suite has so far not been able to achieve 
a prediction accuracy that is reliably superior to either single-source evidence mode 
when using RNA-seq and proteins simultaneously [31, 32]. Nevertheless, BRAKER users 
often have both types of extrinsic data available for a target genome. Incidentally, most 
of the previously mentioned combiner tools are either not publicly available anymore, 
lack support, or are very difficult to use for combining BRAKER1 and BRAKER2 pre-
dictions. Therefore, we present Transcript Selector for BRAKER (TSEBRA), a fast soft-
ware tool for selecting gene predictions from the output of two branches of the BRAKER 
eukaryotic gene prediction suite based on all the heterogeneous extrinsic evidence. TSE-
BRA achieves high accuracy and is easy to use. We show that it delivers a significant 
increase in accuracy with respect to the input annotations generated by BRAKER1 and 
BRAKER2.

Implementation
TSEBRA uses a set of arbitrarily many gene prediction files in GTF format together with 
a set of files of heterogeneous extrinsic evidence to produce a combined output. From 
the whole set of transcripts contained in the gene predictions, TSEBRA must select 
those that are more reliably supported by a full complement of extrinsic evidence; these 
transcripts constitute the output. Less reliably supported transcripts are filtered out. The 
rational of TSEBRA’s approach is as follows. Taking a union of gene predictions gener-
ated by two or more gene finding tools makes a set of predictions with improved sen-
sitivity but with lower specificity. A non-trivial task is to remove some predictions and 
increase specificity with little decrease of sensitivity. This task is tantamount to iden-
tification of likely false positives and filtering them out. TSEBRA solves exactly this 
problem.

TSEBRA uses extrinsic evidence in the form of intron regions or start/stop codon posi-
tions to evaluate and filter transcripts from gene predictions. These must be provided in 
a GFF file that includes two attributes in the last column ’mult=’, a number specifying 
its multiplicity – the number of alignments that support it, and ’src=’ determining its 
source, e.g., ’src=P’ for evidence from a protein alignment. The mult attribute is used to 
specify multiplicities larger than one.

TSEBRA takes three sets of different hyperparameters from a configuration file. More 
precisely, it takes a weight for any evidence source, four transcript score thresholds and 
two low evidence support thresholds. The weights are used to compute transcript scores 
and the transcript score thresholds are used for comparing transcripts. The low evidence 
support thresholds consist of minimum fractions of intron or start/stop codon support. 
We recommend the application of the default hyperparameters provided in the TSEBRA 
configuration file to be used in a standard use case.

The workflow of TSEBRA is as follows: 
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1.	 Take a union of transcripts predicted by BRAKER1 and BRAKER2 while merging 
identical transcripts.

2.	 Compute vectors of support scores for all transcripts.
3.	 Identify all pairs of transcripts with overlapping coding regions.
4.	 Compare all pairs of overlapping transcripts by a transcript comparison rule using 

the extrinsic evidence and mark some of them for exclusion.
5.	 Remove all transcripts marked for exclusion by the transcript comparison rule.
6.	 Remove all transcripts with low evidence support.
7.	 Combine the remaining transcripts into a final set of predictions with groups of 

overlapping transcripts making sets of alternative isoforms.

The output of TSEBRA is the set of genes (with alternative isoforms) in GTF format.
In step 6, a transcript is removed if the fractions of introns and start/stop codons sup-

ported by extrinsic evidence are lower than the low evidence support thresholds. In step 
7, genes are the single-linkage clusters of transcripts where two transcripts are in the same 
gene if they overlap (and could be alternative splice forms). Two transcripts are consid-
ered to overlap if they share at least three adjacent protein-coding nucleotides on the same 
strand and in the same reading frame. Note that a transcript ’marked for exclusion’ in step 
4 is still compared to all overlapping transcripts and may cause removal of another tran-
script. This filtering step is different from a simplistic approach that would first score tran-
scripts and then apply a fixed threshold to their score. In our approach, the transcripts with 
strongest local support are kept, and those that are discarded can still have strong support 
in absolute terms if transcripts with even stronger support overlap.

As a special case, TSEBRA may be used with a single gene prediction file to filter for the 
ones with the strongest evidence support. This may be useful for a genome annotation with 
many transcript isoforms per gene.

Transcript scores

Four transcript scores s1, . . . , s4 characterize the support of features of a transcript, here 
introns (i) or start/stop-codons (s), by all extrinsic evidence E represented by hints. A hint h 
is either an intron region or start/stop codon position together with an identifier of its origi-
nal source src(h) ∈ O and its multiplicity mult(h) ∈ {1, 2 . . .} . O is a set of original sources, 
e.g. O = {P, R} , if protein data and RNA-seq were used, but could also contain further ele-
ments, e.g. when variants of RNA-seq sequencing technologies shall be distinguished [32]. 
Multiplicity mult(h) is the number of alignments from the same source that supports hint 
h. A hint supports a transcript feature if all identifying characteristics match, i.e. sequence 
name, start/stop position, feature type, and strand.

Consider a particular transcript and let F be the set of all of its features. Define Ff ⊂ F as 
all features in F of type f ∈ {i, s} . The relative support of a transcript feature is

Score s1 := ri is the relative support of the transcript’s introns ( f = i ) by the evidence E 
and s2 := rs is the fraction of start/stop codons supported by E.

rf :=
|Ff ∩ E|

|Ff |
.
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A weight wo with o ∈ O is assigned to each evidence source. The absolute quantity of 
supporting hints for a transcript feature f is the weighted sum of all supporting hints:

The scores s3 := ai and s4 := as measure the abundance of extrinsic evidence that sup-
port the introns or the start/stop codons of a transcript, see Fig. 1 for an example.

Pairwise transcript comparison rule

The pairwise transcript comparison rule compares two transcripts with respect to their 
support of extrinsic evidence using the transcript scores. One or no transcript is marked 
for exclusion when comparing two overlapping transcripts, see Fig. 2.

The differences of all transcript scores (of the same type) are each compared to one 
of the score specific thresholds ǫ1, . . . , ǫ4 (one for every score type), in order from s1 to 
s4 . When the threshold is exceeded for the first time, the comparison rule terminates 
and the transcript with the smaller value for the current score is marked as the tran-
script that will be excluded from the combined gene set. Neither transcript is marked for 
removal if all differences are less than or equal to the associated thresholds.

Default hyperparameters

The TSEBRA suite includes a set of default hyperparameters, which are recommended 
for usage in a standard use case – to combine BRAKER1 and BRAKER2 – so that users 
are not required to set the hyperparameters themselves. Evidence sources in a stand-
ard BRAKER1 and BRAKER2 output are: protein database (P), EST database (E), com-
bined EST/protein database (C), and manual anchored (M). The default weights for 
these are wP = 0.1,wE = 10,wC = 5 and wM = 1 . A transcript has low evidence sup-
port in this default setting if the fraction of supported introns is less than 0.75 and 
the supported start/stop-codon fraction is less than 1.0. The score specific thresh-
olds are ǫ1 = 0, ǫ2 = 0.5, ǫ3 = 25, ǫ4 = 10 . We have shown that TSEBRA using default 

af :=
∑

h∈E∩Ff

wsrc(h) ·mult(h) (f ∈ {i, s}).

Fig. 1  Example of how extrinsic evidence in form of spliced alignments from homologous proteins (blue) 
or RNA-seq reads (red) is used to determine scores for the support of a transcript (green). Likely exon-intron 
borders are inferred from the alignments to create intron hints. The start and stop codons of the protein 
alignments are used to create start and stop codon hints, respectively. The transcript scores utilize them to 
quantify the support of the transcript structure



Page 6 of 12Gabriel et al. BMC Bioinformatics          (2021) 22:566 

parameters performs with high accuracy across several species, see Results and discus-
sion. Our tests showed that a single parameter set is sufficient for TSEBRA working with 
BRAKER1 and BRAKER2 across all the tested genomes, therefore, a change (training) of 
the set of parameters for each new genome may not be needed.

Results and discussion
We compared the accuracy of TSEBRA in two experiments. First, we compared TSE-
BRA to BRAKER1 and BRAKER2 in their standard use modes, and second, we com-
pared TSEBRA with EVM.

Accuracy assessment metrics

Specificity (Sp), sensitivity (Sn), and their harmonic mean - the F1-score - were the 
measures of gene prediction accuracy. Accuracy values were examined at the gene, tran-
script, and exon levels. A predicted gene is considered correct, if it is identical to at least 
one annotated alternative splicing isoform. A reference transcript t is considered as cor-
rectly predicted by transcript t ′ , if t and t ′ completely agree on their sets of CDS (exons). 
Two CDS are considered to agree if they are located in the same strand and both pairs of 
sequence coordinates are identical.

Comparison with BRAKER1 and BRAKER2

Complete genome annotations generated independently by BRAKER1 and BRAKER2 
(both BRAKER v.2.1.5) for 11 eukaryotic species (Additional file 1: Table S1) were pro-
cessed by TSEBRA with default hyperparameters. For each genome, we used its ‘stand-
ard’ annotation to compute the accuracies of the sets of gene predictions made by 
BRAKER1, BRAKER2, and TSEBRA. BRAKER1 was supported by extrinsic evidence in 
form of RNA-seq reads aligned to the genome of interest. RNA-seq hints were sampled 

Fig. 2  Comparison rule for two transcripts using extrinsic evidence, either one or none of the transcripts is 
marked for removal; sj are transcript scores and ǫj are score specific thresholds with j ∈ {1, 2, . . . , 4}
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with VARUS [33] from SRA for each genome with HISAT2 [34] as an alignment tool. 
BRAKER2 was supported by protein data sets selected earlier while testing BRAKER2 
[18]. For each of the three model species with genome annotations curated multiple 
times, A. thaliana, C. elegans, and D. melanogaster, we used proteins from three sets of 
species varied with respect to minimal evolutionary distance to the query species. Each 
protein set included proteins from a large clade, e.g. Plantae, Metazoa, and Arthropoda, 
of the query species. The three sets per species excluded either (i) proteins from the 
query species itself, (ii) all species of the same family or (iii) all species of the same order. 
The corresponding sets of proteins could provide more or less precise evidence for gene 
prediction depending on the degree of saturation by closely related species. The level (i) 
offers the largest number of close relatives while the level (iii) provides the least number 
of them and the least precise evidence for a query species. We used proteins from the 
corresponding sets of species selected at the level (iii) for the other eight species.

TSEBRA (with default hyperparameters) had a higher accuracy than either BRAKER1 
or BRAKER2 across all 11 species and nearly all test settings, see Table 1. The F1-score 
of TSEBRA was on average 7.78 percent points higher on gene level, 4.53 percent points 
higher on transcript level, and 2.06 percent points higher on CDS level than the maxi-
mum F1-score of BRAKER1 and BRAKER2. Note that for some species, the BRAKER1 
F1-score was higher than the one for BRAKER2 and vice versa for other species. The 
directionality was strongly correlated between the CDS, transcript, and gene levels. For 
a user, it is difficult to figure out which mode of BRAKER would perform better for a 
genome of interest. Using TSEBRA is supposed to resolve this uncertainty. TSEBRA 
generates a higher increase in specificity than in sensitivity: on average Sn increased by 
0.52 percent points for all evaluation levels while Sp increased by 8.78 percent points. 
This was likely caused by the setting of parameters filtering out a majority of transcripts 
with low support from extrinsic evidence. We found that nearly all differences in Sn and 
Sp are highly significant between TSEBRA and the other methods (see Additional file 1: 
Table S5), using McNemar’s [35] test and the chi-square test of homogeneity [36]

The number of transcripts per gene selected by TSEBRA was on average 1.07 which 
is at the same level as BRAKER2, and lower than the average of 1.20 observed for 
BRAKER1.

Comparison with EVidenceModeler

We also compared the accuracy of TSEBRA with the accuracy of EVidenceMod-
eler (EVM, commit 68e724e from GitHub [37]) working to combine BRAKER1 and 
BRAKER2 predictions with heterogeneous extrinsic evidence. Comparison of TSEBRA 
and EVM was performed for the genomes of the model species A. thaliana, C. elegans, 
and D. melanogaster.

EVM takes extrinsic evidence in form of spliced alignments from assembled tran-
scripts. This type of evidence is not produced by BRAKER1 utilizing mappings of unas-
sembled reads. To make a comparison between EVM and TSEBRA on the same data, we 
produced new and comparable extrinsic evidence for EVM (i.e. spliced alignments) and 
TSEBRA (i.e. intron or start/stop codon hints). We used the protein alignments gener-
ated by ProtHint during the BRAKER2 run and assembled spliced alignments from the 
RNA-seq reads sampled by VARUS. For each locus, we selected the protein alignment 



Page 8 of 12Gabriel et al. BMC Bioinformatics          (2021) 22:566 

produced by ProtHint with the highest DIAMOND [38] score creating a genome-wide 
set of protein alignments. To produce RNA-seq based hints, we reconstructed tran-
scripts from the RNA-seq reads with Trinity (v2.12.0) [39] and applied PASA (v2.4.1) 

Table 1  F1-score on CDS, transcript, and gene level for BRAKER1 (RNA-seq hints), BRAKER2 
(protein hints of type (iii)), TSEBRA_EVM, EVM using comparable evidence, and TSEBRA (default 
hyperparameter) with hints generated by the BRAKER runs

For A. thal, C. ele., D. mel., a set of genome partitions, each totaling 90% of the genome size, was sampled for the evaluation 
of all methods. For all other species, the tests were run on the full genomes for BRAKER1, BRAKER2, and TSEBRA. (See 
Additional file 1: Table S1 for full species names and Additional file 1: Table S2 for the results with different protein sets.)

The highest F1 score in each row is printed in bold face

CDS level F1-score

BRAKER1 BRAKER2 EVM TSEBRA _EVM TSEBRA

A. tha. 81.87 84.01 84.41 86.21 86.90
B. ter. 76.12 72.84 77.80
C. ele. 85.87 81.13 86.14 85.13 84.48

D. mel. 79.82 76.79 79.67 79.89 81.66
D. rer. 74.00 72.23 78.40
M. tru. 71.46 75.11 80.98
P. tep. 68.61 63.90 67.96

P. tri. 78.32 83.40 87.60
R. pro. 53.54 54.49 56.30
T. nig. 53.95 57.97 58.70
X. tro. 74.96 75.89 79.44

Transcript level F1-score

BRAKER1 BRAKER2 EVM TSEBRA_EVM TSEBRA

A. tha. 53.78 56.63 57.32 61.35 62.00
B. ter. 33.15 26.49 35.02
C. ele. 53.30 42.71 52.76 54.46 55.94
D.mel. 51.33 46.94 49.90 53.76 55.18
D. rer. 24.99 22.17 33.43
M. tru. 39.04 44.09 51.72
P. tep. 26.14 18.04 28.89
P. tri. 47.04 55.96 62.31
R. pro. 12.84 12.65 15.22
T. nig. 5.74 7.93 9.78
X. tro. 22.88 23.84 31.83

Gene level F1-score

BRAKER1 BRAKER2 EVM TSEBRA_EVM TSEBRA

A. tha. 65.51 70.58 70.88 78.35 79.69
B. ter. 38.91 32.18 44.71
C. ele. 63.13 52.29 63.98 68.90 70.78
D. mel. 64.44 61.25 64.94 71.34 73.93
D. rer. 31.49 27.37 44.13
M. tru. 40.03 44.96 54.05
P. tep. 28.59 19.99 33.83
P. tri. 53.11 63.88 73.45
R. pro. 13.64 12.91 16.21
T. nig. 6.59 8.87 11.46
X. tro. 26.40 30.58 41.26
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[40] to assemble and align them. The genomes were partitioned into 400,000 bp long 
segments with an overlap of 50,000 bp between neighboring segments employing the 
tools provided by EVM. For each partition, EVM was run with transcript and protein 
evidence from PASA and protein alignments, respectively. TSEBRA was run with the 
introns from both sets of alignments and the start/stop codons from the protein align-
ments. We refer to this particular TSEBRA run as TSEBRA_EVM.

EVM requires that a weight is assigned to each of the four input sources. For each test 
setting, we used 10% of the total number of partitions to decide on weights for EVM 
and to set hyperparameters of TSEBRA. A grid search with two iterations was employed 
to find good sets of parameters for each test setting. The grid had five values for each 
parameter of EVM and three values for each parameter of TSEBRA. We evaluated the 
accuracy of TSEBRA_EVM on the remaining 90% of the partitions for each test setting 
that were not used to set the hyperparameters. The values of the hyperparameters are 
available in Additional file 1: Table S3 and Additional file 1: Table S4.

We compared the accuracy of TSEBRA with EVM, one of the most cited combiner 
tools to date. EVM was previously used to combine BRAKER with other predictions 
[41], to combine BRAKER2 predictions with RNA-seq evidence [42, 43] or other RNA-
seq based predictions [44], and even for combining multiple BRAKER predictions [45]. 
Still, it is not the most suitable task for EVM to create a BRAKER-only combination. 
The authors of EVM recommend the use of a set of gene predictions, usually more than 
two, along with extrinsic evidence, because the strength of EVM is in finding consensus 
among diverse sources. This is in conflict with the fact that there is no direct way for 
EVM to use the hints generated by BRAKER and that we were looking for a way to com-
bine only two gene predictions. In addition, EVM reports only one transcript per gene, 
which limits the completeness of its annotation output in a setting with much evidence 
for alternative splicing.

We compared TSEBRA and EVM to address a question: which is the better method 
for combining BRAKER1 and BRAKER2 predictions? In a test setting with comparable 
extrinsic evidence, we evaluated them across three species with three different protein 
sets each. Both methods have successfully combined the BRAKER1 and BRAKER2 pre-
dictions into one set with increased F1-score, see Fig. 3. Still, TSEBRA_EVM had, com-
pared to EVM, a higher accuracy on average with an average increase of the F1-score at 

Fig. 3  Average gene, transcript, and CDS levels Sn and Sp for all nine combinations of three model species 
(A. thal, C. ele., D. mel.) and all test settings ((i), (ii), (iii)) as described for these model species in Table 1
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the gene, transcript, and CDS levels of 6.12, 3.38, and 0.79 percent points, respectively. 
These improvements came with an overall increased Sn and Sp for TSEBRA_EVM on 
the transcript and gene levels. Only at the CDS level, both methods had a similar accu-
racy; EVM had a slightly higher Sn and TSEBRA_EVM had a higher Sp. Analogous to 
the first experiment, we tested the significance of differences in Sn and Sp of TSEBRA_
EVM to all other methods and found that nearly all are highly significant (see Additional 
file 1: Table S6).

We had to carefully select the test setting since the choice of partition size made a dif-
ference to EVM when it makes models of intergenic regions. An additional difficulty was 
that the tools used for creating the partitions enforced hard borders, even if they split a 
transcript. To neutralize this issue, an overlap between partitions was used.

TSEBRA executes much faster than EVM, which constructs a complete gene model 
and evaluates all possible gene structures. TSEBRA, on the other hand, only evaluates 
the set of explicitly given transcripts as input. In our tests, we ran both methods sepa-
rately in parallel on a 28 multi-core processor, the average runtime of EVM was 35.28 
min and of TSEBRA_EVM 0.37 min.

Conclusions
We presented TSEBRA, a tool that selects more reliable gene predictions (transcripts) 
from the sets of transcripts generated independently by BRAKER1 and BRAKER2. 
A novel approach to transcript selection was successfully implemented. In computa-
tional experiments made with genomes of 11 diverse eukaryotic species we have shown 
that the set of transcripts selected by TSEBRA matched annotated genes (believed to 
be the true ones) with higher accuracy than both BRAKER1 and BRAKER2. Note that 
the combined extrinsic evidence is not used at the step of generation of gene predic-
tions. BRAKER1 and BRAKER2 use disjoint evidence sources also for training statistical 
gene-finding models. A relative complementarity of the gene sets can be an advantage 
when they are combined subsequently. The ranking and selection of the final set of tran-
scripts, however, does use both protein and RNA-seq evidence. This approach makes an 
effective use of both sources of extrinsic evidence for selection of most likely true posi-
tive transcripts from the set of candidates, the transcripts generated by BRAKER1 and 
BRAKER2 running in parallel.

Thus, TSEBRA makes a useful tool that with help of heterogeneous extrinsic evidence 
transforms the union of predictions of BRAKER1 and BRAKER2 into a set of gene pre-
dictions whose accuracy exceeds the accuracy of both BRAKER1 and BRAKER2 run-
ning separately.
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