
A multitask transfer learning framework 
for the prediction of virus‑human protein–
protein interactions
Thi Ngan Dong1*  , Graham Brogden2,3, Gisa Gerold2,3,4,5 and Megha Khosla1 

Introduction
Virus infections cause an enormous and ever increasing burden on healthcare systems 
worldwide. The ongoing COVID-19 pandemic caused by the zoonotic virus, SARS-
CoV-2, has resulted in enormous socio-economic losses [1]. Viruses infect all life 
forms and require host cells to complete their replication cycle by utilizing the host cell 
machinery. Virus infection involves several types of protein–protein interactions (PPIs) 
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between the virus and its host. These interactions include the initial attachment of virus 
coat or envelope proteins to host membrane receptors, hijacking of the host translation 
and intracellular transport machineries resulting in replication, assembly and subse-
quent release of virus particles [2–4]. Besides providing mechanistic insights into the 
biology of infection, knowledge of virus-host interactions can point to essential events 
needed for virus entry, replication, or spread, which can be potential targets for the pre-
vention, or treatment of virus-induced diseases [5].

In vitro experiments based on yeast-two hybrid (Y2H), ligand-based capture MS, prox-
imity labeling MS, and protein arrays have identified tens of thousands of virus-human 
protein interactions [6–14]. These interaction data are deposited in publicly available 
databases including InAct [15], VirusMetha [16], VirusMINT [17], and HPIDB [18], and 
others. However, experimental approaches to unravel PPIs are limited by several fac-
tors, including the cost and time required, the generation, cultivation and purification 
of appropriate virus strains, the availability of recombinantly expressed proteins, genera-
tion of knock in or overexpression cell lines, availability of antibodies and cellular model 
systems. Computational approaches can assist in vitro experimentation by providing a 
list of most probable interactions, which actual biological experimentation techniques 
can falsify or verify.

In this work, we cast the problem of predicting virus-human protein interactions as a 
binary classification problem and focus specifically on emerging viruses that has limited 
experimentally verified interaction data.

Key challenges in learning to predict virus‑human PPI

Limited interaction data. One of the main challenges in tackling the current task as 
a learning problem is the limited training data. Towards predicting virus-host PPI, 
some known interactions of other human viruses collected from wet-lab experiments 
are employed as training data. The number of known PPIs is usually too small and thus, 
not representative enough to ensure the generalizability of trained models. In effect, the 
trained models might overfit the training data and would give inaccurate predictions for 
any given new virus.

Difference to other pathogens. A natural strategy to overcome the limitation posed 
by scarce virus protein interaction data is to employ transfer learning from available 
intra-species PPI or PPI data for other types of pathogens. This may, in its simplest 
fashion, not be a viable strategy as virus proteins can differ substantially from human 
or bacterial proteins. Typically, they are highly structurally and functionally dynamic. 
Virus proteins often have multiple independent functions so that they cannot be eas-
ily detected by common sequence-structure comparison [19–21]. Besides, virus protein 
sequences of different species are highly diverse [22]. Consequently, models trained for 
intra-species human PPI [23–27] or for other pathogen-human PPI [28–33] cannot be 
directly used to predict virus-human protein interactions.

Limited information on structure and function of virus proteins. While for human 
proteins, researchers can retrieve information from many publicly available databases to 
extract features related to their function, semantic annotation, domains, structure, path-
way association, and intercellular localization, such information is not readily available 
for most virus proteins. Protein crystal structures are available for some virus proteins. 
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However, for many, predictive structures based on the amino acid sequence must be 
used. Thus, for the majority of virus proteins, currently, the only reliable source of virus 
protein information is its amino acid sequence. Learning effective representations of the 
virus proteins, therefore, is an important step towards building prediction models. Heu-
ristics such as K-mer amino acid composition are bound to fail as it is known that virus 
proteins with completely different sequences might show similar interaction patterns.

Our contributions

In this work, we develop a machine learning model which overcomes the above limita-
tions in two main steps, which are described below.

Transfer Learning via protein sequence representations. Though the training data 
on interactions as well as the input information on protein features are limited, a large 
number of unannotated protein sequences are available in public databases like UniProt. 
Inspired by advancements in Natural Language Processing, Alley et  al. [34] trained a 
deep learning model on more than 24 million protein sequences to extract statistically 
meaningful representations. These representations have been shown to advance the 
state-of-the-art in protein structure and function prediction tasks. Rather than using 
hand-crafted protein sequence features, we use the pre-trained model by [34] (referred 
to as UniRep) to extract protein representations. The idea here is to exploit transfer 
learning from several million sequences to our scant training data.

Incorporating domain information. We further fine-tune UniRep’s globally trained 
protein representations using a simple neural network whose parameters are learned 
using a multitask objective. In particular, besides the main task, our model is additionally 
regularized by another objective, namely predicting interactions among human proteins. 
The additional objective allows us to encode (human) protein similarities dictated by 
their interaction patterns. The rationale behind encoding such knowledge in the learnt 
representation is that the human proteins sharing similar biological properties and func-
tions would also exhibit similar interacting patterns with viral proteins. Using a simpler 
model and an additional side task helps us overcome overfitting, which is usually associ-
ated with models trained with small amounts of training data.

We refer to our model as MultiTask Transfer (MTT) and is further illustrated in 
“Method” section. To sum up, we make the following contributions.

•	 We propose a new model that employs a transfer learning-based approach to first 
obtain the statistically rich protein representations and then further refines them 
using a multitask objective.

•	 We evaluated our approach on several benchmark datasets of different types for 
virus-human and bacteria-human protein interaction prediction. Our experimental 
results (c.f. “Result analysis” section) show that MTT outperforms several baselines 
even on datasets with rich feature information.

•	 Experimental results on the SARS-CoV-2 virus receptor shows that our model can 
help researchers to reduce the search space for yet unknown virus receptors effec-
tively.

•	 We release our code for reproducibility and further development at  https://​git.​l3s.​
uni-​hanno​ver.​de/​dong/​multi​task-​trans​fer.

https://git.l3s.uni-hannover.de/dong/multitask-transfer
https://git.l3s.uni-hannover.de/dong/multitask-transfer
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Related work
Existing work mainly casts PPI prediction task as a supervised machine learning 
problem. Nevertheless, the information about non-interacting protein pairs is usu-
ally not available in public databases. Therefore, researchers can only either adapt 
models to learn from only positive samples or employ certain negative sampling strat-
egy to generate negative examples for training data. Since the quality and quantity of 
the generated negative samples would significantly affect the outcome of the learned 
models, the authors in [31, 35, 36] proposed models that only learned from the availa-
ble known positive interactions. Nourani et al. [36] and Li et al. [31] treated the virus-
human PPI problem as a matrix completion problem in which the goal was to predict 
the missing entries in the interaction matrix. Nouretdinov et al. [35] use a conformal 
method to calculate p-values/confidence level related to the hypothesis that two pro-
teins interact based on similarity measures between proteins.

Another line of work which casts the problem as a binary classification task 
focussed on proposing new negative sampling techniques. For instance, Eid et al [22] 
proposed Denovo—a negative sampling technique based on virus sequence dissimi-
larity. Mei et al. [37] proposed a negative sampling technique based on one class SVM. 
Basit et al. [33] offered a modification to the Denovo technique by assigning sample 
weights to negative examples inversely proportional to their similarity to known posi-
tive examples during training.

Dick et al. [30] utilizes the interaction pattern from intra-species PPI networks to 
predict the inter-species PPI between human-HIV-1 virus and human. Though the 
results are promising, this cannot be directly applied to completely new viruses where 
information about closely-related species is not available or to viruses whose intra-
species PPI information is not available.

The works presented in [38–44] employed different feature extraction strategies to 
represent a virus-human protein pair as a fixed-length vector of features extracted 
from their protein sequences. Instead of hard-coding sequence feature, Yang et  al. 
[45] and Lanchantin et  al. [46] proposed embedding models to learn the virus and 
human proteins’ feature representations from their sequences. However, their train-
ing data was limited to around 500,000 protein sequences. Though not very common, 
other types of information/features were also used in some proposed models besides 
sequence-based features. Those include protein functional information (or GO anno-
tation) as in [47], proteins domain-domain associations information as in [48], protein 
structure information as in [32, 49], and the disease phenotype of clinical symptoms 
as in [47]. One limitation of these approaches is that they cannot be generalized to 
novel viruses where such kind of information is not available.

Among the network-based approaches, Liu et  al. and Wang et  al. [50, 51] con-
structed heterogeneous networks to compute virus and human proteins features. 
Nodes of the same type were connected by either weighted edges based on their 
sequence similarity or a combination of sequence similarity and Gaussian Interaction 
Profile kernel similarity. Deng et al. [43] proposed a deep-learning-based model with 
a complex architecture of convolutional and LSTM layers to learn the hidden repre-
sentation of virus and human proteins from their input sequence features along with 
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the classification problem. Despite the promising performance, those studies still 
have the limitation posed by hand-crafted protein features.

Method
We first provide a formal problem statement.

Problem statement. We are given protein sequences corresponding to infectious 
viruses and their known interactions with human proteins. Given a completely new 
(novel) virus, its set of protein(s) V along with its (their) sequence(s), we are interested in 
predicting potential interactions between V and the human proteins.

We cast the above problem as that of binary classification. The positive samples consist 
of pairs of virus and human proteins whose interaction has been verified experimentally. 
All other pairs are considered to be non-interacting and constitute the negative samples. 
In “Data description and experimental set up” section, we add details on positive and 
negative samples corresponding to each dataset.

Summary of the approach. The schematic diagram of our proposed model is pre-
sented in Fig. 1. As shown in the diagram, the input to the model is the raw human 
and virus protein sequences which are passed through the UniRep model to extract 
low dimensional vector representations of the corresponding proteins. The extracted 
embeddings are then passed as initialization values for the embedding layers. These 
representations are further fine-tuned using the Multilayer Perceptron (MLP) mod-
ules (shown in blue). The fine-tuning is performed while learning to predict an 

Fig. 1  Our proposed MTT model for the virus-human PPI prediction problem. The UniRep embeddings are 
used to initialize our embedding layers which will be further fine-tuned by the two PPI prediction tasks. 
Sharing representation for human proteins further enables us to transfer the knowledge learned from the 
human PPI network to inform our virus-host PPI prediction task
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interaction between two human proteins (between proteins A and B in the figure) as 
well as the interaction between human and virus proteins (between proteins B and C). 
In the following, we describe in detail the main components of our approach.

Extracting protein representations

Significance of using protein sequence as input. We note that the protein sequence 
determines the protein’s structural conformation (fold), which further determines 
its function and its interaction pattern with other proteins. However, the underly-
ing mechanism of the sequence-to-structure matching process is very complex and 
cannot be easily specified by hand-crafted rules. Therefore, rather than using hand-
crafted features extracted from amino acid sequences, we employ the pre-trained 
UniRep model [34] to generate latent representations or protein embeddings. The 
protein representations extracted from UniRep model are empirically shown to pre-
serve fundamental properties of the proteins and are hypothesized to be statistically 
more robust and generalizable than hand-crafted sequence features.

UniRep for extracting sequence representations. In particular, UniRep consists 
of an embedding layer that serves as a lookup table for each amino acid representa-
tion. Each amino acid is represented as an embedding vector of 10 dimensions. Each 
input protein sequence of length N will be denoted as a two-dimensional matrix of 
size Nx10. That two-dimensional matrix will then feed as input to a Multiplicative 
Long Short Term Memory (mLSTM) network of 1900 units. The 1900 dimension is 
selected experimentally from a pool of architectures that require different numbers 
of parameters as described in [52], namely, a 1900-dimensional single layer multipli-
cative LSTM ( ∼  18.2 million parameters), a 4-layer stacked mLSTM of 256 dimen-
sions per layer ( ∼  1.8 million parameters), and a 4-layer stacked mLSTM with 64 
dimensions per layer ( ∼ 0.15 million parameters). The output from mLSTM is a 1900 
dimensional embedding vector that serves as the pre-trained protein embedding for 
the input protein sequence. We use the calculated pre-trained virus and human pro-
tein embeddings to initialize our embedding layers. The two supervised PPI predic-
tion tasks will further fine-tune those embeddings during training.

Learning framework

We further fine-tune these representations by training two simple neural networks 
(single layer MLP with ReLu activation) using an additional objective of predicting 
human PPI in addition to the main task. More precisely, the UniRep representations 
will be passed through one hidden layer MLPs with ReLU activations to extract the 
latent representations. Let X denote the embedding lookup matrix. The ith row cor-
responds to the embedding vector of node i. The final output from MLP layers for an 
input v is then given by hid(v) = MLP(X(v)) . To predict the likelihood of interaction 
between a pair (v1, v2) we first perform an element-wise product of the corresponding 
hidden vectors (output of MLPs) and pass it through a linear layer followed by sig-
moid activation. In the following we provide a detailed description of our multi-task 
objective.
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Training using a multi‑task objective

Let �,� denote the set of learnable parameters corresponding to fine-tuning compo-
nents (as shown in Fig. 1 in green and blue boxes), i.e., the Multilayer Perceptrons (MLP) 
corresponding to the virus and human proteins, respectively. Let W1,W2 denote the two 
learnable weight matrices (parameters) for the linear layers (as depicted in gray boxes 
in the Figure). We use VH, and HH to denote the training set of virus-human, human-
human PPI, correspondingly. We use binary cross entropy loss for predicting virus-
human PPI predictions, as given below:

where variables zvh is the corresponding binary target variable and yvh is the predicted 
likelihood of observing virus-human protein interaction, i.e.,

where σ(x) = 1/1+ e−x is the sigmoid activation and ⊙ denotes the element-wise 
product.

For human PPI, we predict the confidence score of observing an interaction between 
two human proteins. More specifically, we directly predict zhh′—the normalized confi-
dence scores for interaction between two human proteins as collected from STRING 
[53] database. Predicting the normalized confidence scores helps us overcome the issues 
with defining negative interactions. We use mean square error loss to compute the loss 
for the human PPI prediction task as below where yhh′ is computed similar to (2) for 
human proteins and N is the number of (h, h′) pairs.

We use a linear combination of the two loss functions to train our model.

where α is the human PPI weight factor.

Data description and experimental set up
We commence by describing the 13 datasets used in this work to evaluate our approach.

Benchmark datasets

The realistic host cell‑virus testing datasets

The Novel H1N1  and Novel Ebola  datasets. We retrieve the curated or experi-
mentally verified PPIs between virus and human from four databases: APID [54], IntAct 
[15], VirusMetha [16], and UniProt [55] using the PSICQUIC web service [56]. In total, 
there are 11,491 known PPIs between 246 viruses and humans. From this source of data, 
we generate new training and testing data for the two viruses: the human H1N1 Influ-
enza virus and Ebola virus. We name the two datasets Novel H1N1 and Novel Ebola 

(1)L1 =
∑

(v,h)∈VH

−zvh log yvh(�,�,W1)− (1− zvh) log(1− yvh(�,�,W1)),

(2)yvh(�,�,W1) =σ((hid(v)⊙ hid(h))W1),

(3)L2 =
1

N

∑

(h,h′)∈HH

(yhh′(�,W2)− zhh′)
2

(4)L = L1 + α · L2
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according to the virus present in the testing set. The positive training data for the Novel 
H1N1 dataset includes PPIs between human and all viruses except H1N1. Similarly, the 
positive training data for the Novel Ebola dataset includes PPIs between human and 
all viruses except Ebola. The positive testing data for the human-H1N1 dataset contains 
PPIs between human and 11 H1N1 virus proteins. Likewise, the positive testing data 
for the human-Ebola dataset contains PPIs between human and three of the eight Ebola 
virus proteins (VP24, VP35, and VP40).

Negative sampling techniques such as the dissimilarity-based method [22], the exclu-
sive co-localization method [57, 58] are usually biased as they restrict the number of 
tested human proteins. It is also unrealistic for a new virus because information about 
such restricted human protein set, generated from filtering criteria based on the posi-
tive instances, is typically unavailable. For those reasons, we argue that random negative 
sampling is the most appropriate, unbiased approach to generate negative training/test-
ing samples. Since the exact ratio of positive:negative is unknown, we conducted experi-
ments with different negative sample rates. In our new virus-human PPI experiments, 
we try four negative sample rates: [1,2,5,10]. In addition, to reduce the bias of negative 
samples, the negative sampling in the training and testing set is repeated ten times. In 
the end, for each dataset, we test each method with 4x4x10 = 160 different combina-
tions of negative training and negative testing sets (with fixed positive training and test 
samples). The statistics for our new testing datasets are given in Table 1.

The DeepViral [47] Leave-One-Species-Out (LOSO) benchmark datasets. The 
data was retrieved from the HPIDB database [18] to include all Pathogen-Host inter-
actions that have confidence scores available and are associated with an existing virus 
family in the NCBI taxonomy [59]. After filtering, the dataset includes 24,678 positive 
interactions and 1,066 virus proteins from 14 virus families. We follow the same proce-
dure as mentioned in [47] to generate the training and testing data corresponding to four 
virus species with taxon IDs: 644788 (Influenza A), 333761 (HPV 18), 2697049 (SARS-
CoV-2), 2043570 (Zika virus). From now on, we will use the NCBI taxon ID of the virus 
species in the testing set as the dataset name. For each dataset, the positive testing data 
consists of all known interactions between the test virus and the human proteins. The 
negative testing data consists of all possible combinations of virus and 16,627 human 

Table 1  The virus-human PPI realistic benchmark datasets’ statistics

|E+| and |E−| refer to the number of positive and negative interactions, respectively. |Vh| and |Vv | are the number of human 
proteins and virus proteins

Training data Testing data

|E+| |E−| |Vh| |Vv| |E+| |E−| |Vh| |Vv|

Novel H1N1 10,858 Varies 7636 641 381 Varies 622 11

Novel Ebola 11,341 Varies 7816 659 150 Varies 290 3

Zhou’s H1N1 10,858 10,858 7636 641 381 381 622 11

Zhou’s Ebola 11,341 11,341 7816 659 150 150 290 3

2697049 24,698 246,980 16,638 1066 278 448,651 16,627 27

333761 23,892 238,920 16,638 1070 534 132,482 16,627 8

2043570 24,372 243,720 16,638 1085 309 66,199 16,627 4

644788 24,825 248,250 16,638 1090 54 33,200 16,627 2
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proteins in Uniprot (with a length limit of 1000 amino acids) that do not appear in the 
positive testing set. Similarly, the positive training data consists of all known interactions 
between human protein and any virus protein, except for the one which is in the test-
ing set. The negative training data is generated randomly with the positive:negative rate 
of 1:10 from the pool of all possible combinations of virus and 16,627 human proteins 
that do not appear in the positive training set. Statistics of the datasets are presented in 
Table 1. Though performing a search on the set of 16,627 human proteins might not be 
a fruitful realistic strategy, we still keep the same training and testing data as released in 
the DeepViral study in our experiments to have a direct and fair comparison with the 
DeepViral method.

The widely used new virus‑human PPI prediction benchmarked datasets

The two datasets released by Zhou et al. [41] are widely used by recent papers to evalu-
ate state-of-the-art models on new virus-human PPI prediction tasks. We refer to them 
as Zhou’s H1N1 and Zhou’s Ebola where each dataset was named after the viruses in 
the testing sets. Zhou’s H1N1 and Zhou’s Ebola share similar positive training and 
testing samples with the Novel H1N1 and Novel Ebola datasets. However, they differ 
in the negative training and testing samples sets. While the negative samples in Novel 
H1N1 and Novel Ebola were generated randomly from the pool of all possible pairs, 
the negative training/testing samples in Zhou’s H1N1 and Zhou’s Ebola were gener-
ated based on the protein sequence dissimilarity score. Therefore, Zhou’s H1N1 and 
Zhou’s Ebola have the limitations as mentioned in “The realistic host cell-virus testing 
datasets” section and are not ideal for evaluating the new virus-human PPI prediction 
task. The data statistics for these two datasets are shown in Table 1.

The specialized testing datasets

The dataset with protein motif information (Denovo SLiM [22]). The Denovo SLiM 
dataset Virus-human PPIs were collected from VirusMentha database [16]. The presence 
of Short Linear Motif (SLiM) in virus sequences was used as a criterion for data filtering. 
SLiMs are short, recurring patterns of protein sequences that are believed to mediate 
protein–protein interaction [60, 61]. Therefore, sequence motifs can be a rich feature 
set for virus-human PPI prediction tasks. The test set [22] contained 425 positives and 
425 negative PPIs (Supplementary file S12 used in DeNovo’s study ST6). The training 
data consisted of the remaining PPI records and comprised of 1590 positive and 1515 
negative records for which virus SLiM sequence is known and 3430 positives and 3219 
negatives without virus SLiM sequences information. Denovo_slim negative samples 
were also generated using the Denovo negative sampling strategy (based on sequence 
dissimilarity).

The Barman’s dataset [48] with protein domain information. The dataset was 
retrieved from VirusMINT database [17]. Interacting protein pairs that did not have any 
“InterPro” domain hit were removed. In the end, the dataset contained 1035 positives 
and 1035 negative interactions between 160 virus proteins of 65 types and 667 human 
proteins. 5-Fold cross-validation was then employed to test each method’s performance.
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The bacteria human PPI prediction task

We evaluate our method on three datasets for three human pathogenic bacteria: 
Bacillus anthracis (B1), Yersinia pestis (B2), and Francisella tularensis 
(B3), which were shared by Fatma et al. [22].

The data was first collected from HPIDB [18]. B1 belongs to a bacterial phylum dif-
ferent from that of B2 and B3, while B2 and B3 share the same class but differ in their 
taxonomic order. B1 has 3057 PPIs, B2 has 4020, and B3 has 1346 known PPIs. A 
sequence-dissimilarity-based negative sampling method was employed to generate 
negative samples. For each bacteria protein, ten negative samples were generated ran-
domly. Each of the bacteria was then set aside for testing, while the interactions from 
the other two bacteria were used for training. For simplicity, we use the name of the 
bacteria in the testing set as the name of the dataset. The statistics for those three 
datasets are presented in Table 2.

Description of compared methods

We compare our method with the following seven baseline methods and two simper 
variants of our model.

•	 Generalized [41]: It is a generalized SVM model trained on hand-crafted features 
extracted from protein sequence for the novel virus-human PPI task. Each virus-
human pair is represented as a vector of 1175 dimensions extracted from the two 
protein sequences.

•	 Hybrid [43]: It is a complex deep model with convolutional and LSTM layers for 
extracting latent representation of virus and human proteins from their input 
sequence features and is trained using L1 regularized Logistic regression.

•	 doc2vec [45]: It employs the doc2vec [62] approach to generate protein embed-
dings from the corpus of protein sequences. A random forest model is then trained 
for the PPI prediction.

•	 MotifTransformer [46]: It is a transformer-based deep neural network that pre-
trains protein sequence representations using unsupervised language modeling tasks 
and supervised protein structure and function prediction tasks. These representa-
tions are used as input to an order-independent classifier for the PPI prediction task.

•	 DeNovo [22]: This model trained an SVM classifier on a hand-crafted feature set 
extracted from the K-mer amino acid composition information using a novel negative 
sampling strategy. Each protein pair is represented as a vector of 686 dimensions.

Table 2  Our bacteria-human PPI benchmark datasets’ statistics

|E+| and |E−| refer to the number of positive and negative interactions, respectively. |Vh| and |Vb| are the number of human 
proteins and bacteria proteins

Training data Testing data

|E+| |E−| |Vh| |Vb| |E+| |E−| |Vh| |Vb|

Bacillus anthracis 5366 15,590 1559 2674 3057 9440 944 1705

Yersinia pestis 4403 12,880 1288 2278 4020 12,150 1215 2147

Francisella tularensis 7077 21,590 2159 3041 1346 3440 344 1023
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•	 DeepViral [47]: It is a deep learning-based method that combines information from 
various sources, namely, the disease phenotypes, virus taxonomic tree, protein GO 
annotation, and proteins sequences for intra- and inter-species PPI prediction.

•	 Barman [48]: It used an SVM model trained on a feature set consisting of the protein 
domain-domain association and methionine, serine, and valine amino acid composition 
of viral proteins.

•	 2 simpler variants of MTT: Towards ablation study, we evaluate two simpler variants: 
(i) SingleTask Transfer (STT), which is trained on a single objective of predicting 
pathogen-human PPI. STT is basically the MTT without the human PPI prediction side 
task and (ii) Naive Baseline, which is a Logistic regression model using concatenated 
human and pathogen protein UniRep representations as input.

Implementation details and parameter set up

We use Pytorch [63] to implement our model and run it on an Nvidia GTX 1080-Ti with 
11GB memory. We use Adam optimizer for the model parameter optimization. For all 
datasets, we left out 10% of the training data for validation and performed a grid search 
for the best combination of parameters on that validation set. For datasets other than 
Novel H1N1 and Novel Ebola, we perform parameter grid searching with the MLP hid-
den dimension hid in [8, 16,32, 64], α in [10−3, 10−2, 10−1, 1] , the number of epochs from 
0 to 200 with a step of 2 and the learning rate lr in [10−3, 10−2] . For the Novel H1N1 and 
Novel Ebola datasets, we test each with 160 different combinations of negative training 
and negative testing. Therefore, we fix the hidden dimension to 16, α = 10−3 , lr = 10−3 
and only perform grid searching on the number of epochs. The reported results for each 
dataset are the results corresponding to the best-performed model on the validation set.

For the Doc2vec model, we use the released code shared by the authors with the given 
parameters. For the Generalized and Denovo models, we re-implement the methods 
in Python using all the parameters and feature set as described in the original papers. For 
Barman and DeepViral, the results are taken from the original papers or calculated from 
the given model prediction scores.

Evaluation metrics

For all benchmark datasets except the case study, we report five metrics: the Area under 
Receiver Operating Characteristic curve (AUC​) and the area under the precision-recall 
curve (AP), the Precision, Recall, and F1 scores.

For the case study, we report the topK score with K from 1 to 10. TopK is equal to 1 if the 
human receptor for SARS-CoV-2 virus appears in the top K proteins that have the highest 
scores predicted by the model and 0 otherwise.

Result analysis
In the following four subsections, we provide a detailed comparison of MTT with (i) 
methods employing hand-crafted input features, (ii) sequence embedding-based meth-
ods, (iii) an approach that uses protein domain information, (iv) simpler variants of 
MTT as ablation studies respectively. All statistical test results present in this section are 
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those from the pair-wise t-test [64] on the F1 scores attained from multiple runs on the 
same dataset.

Comparison with methods employing hand‑crafted features

Generalized [41] and Denovo [22] are the two traditional methods relying on hand-
crafted features extracted from the protein sequences. The number of hand-crafted 
features employed by Denovo and Generalized are 686 and 1175, respectively. They 
both employ SVM for the classification task. Since SVM scales quadratically with the 
number of data points, Denovo and Generalized are not scalable to larger datasets.

Figure 2 presents their comparison between MTT on small testing datasets. Detailed 
scores are given in Table 6 in the Appendix. Results from the two-tailed t-test [65, 66] 
support that MTT significantly outperforms Denovo in all benchmarked datasets with 
a confidence score of at least 95% . Compared with Generalized, MTT has higher per-
formance in six out of seven datasets (except Denovo_slim). The difference is the most 
significant on the Barman, Zhou’s H1N1, and Zhou’s Ebola datasets. On Denovo_
slim dataset, MTT ’s F1 score is lower than Generalized and only 2% higher than 
Denovo. This is expected since Denovo_slim is a specialized dataset favoring methods 
using local sequence motif features, which are exploited by Denovo and Generalized.

Hybrid is one recently proposed, deep learning-based method. Despite that, the input 
features are still manually extracted from the protein sequence. Since the code is not 
publicly available, we only have the AUC​ score corresponding to the Zhou’s H1N1 
dataset, which is also taken from the original paper as listed in Table 6. Compared with 
Hybrid, MTT has higher AUC​ score. Though comparison on the AUC​ for one dataset 
does not bring much insight, we include this method here for completeness.

Fig. 2  Comparison between MTT and state-of-the-art methods on small testing datasets. MTT is statistically 
better than Denovo in all benchmarked datasets. Compared with Generalized, MTT has higher performance in 
six out of seven datasets. MTT outperforms Doc2vec in four out of seven datasets
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Comparison with sequence embedding based methods

Doc2vec and MotifTransformer are state-of-the-art methods based on sequence 
embeddings or representations. Doc2vec utilizes the embeddings learned from the 
extracted k-mer features while MTT and MotifTransformer employ the embedding 
directly learned from the amino acid sequences. In addition, MTT is a multitask-based 
approach that incorporates additional information on human protein–protein interac-
tion into the learning process.

Figure 3 shows a comparison in F1 score of MTT and Doc2vec over all benchmarked 
datasets. Detailed scores are presented in Table 7 in the Appendix. Since the code for the 
MotifTransformer model is not publicly available, we only have the corresponding 
results available for the Zhou’s H1N1 and Zhou’s Ebola datasets, which are also taken 
from the original paper. ‘-’ denotes the score is not available. Compared with Motif-
Transformer, MTT has a slightly worse F1 score on Zhou’s H1N1 and significantly 
better F1 score on Zhou’s Ebola datasets.

Comparison with Doc2vec. MTT out-performs Doc2vec in 5 out of 9 benchmark 
datasets, and the performance gap is statistically significant with a p-value smaller than 
0.05. MTT is significantly better than Doc2vec on the Novel Ebola dataset, while 
on the Novel H1N1 dataset, the reverse holds true. Doc2vec outperforms MTT in 
three testing datasets whose negative samples were drawn from a sequence dissimilar-
ity method. We also note that these datasets might be biased since in the ideal testing 
scenario, we do not have knowledge about the set of human proteins that interacted with 
the virus. Therefore, such dissimilarity-based negative sampling is infeasible.

Fig. 3  Comparison between MTT and state-of-the-art methods on the Novel Ebola and Novel H1N1 datasets 
over different combinations of negative training and testing sets. MTT is significantly better than Doc2vec 
on the Novel Ebola dataset (a), while on the Novel H1N1 dataset (b), the reverse holds true. MTT is statistically 
better than Denovo on both datasets. For the Generalized model, we can only have results up to the negative 
training rate of 2 because, for larger negative training rates, the model took days to finish one run
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Comparison with methods that use domain information

Barman features set is constructed from the domain-domain association and the 
hand-crafted feature extracted from the protein sequences. Since the protein domain 
information is not available for all viral proteins, the Barman method has restricted 
application. A comparison between Barman and MTT is presented in Table 3. Due 
to data and code availability, we only have the results for the Barman model on one 
dataset. From reported results, we could clearly see that MTT outperforms its com-
petitor for a large margin in all available metrics.

Comparison with methods that used GO, taxonomy and phenotype information

DeepViral exploited that disease phenotypes, the viral taxonomies, and proteins’ 
GO annotation to enrich its protein embeddings. Table  4 presents a comparison 
between MTT and DeepViral on the four datasets released by DeepViral ’s authors. 
The reported results on each dataset are the average after five experimental runs for 
DeepViral and ten experimental runs for MTT. We observe MTT and STT signifi-
cantly supersede their competitor regarding the averaged F1 score. The gain is more 
significant on smaller datasets (644788 and 333761)

Ablation studies

We compare our method with two of its simpler variants: the STT and the Naive 
baseline baseline models. STT is the MTT model without the human PPI predic-
tion task. Naive baseline concatenates the learned embeddings for the virus and 
human proteins to form the input to a Logistic Regression model. Figure 4 presents 

Table 3  Comparison between MTT and Barman—a method that relies on the protein domain 
information

Due to data and code availability issues, for the Barman method, we only have results for the Barman ’s dataset, which are also 
taken from the original paper. ‘−’ indicates that the result is not available

Model AUC​ AP Precision Recall F1

Barman 0.7300 – – 67.00 69.41

MTT 0.9804 0.9802 93.53 94.05 93.79

Table 4  Comparison with DeepViral—a method that can utilize knowledge from the disease 
phenotype, virus taxonomy, the human PPI network, and the protein GO annotation

The bold font is used to highlight highest scores corresponding to each dataset

Results from the pair-wise t-test indicate that MTT is significantly better than DeepViral on three datasets (2697049, 333761, 
and 2043570) with a p-value smaller than 0.05. On the 644788 dataset, the difference is not statistically significant

Dataset Model AUC​ AP Precision Recall F1

2697049 DeepViral 0.7288 0.0015 0.07 0.07 0.07

MTT 0.7566 0.0021 0.97 0.97 0.97
333761 DeepViral 0.8009 0.0147 1.72 1.72 1.72

MTT 0.8160 0.0262 6.35 6.35 6.35
2043570 DeepViral 0.7708 0.0116 0.52 0.52 0.52

MTT 0.6956 0.0096 1.89 1.91 1.90
644788 DeepViral 0.9325 0.0357 3.70 3.70 3.70

MTT 0.9537 0.0302 3.54 22.04 5.46
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a comparison between the F1 score of MTT and its variants on our benchmarked 
datasets. Table 8 show all reported scores over all datasets. MTT is significantly bet-
ter than STT in five out of nine benchmarked and the four DeepViral datasets with a 
p-value smaller than 0.05. While in the remaining four datasets, the difference is not 
statistically significant. This confirms that the learned patterns from the human PPI 
network bring additional benefits to the virus-human PPI prediction task.

Compare with Naive baseline, MTT wins in eight out of nine benchmarked and 
the four DeepViral datasets. On the remaining dataset (Novel H1N1), the differ-
ence is not statistically different. STT significantly outperforms Naive baseline in 
eight out of nine datasets. This claims the effectiveness of our chosen architecture.

Fig. 4  Ablation study on benchmarked datasets. Compared with STT, MTT is statistically better in five 
datasets, while on the remaining four (Novel H1N1, Denovo_slim, Yersina, and Franci), the difference is not 
statistically significant. MTT is statistically better than Naive baseline on eight out of nine datasets, while on the 
remaining dataset(Novel Ebola), the difference is not statistically different
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Case study for SARS‑CoV‑2 binding prediction
The virus binding to cells or the interaction between viral attachment proteins and host 
cell receptors is the first and decisive step in the virus replication cycle. Identifying the 
host receptor(s) for a particular virus is often fundamental in unveiling the virus patho-
genesis and its species tropism.

Here we present a case study for detecting the human protein binding partners for 
SARS-CoV-2. Our virus-human PPI dataset is retrieved from the InAct Molecular Inter-
action database [15] (the latest update is 07.05.2021). We retrieve the protein sequences 
from Uniprot [55]. In the next section, we describe the construction of the training and 
testing dataset to predict SARS-CoV-2 binding partners.

Training, validation and test sets for virus‑human PPI

The statistics for our SARS-CoV-2 binding prediction dataset are presented in Table 5. 
We construct the corresponding datasets as follows.

Training set. As positive interaction samples, we include in the training data only 
direct interactions between the human proteins and any virus except the SARS-CoV and 
SARS-CoV-2. Direct interaction requires two proteins to directly bind to each other, i.e. 
without an additional bridging protein. Moreover, the interacting human protein should 
be on the cell surface. Without loss of generality, we perform our search for the binding 
receptor on the set of all human proteins that have a KNOWN direct interaction with 
any virus and locate to the cell surface. Our surface human protein list consists of all 
reviewed Uniprot proteins that meet at least one of the following criteria: (i) appears in 
the human surfacetome [67] list or (ii) has at least one of the following GO annotations 
[68, 69]:{CC-plasma membrane, CC-cell junction}.

The negative samples for training data contain indirect (interactions that are not 
marked as direct in the database) between the human proteins and any virus except 
SARS-CoV and SARS-CoV-2. The indirect interactions can be a physical association 
(two proteins are detected in the same protein complex at the same point of time) or an 
association in which two proteins that may participate in the formation of one or more 
physical complexes without additional evidence whether the proteins are directly bind-
ing to specific members of such a complex).

Validation and test sets. As established in studies [70–72], angiotensin-converting 
enzyme 2 (ACE2) is the human receptor for both SARS-CoV [73] and SARS-CoV-2 
viruses [72]. The positive validation and testing set consist of interaction between the 
known human receptor (ACE2) and the corresponding spike proteins of SARS-CoV 
and SARS-CoV-2, respectively. Our negative validation and testing set encapsulate of all 

Table 5  The case study statistics

|E+| and |E−| refer to the number of positive and negative interactions, respectively. |Vh| and |Vv | are the number of human 
proteins and virus proteins

|Vh| |Vv| Training Validation Testing Human PPI

|E+| |E−| |E+| |E−| |E+| |E−| |E|

5563 834 554 17,418 1 51 1 51 96,459
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possible combinations the two viral spike proteins and 52 human proteins that meet our 
filtering criteria.

The intra human PPI for the side task

Since we are interested in only the direct interaction between virus and human proteins, 
we also customize our intra human PPI training set. Our intra human PPI dataset is also 
retrieved from the InAct [15] database (the latest update is 07.05.2021). We retain only 
interactions between two human proteins that appear in the virus-human PPI dataset 
constructed above. The confidence scores are normalized into the [0, 1] ranges. All con-
fidence scores corresponding to “indirect” interactions are set to 0. In the end, our intra-
human PPI training set consists of 96,458 interactions between 5563 human proteins.

Results

Finally, we here evaluate the prediction methods on how effective they are in ranking 
human protein candidates for binding to an emerging virus envelope protein. Figure 5 
presents the methods’ performance after ten runs on the case study dataset. TopK is 
equal to 1 if the true human receptor appears in the top K proteins that correspond to the 
highest predicted scores by the model and is equal to 0 otherwise. The reported scores 
plotted in Fig. 5 are the average after ten experimental runs with random initialization.

Using this method we find that ACE2, the only SARS-CoV-2 receptor proven in 
in vivo and in vitro studies [72, 74, 75], consistently appears as the highest ranked pre-
diction of MTT in each of the ten experimental runs. We observe a significant difference 
between the highest ranked performance of MTT and its competitors. The performance 
gain shown by MTT over STT is quite substantial after ten runs and supports the supe-
riority of our multitask framework. The next highest nine hits presented in both mod-
els have not been shown to interact with SARS-CoV-2 in in vitro studies. Interestingly, 
dipeptidyl peptidase 4 (DDP4), a receptor for another betacoronavirus MERS-CoV [76] 

Fig. 5  Case study results for benchmarked methods. topK = 1 if the SARS-CoV-2 virus receptor appear in the 
top K proteins that have highest scores predicted by the model and topK = 0 otherwise. The reported results 
are the averages after 10 runs
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also scored highly in the MTT method. However, although in silico analysis has specu-
lated a possible interaction [77], it is yet to be shown experimentally. Similarly, the ser-
ine protease TMPRSS2, which is required for SARS-CoV-2 S protein priming during 
entry [72], appeared in position 7 using the Doc2vec model. Finally, aminopeptidase N 
(ANPEP) the receptor for the common cold coronavirus 229E appeared as first hit in the 
Doc2vec model [78].

In Figures 6 and 7 , we plot the average confidence scores (corresponding to predicted 
interaction probability) corresponding to top 10 predictions of MTT and Doc2vec 
models. Specifically, the proteins are ranked based on the average (over 10 runs) confi-
dence scores as predicted by the two models. While for MTT, the receptor ACE2 always 
occurs at the top of the list with average confidence score of more than 0.70 (which is 
more than 11% higher than the confidence score assigned to the second hit), Doc2vec 
assigns it a score of less than 0.44 where ACE2 is ranked 2nd based on average scores. 
Moreover, there is negligible difference between the prediction scores for ACE2 and the 
first predicted hit ANPEP in case of Doc2vec.

These results indicate that MTT can provide high-quality prediction results and can 
help biologists to restrict the search space for the virus interaction partner effectively. 
This case study showcases the effectiveness of our method in solving virus-human PPI 
prediction problem and aims to convince biologists of the potential application of our 
prediction framework.

Conclusion
We presented a thorough overview of state-of-the-art models and their limitations 
for the task of virus-human PPI prediction. Our proposed approach exploits powerful 
statistical protein representations derived from a corpus of around 24 Million protein 

Fig. 6  The top 10 predictions made by the MTT model. The bars represent the average confidence scores 
after 10 experimental runs while the lines represent the standard deviation

Fig. 7  The top 10 predictions made by the Doc2vec model. The bars represent the average confidence scores 
after 10 experimental runs while the lines represent the standard deviation
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sequences in a multitask framework. Noting the fact that virus proteins tend to mimic 
human proteins towards interacting with the host proteins, we use the prediction 
of human PPI as a side task to regularize our model and improve generalization. The 
comparison of our method with a variety of state-of-the-art models on several datasets 
showcase the superiority of our approach. Ablation study results suggest that the human 
PPI prediction side task brings additional benefits and helps boost the model perfor-
mance. A case study on the interaction of the SARS-CoV-2 virus spike protein and its 
human receptor indicates that our model can be used as an effective tool to reduce the 
search space for evaluating host protein candidates as interacting partners for emerging 
viruses. In future work, we will enhance our multitask approach by incorporating more 
domain information including structural protein prediction tools [79] as well as exploit-
ing more complex multitask model architectures.

Appendix
Detailed results

The following subsections provide detailed experimental results. For the Hybrid and 
MotifTransformer, the author’s code is not available and results are taken from the 
original paper as the. ‘-’ indicates that the score is not available. For other methods, the 
reported results are the average after 10 experimental runs. We perform pairwise t-test 
tests for statistical significance testing. Our presented results are statistically significant 
with a p-value less than 0.05.

Comparison with methods using hand crafted protein features

Table 6 provides a comparison between MTT and baselines which employ hand-crafted 
features. MTT outperfroms Denovo in all benchmarked datasets while MTT supersede 
Generalized in six out of the seven datasets. The performance gains are statistically 
significant with a p-value of 0.05.

Comparison with sequence embedding based methods

Table 7 provides a comparison between MTT and embedding-based methods on small 
testing datasets. MTT outperforms Doc2vec in 4 datasets. The performance gains are 
statistically significant with a p-value of 0.05. MTT is outperformed by Doc2vec in 
three datasets: Zhou’s Ebola, Zhou’s H1N1 and Denovo_slim. We point out that 
these datasets are quite specialized where the negative training and testing samples were 
drawn from a sequence dissimilarity negative sampling technique. In particular, the pro-
tein sequences for negative test set were already chosen based on their dissimilarity to 
those is positive set. This is not a realistic setting when the positive test set is in itself 
unknown. Nevertheless, the performance of MTT is comparable to the state of the art 
on these especially curated datasets too while it outperforms all methods on more gen-
eral datasets.

Detailed results on ablation studies

In Table 8 we compare MTT with its simpler variants for 11 datasets. The reported 
results are average after 10 runs. Results from pair-wise t-test show that that (i)MTT 
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Table 6  Comparison with methods based on hand-crafted features

The bold font is used to highlight highest scores corresponding to each dataset

Dataset Model AUC​ AP Precision Recall F1

Zhou’s H1N1 Denovo 0.8656 0.8619 77.75 77.95 77.85

Generalized 0.8600 0.8606 76.96 77.17 77.06

Hybrid 0.937 – – – –

MTT 0.9461 0.9589 86.28 86.51 86.40
Zhou’s Ebola Denovo 0.8864 0.8366 83.44 84.00 83.72

Generalized 0.9154 0.9078 84.77 85.33 85.05

MTT 0.9680 0.9766 90.93 91.53 91.23
Denovo_slim Denovo 0.8701 0.8631 81.92 82.12 82.02

Generalized 0.8891 0.8851 84.74 84.94 84.84
MTT 0.9221 0.9324 83.92 84.12 84.02

Barman Denovo 0.8217 0.8415 74.60 74.98 74.79

Generalized 0.8214 0.8458 74.90 75.27 75.08

MTT 0.9804 0.9802 93.53 94.05 93.79
Bacillus Denovo 0.9843 0.9650 94.80 94.83 94.83

Generalized 0.9833 0.9668 95.75 95.78 95.76

MTT 0.9997 0.9992 98.75 98.78 98.76
Yersina Denovo 0.9712 0.9302 93.14 93.16 93.15

Generalized 0.9758 0.9362 94.01 94.03 94.02

MTT 0.9988 0.9971 97.32 97.34 97.32
Franci Denovo 0.9782 0.9584 95.55 95.62 95.58

Generalized 0.9799 0.9565 95.84 95.91 95.88

MTT 0.9998 0.9996 98.95 99.03 98.99

Table 7  Comparison with embedding-based methods

The bold font is used to highlight highest scores corresponding to each dataset

Dataset Model AUC​ AP Precision Recall F1

Zhou’s H1N1 doc2vec 0.9601 0.9674 89.04 89.34 89.19
MotifTransformer 0.945 – – – 86.50

MTT 0.9461 0.9589 86.28 86.51 86.40

Zhou’s Ebola Doc2vec 0.9781 0.9832 91.99 92.67 92.33
MotifTransformer 0.968 – – – 89.6

MTT 0.9680 0.9766 90.93 91.53 91.23

Denovo_slim doc2vec 0.9644 0.9681 88.60 88.87 88.73
MTT 0.9221 0.9324 83.92 84.12 84.02

Barman doc2vec 0.8671 0.8922 79.95 80.37 80.16

MTT 0.9804 0.9802 93.53 94.05 93.79
Bacillus doc2vec 0.9900 0.9739 96.29 96.32 96.31

MTT 0.9997 0.9992 98.75 98.78 98.76
Yersina doc2vec 0.9814 0.9510 94.50 94.52 94.51

MTT 0.9988 0.9971 97.32 97.34 97.32
Franci doc2vec 0.9878 0.9606 96.77 96.84 96.81

MTT 0.9998 0.9996 98.95 99.03 98.99
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is significantly better than Naive baseline in all datasets with p-value smaller than 
0.05, (ii) MTT is significantly better than STT in 4 out of 7 datasets with p-value 
smaller than 0.05 while for the remaining datasets, the difference is not statistically 
significant.

Abbreviations
ACE2: Angiotensin-converting enzyme 2; ANPEP: Aminopeptidase N; AP: The area under the precision-recall curve; AUC​: 
The area under Receiver Operating Characteristic curve; DDP4: Dipeptidyl peptidase 4; HH: Human–human protein–pro-
tein interaction training set; LOSO: Leave-One-Species-Out; LSTM: Long Short Term Memory; mLSTM: Multiplicative Long 
Short Term Memory; MLP: Multilayer Perceptrons; MTT: Multitask Transfer; PPI: Protein–protein interaction; SLiM: Short 
Linear Motif; STT: Single task transfer; VH: Virus-human protein–protein interaction training set; Y2H: Yeast-two hybrid; 
644788: The Influenza A virus taxon ID; 33761: The HPV 18 virus taxon ID; 697049: The SARS-CoV-2 virus taxon ID; 043570: 
The Zika virus taxon ID.

Table 8  Results for ablation studies

The bold font is used to highlight highest scores corresponding to each dataset

Dataset Model AUC​ AP Precision Recall F1

H1N1 Naive baseline 0.8310 0.8003 75.92 76.12 76.02

STT 0.9472 0.9590 85.86 86.09 85.98

MTT 0.9461 0.9589 86.28 86.51 86.40
Ebola Naive baseline 0.8876 0.8665 82.12 82.67 82.39

STT 0.9655 0.9749 90.13 90.73 90.43

MTT 0.9680 0.9766 90.93 91.53 91.23

Denovo_slim Naive baseline 0.8843 0.8673 83.80 84.00 83.90

STT 0.9207 0.9343 84.04 84.24 84.14

MTT 0.9221 0.9324 83.92 84.12 84.02
Barman ’s Naive baseline 0.8084 0.8198 73.75 74.11 73.93

MTT 0.9804 0.9802 93.53 94.05 93.79

STT 0.9801 0.9802 93.83 94.29 94.06

Bacillus Naive baseline 0.9842 0.9619 93.75 93.78 93.77

STT 0.9995 0.9986 97.93 97.96 97.95

MTT 0.9997 0.9992 98.75 98.78 98.76
Yersina Naive baseline 0.9741 0.9277 92.61 92.64 92.63

STT 0.9987 0.9970 97.18 97.30 97.24

MTT 0.9988 0.9971 97.32 97.34 97.32

Franci Naive baseline 0.9851 0.9680 94.36 94.43 94.39

STT 0.9997 0.9993 98.84 98.92 98.88

MTT 0.9998 0.9996 98.95 99.03 98.99
2697049 Naive baseline 0.5686 0.0010 0 0 0

STT 0.7457 0.0017 0.07 0.07 0.07

MTT 0.7566 0.0021 0.97 0.97 0.97
333761 Naive baseline 0.7002 0.0110 3.55 3.56 3.55

STT 0.8114 0.0213 4.72 4.72 4.72

MTT 0.8160 0.0262 6.35 6.35 6.35
2043570 Naive baseline 0.6624 0.0076 0.32 0.32 0.32

STT 0.6706 0.0087 1.11 3.01 1.46

MTT 0.6956 0.0096 1.89 1.91 1.90
644788 Naive baseline 0.8410 0.0089 1.82 1.85 1.83

STT 0.9705 0.0459 3.97 9.26 4.65

MTT 0.9537 0.0302 3.54 22.04 5.46



Page 22 of 24Dong et al. BMC Bioinformatics          (2021) 22:572 

Acknowledgements
A preliminary version of this work [80] was presented at the ICLR Workshop on AI for Public Health 2021.

Authors’ contributions
ND designed the study, collected the data, implemented the models and analyzed the results. GB and GG qualitatively 
validated the design and results of the case study. MK designed and supervised the study as well as analyzed the results. 
All authors wrote the manuscript. All authors read and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. N.D is funded by VolkswagenStiftung’s initiative “Nied-
ersächsisches Vorab” (Grant No.11-76251-99-3/19 (ZN3434)). G.B and G.G are supported by the Ministry of Lower Saxony 
(MWK, Project 76251-99 awarded to G.G.). M.K is supported the Federal Ministry of Education and Research (BMBF), Ger-
many under the project LeibnizKILabor (Grant No. 01DD20003). The funding bodies did not play any role in the design of 
the study, collection, analysis, interpretation of data, and in writing the manuscript.

Availability of data and materials
All the code and data used in this study is publicly available at  https://​git.​l3s.​uni-​hanno​ver.​de/​dong/​multi​task-​trans​fer.

Declarations

 Ethics approval and consent to participate
Not applicable. 

Consent for publication
Not applicable. 

Competing interests
The authors declare that they have no competing interests.

Author details
1 L3S Research Center, Leibniz University Hannover, Hannover, Germany. 2 Institute for Biochemistry, University of Veteri-
nary Medicine, Hannover, Germany. 3 Institute of Experimental Virology, TWINCORE, Center for Experimental and Clini-
cal Infection Research Hannover, Hannover, Germany. 4 Department of Clinical Microbiology, Umeå University, Umeå, 
Sweden. 5 Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden. 

Received: 8 March 2021   Accepted: 15 November 2021

References
	1.	 Petersen E, Koopmans M, Go U, Hamer HH, Petrosillo N, Castelli F, Storgaard M, Al Khalili S, Simonsen L. Comparing 

SARS-COV-2 with SARS-COV and influenza pandemics. Lancet Infect Dis. 2020;20(9):238–2244.
	2.	 Smith GA, Enquist LW. Break ins and break outs: viral interactions with the cytoskeleton of mammalian cells. Annu 

Rev Cell Dev Biol. 2002;18:135–61.
	3.	 Beltran PMJ, Cook KC, Cristea IM. Exploring and exploiting proteome organization during viral infection. J Virol. 

2017;91(18):00268–17.
	4.	 Gerold G, Bruening J, Weigel B, Pietschmann T. Protein interactions during the flavivirus and hepacivirus life cycle. 

Mol Cell Proteomics. 2017;16(4 suppl 1):75–91.
	5.	 Sadegh S, Matschinske J, Blumenthal DB, Galindez G, Kacprowski T, List M, Nasirigerdeh R, Oubounyt M, Pichlmair 

A, Rose TD, et al. Exploring the SARS-COV-2 virus-host-drug interactome for drug repurposing. Nat Commun. 
2020;11(1):1–9.

	6.	 Wendt F, Milani ES, Wollscheid B. Elucidation of host-virus surfaceome interactions using spatial proteotyping. Adv 
Virus Res. 2021;109:105–34.

	7.	 Zapatero-Belinchón FJ, Carriquí-Madroñal B, Gerold G. Proximity labeling approaches to study protein complexes 
during virus infection. Adv Virus Res. 2021;109:63–104.

	8.	 Lasswitz L, Chandra N, Arnberg N, Gerold G. Glycomics and proteomics approaches to investigate early adenovirus-
host cell interactions. J Mol Biol. 2018;430(13):1863–82.

	9.	 Gerold G, Bruening J, Pietschmann T. Decoding protein networks during virus entry by quantitative proteomics. 
Virus Res. 2016;218:25–39.

	10.	 Lum KK, Cristea IM. Proteomic approaches to uncovering virus-host protein interactions during the progression of 
viral infection. Expert Rev Proteomics. 2016;13(3):325–40.

	11.	 Greco TM, Cristea IM. Proteomics tracing the footsteps of infectious disease. Mol Cell Proteomics. 2017;16(4):5–14.
	12.	 Jean Beltran PM, Cook KC, Cristea IM. Exploring and exploiting proteome organization during viral infection. J Virol. 

2017;91(18):00268–17.
	13.	 Bailer S, Haas J. Connecting viral with cellular interactomes. Curr Opin Microbiol. 2009;12(4):453–9.
	14.	 Spiropoulou CF, Kunz S, Rollin PE, Campbell KP, Oldstone MB. New world arenavirus clade c, but not clade a and b 

viruses, utilizes α-dystroglycan as its major receptor. J Virol. 2002;76(10):5140–6.
	15.	 Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury M, Dumousseau M, Feuermann M, Hinz 

U, et al. The intact molecular interaction database in 2012. Nucleic Acids Res. 2012;40(D1):841–6.

https://git.l3s.uni-hannover.de/dong/multitask-transfer


Page 23 of 24Dong et al. BMC Bioinformatics          (2021) 22:572 	

	16.	 Calderone A, Licata L, Cesareni G. Virusmentha: a new resource for virus-host protein interactions. Nucleic Acids Res. 
2015;43(D1):588–92.

	17.	 Chatr-Aryamontri A, Ceol A, Peluso D, Nardozza A, Panni S, Sacco F, Tinti M, Smolyar A, Castagnoli L, Vidal M, et al. 
Virusmint: a viral protein interaction database. Nucleic Acids Res. 2009;37(suppl-1):669–73.

	18.	 Ammari MG, Gresham CR, McCarthy FM, Nanduri B. Hpidb 20: a curated database for host-pathogen interactions. 
Database. 2016;1:9.

	19.	 Requião RD, Carneiro RL, Moreira MH, Ribeiro-Alves M, Rossetto S, Palhano FL, Domitrovic T. Viruses with different 
genome types adopt a similar strategy to pack nucleic acids based on positively charged protein domains. Sci Rep. 
2020;10(1):1–12.

	20.	 Rodrigo G, Daròs J-A, Elena SF. Virus-host interactome: putting the accent on how it changes. J Proteomics. 
2017;156:1–4.

	21.	 Gitlin L, Hagai T, LaBarbera A, Solovey M, Andino R. Rapid evolution of virus sequences in intrinsically disordered 
protein regions. PLoS Pathog. 2014;10(12):1004529.

	22.	 Eid F-E, ElHefnawi M, Heath LS. Denovo: virus-host sequence-based protein–protein interaction prediction. Bioinfor-
matics. 2016;32(8):1144–50.

	23.	 Li Y, Ilie L. Predicting protein–protein interactions using sprint. In: Protein–protein interaction networks. Springer; 
2020. p. 1–11.

	24.	 Sun T, Zhou B, Lai L, Pei J. Sequence-based prediction of protein protein interaction using a deep-learning algo-
rithm. BMC Bioinform. 2017;18(1):1–8.

	25.	 Li Y. Computational methods for predicting protein–protein interactions and binding sites. 2020.
	26.	 Chen K-H, Wang T-F, Hu Y-J. Protein–protein interaction prediction using a hybrid feature representation and a 

stacked generalization scheme. BMC Bioinform. 2019;20(1):1–17.
	27.	 Sarkar D, Saha S. Machine-learning techniques for the prediction of protein–protein interactions. J Biosci. 

2019;44(4):1–12.
	28.	 Sudhakar P, Machiel, K, Vermeire S. Computational biology and machine learning approaches to study mechanistic 

microbiomehost interactions. 2020.
	29.	 Mei S, Zhang K. In silico unravelling pathogen-host signaling cross-talks via pathogen mimicry and human protein–

protein interaction networks. Comput Struct Biotechnol J. 2020;18:100–13.
	30.	 Dick K, Samanfar B, Barnes B, Cober ER, Mimee B, Molnar SJ, Biggar KK, Golshani A, Dehne F, Green JR, et al. Pipe4: 

fast ppi predictor for comprehensive inter-and cross-species interactomes. Sci Rep. 2020;10(1):1–15.
	31.	 Li BYS, Yeung LF, Yang G. Pathogen host interaction prediction via matrix factorization. In: 2014 IEEE international 

conference on Bioinformatics and Biomedicine (BIBM). IEEE; 2014. p. 357–62.
	32.	 Guven-Maiorov E, Tsai C-J, Ma B, Nussinov R. Interface-based structural prediction of novel host-pathogen interac-

tions. In: Computational methods in protein evolution. Springer; 2019. p. 317–35.
	33.	 Basit AH, Abbasi WA, Asif A, Gull S, Minhas FUAA. Training host-pathogen protein–protein interaction predictors. J 

Bioinform Comput Biol. 2018;16(04):1850014.
	34.	 Alley EC, Khimulya G, Biswas S, AlQuraishi M, Church GM. Unified rational protein engineering with sequence-based 

deep representation learning. Nat Methods. 2019;16(12):1315–22.
	35.	 Nouretdinov I, Gammerman A, Qi Y, Klein-Seetharaman J. Determining confidence of predicted interactions 

between HIV-1 and human proteins using conformal method. In: Biocomputing. World Scientific; 2012. p. 311–22.
	36.	 Nourani E, Khunjush F, Durmuş S. Computational prediction of virus-human protein–protein interactions using 

embedding kernelized heterogeneous data. Mol BioSyst. 2016;12(6):1976–86.
	37.	 Mei S, Zhu H. A novel one-class SVM based negative data sampling method for reconstructing proteome-wide 

HTLV-human protein interaction networks. Sci Rep. 2015;5(1):1–13.
	38.	 Cui G, Fang C, Han K. Prediction of protein–protein interactions between viruses and human by an SVM model. BMC 

Bioinform. 2012;13:1–10.
	39.	 Kim B, Alguwaizani S, Zhou X, Huang D-S, Park B, Han K. An improved method for predicting interactions between 

virus and human proteins. J Bioinform Comput Biol. 2017;15(01):1650024.
	40.	 Loaiza CD, Kaundal R. Predhpi: an integrated web server platform for the detection and visualization of host-patho-

gen interactions using sequence-based methods. Bioinformatics. 2020;37:622–4.
	41.	 Zhou X, Park B, Choi D, Han K. A generalized approach to predicting protein–protein interactions between virus and 

host. BMC Genomics. 2018;19(6):69–77.
	42.	 Ma Y, He T, Tan Y-T, et al. Seq-bel: sequence-based ensemble learning for predicting virus-human protein–protein 

interaction. IEEE/ACM Trans Comput Biol Bioinform. 2020;1:1.
	43.	 Deng L, Zhao J, Zhang J. Predict the protein–protein interaction between virus and host through hybrid deep neu-

ral network. In: 2020 IEEE international conference on Bioinformatics and Biomedicine (BIBM). IEEE; 2020. p. 11–16.
	44.	 Dey L, Chakraborty S, Mukhopadhyay A. Machine learning techniques for sequence-based prediction of viral-host 

interactions between SARS-COV-2 and human proteins. Biomed J. 2020;43(5):438–50.
	45.	 Yang X, Yang S, Li Q, Wuchty S, Zhang Z. Prediction of human-virus protein–protein interactions through a sequence 

embedding-based machine learning method. Comput Struct Biotechnol J. 2020;18:153–61.
	46.	 Lanchantin J, Weingarten T, Sekhon A, Miller C, Qi Y. Transfer learning for predicting virus-host protein interactions 

for novel virus sequences. bioRxiv. 2021;2020-12.
	47.	 Liu-Wei W, Kafkas S, Chen J, Dimonaco NJ, Tegnér J, Hoehndorf R. Deepviral: prediction of novel virus-host interac-

tions from protein sequences and infectious disease phenotypes. Bioinformatics. 2021. https://​doi.​org/​10.​1093/​
bioin​forma​tics/​btab1​47.

	48.	 Barman RK, Saha S, Das S. Prediction of interactions between viral and host proteins using supervised machine 
learning methods. PLoS ONE. 2014;9(11):112034.

	49.	 Lasso G, Mayer SV, Winkelmann ER, Chu T, Elliot O, Patino-Galindo JA, Park K, Rabadan R, Honig B, Shapira SD. A 
structure-informed atlas of human-virus interactions. Cell. 2019;178(6):1526–41.

	50.	 Liu D, Ma Y, Jiang X, He T. Predicting virus-host association by kernelized logistic matrix factorization and similarity 
network fusion. BMC Bioinform. 2019;20(16):1–10.

https://doi.org/10.1093/bioinformatics/btab147
https://doi.org/10.1093/bioinformatics/btab147


Page 24 of 24Dong et al. BMC Bioinformatics          (2021) 22:572 

	51.	 Wang W, Ren J, Tang K, Dart E, Ignacio-Espinoza JC, Fuhrman JA, Braun J, Sun F, Ahlgren NA. A network-based inte-
grated framework for predicting virus-prokaryote interactions. NAR Genomics Bioinform. 2020;2(2):044.

	52.	 Biswas S. Principles of machine learning-guided protein engineering. PhD thesis; 2020.
	53.	 Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou 

KP, et al. String v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 
2015;43(D1):447–52.

	54.	 Alonso-Lopez D, Gutiérrez MA, Lopes KP, Prieto C, Santamaría R, De Las Rivas J. Apid interactomes: providing 
proteome-based interactomes with controlled quality for multiple species and derived networks. Nucleic Acids Res. 
2016;44(W1):529–35.

	55.	 Consortium U. Uniprot: a hub for protein information. Nucleic Acids Res. 2015;43(D1):204–12.
	56.	 Aranda B, Blankenburg H, Kerrien S, Brinkman FS, Ceol A, Chautard E, Dana JM, De Las Rivas J, Dumousseau M, 

Galeota E, et al. Psicquic and psiscore: accessing and scoring molecular interactions. Nat Methods. 2011;8(7):528–9.
	57.	 Martin S, Roe D, Faulon J-L. Predicting protein–protein interactions using signature products. Bioinformatics. 

2005;21(2):218–26.
	58.	 Mei S. Probability weighted ensemble transfer learning for predicting interactions between HIV-1 and human 

proteins. PLoS ONE. 2013;8(11):79606.
	59.	 Federhen S. The NCBI taxonomy database. Nucleic Acids Res. 2012;40(D1):136–43.
	60.	 Diella F, Haslam N, Chica C, Budd A, Michael S, Brown NP, Travé G, Gibson TJ. Understanding eukaryotic linear motifs 

and their role in cell signaling and regulation. Front Biosci. 2008;13(6580):603.
	61.	 Neduva V, Russell RB. Peptides mediating interaction networks: new leads at last. Curr Opin Biotechnol. 

2006;17(5):465–71.
	62.	 Le Q, Mikolov T. Distributed representations of sentences and documents. In: International conference on machine 

learning. PMLR; 2014. p. 1188–96.
	63.	 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, et al. Pytorch: an 

imperative style, high-performance deep learning library. Adv Neural Inf Process Syst. 2019;32:8026–37.
	64.	 Welch BL. The generalization of ‘student’s’ problem when several different population varlances are involved. Biom-

etrika. 1947;34(1–2):28–35.
	65.	 Salzberg SL. On comparing classifiers: pitfalls to avoid and a recommended approach. Data Min Knowl Discov. 

1997;1(3):317–28.
	66.	 Kafadar K. Handbook of parametric and nonparametric statistical procedures. Am Stat. 1997;51(4):374.
	67.	 Bausch-Fluck D, Hofmann A, Bock T, Frei AP, Cerciello F, Jacobs A, Moest H, Omasits U, Gundry RL, Yoon C, et al. A 

mass spectrometric-derived cell surface protein atlas. PLoS ONE. 2015;10(4):0121314.
	68.	 Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene 

ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9.
	69.	 Carbon S, Douglass E, Good BM, Unni DR, Harris NL, Mungall CJ, Basu S, Chisholm RL, Dodson RJ, Hartline E, et al. The 

gene ontology resource: enriching a gold mine. Nucleic Acids Res. 2021;49(D1):325–34.
	70.	 Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, Li F. Cell entry mechanisms of SARS-COV-2. Proc Natl Acad Sci. 

2020;117(21):11727–34.
	71.	 Zhang Q, Xiang R, Huo S, Zhou Y, Jiang S, Wang Q, Yu F. Molecular mechanism of interaction between SARS-COV-2 

and host cells and interventional therapy. Signal Transduct Target Ther. 2021;6(1):1–19.
	72.	 Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu N-H, Nitsche 

A, et al. SARS-COV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibi-
tor. Cell. 2020;181(2):271–80.

	73.	 Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Gree-
nough TC, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 
2003;426(6965):450–4.

	74.	 Bao L, Deng W, Huang B, Gao H, Liu J, Ren L, Wei Q, Yu P, Xu Y, Qi F, et al. The pathogenicity of SARS-COV-2 in HACE2 
transgenic mice. Nature. 2020;583(7818):830–3.

	75.	 Winkler ES, Bailey AL, Kafai NM, Nair S, McCune BT, Yu J, Fox JM, Chen RE, Earnest JT, Keeler SP, et al. SARS-COV-2 
infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat Immunol. 
2020;21(11):1327–35.

	76.	 Wang N, Shi X, Jiang L, Zhang S, Wang D, Tong P, Guo D, Fu L, Cui Y, Liu X, et al. Structure of MERS-COV spike 
receptor-binding domain complexed with human receptor DPP4. Cell Res. 2013;23(8):986–93.

	77.	 Vankadari N, Wilce JA. Emerging covid-19 coronavirus: glycan shield and structure prediction of spike glycoprotein 
and its interaction with human cd26. Emerg Microbes Infect. 2020;9(1):601–4.

	78.	 Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT, Holmes KV. Human aminopeptidase n is a 
receptor for human coronavirus 229e. Nature. 1992;357(6377):420–2.

	79.	 Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, 
et al. Highly accurate protein structure prediction with alphafold. Nature. 2021;596:583–9.

	80.	 Dong NT, Khosla M. A multitask transfer learning framework for novel virus-human protein interactions. bioRxiv. 
2021. https://​doi.​org/​10.​1101/​2021.​03.​25.​437037.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1101/2021.03.25.437037

	A multitask transfer learning framework for the prediction of virus-human protein–protein interactions
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Introduction
	Key challenges in learning to predict virus-human PPI
	Our contributions

	Related work
	Method
	Extracting protein representations
	Learning framework
	Training using a multi-task objective


	Data description and experimental set up
	Benchmark datasets
	The realistic host cell-virus testing datasets
	The widely used new virus-human PPI prediction benchmarked datasets
	The specialized testing datasets
	The bacteria human PPI prediction task

	Description of compared methods
	Implementation details and parameter set up
	Evaluation metrics

	Result analysis
	Comparison with methods employing hand-crafted features
	Comparison with sequence embedding based methods
	Comparison with methods that use domain information
	Comparison with methods that used GO, taxonomy and phenotype information
	Ablation studies

	Case study for SARS-CoV-2 binding prediction
	Training, validation and test sets for virus-human PPI
	The intra human PPI for the side task
	Results

	Conclusion
	Acknowledgements
	References


