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Background
MicroRNAs (miRNAs) are single-stranded small ncRNAs with a typical length of 19 ~ 25 
nt [1]. Although they do not encode proteins, they play a significant role in regulating 
gene expression. They usually silence gene expression through translational repression 
or otherwise function as post-transcriptional gene regulators. In 1993, the first miRNA, 
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lin-4, was discovered by Victor Ambros et al. [2]. After seven years, biological research-
ers discovered the second miRNA, let-7 [3]. As miRNAs are increasingly identified as 
playing crucial roles, researchers have begun to focus more attention on identifying 
miRNAs.

Studies have found that miRNAs are crucial components in cells and can play roles in 
many important biological processes, including haematopoiesis, cell proliferation, devel-
opment, differentiation, apoptosis, cell ageing, viral infection, embryonic development 
and organ formation [4–7]. Mutated and disordered miRNAs will lose the ability to con-
trol their target genes, leading to the development of various complex human diseases, 
such as cardiovascular diseases, nervous system diseases, tumours, metabolic diseases, 
and autoimmune diseases [8, 9]. As an example, a miR-133b defect is easily observed in 
the midbrain of patients with Parkinson’s disease; miR-133b is thought to have a regula-
tory effect on the maturation and function of midbrain dopamine neurons [10]. In addi-
tion, Gao et al. found that the expression of miR-155 in the serum of lung cancer patients 
was much higher than that in normal samples by experimental PCR [11]. Furthermore, 
Takamizawa et al. have proved that the homology of let-7 is significantly reduced in the 
process of lung cancer [12]. However, discovering meaningful associations between 
miRNAs and diseases is a time-consuming process. Therefore, it is urgent to develop fast 
and efficient computational methods for predicting miRNA–disease associations.

In the last decade, a large number of methods and models have been proposed to iden-
tify potential relationships between miRNAs and diseases [13, 14]. These methods and 
models have mainly focused on solving the above problem by machine learning, net-
work mining, combinatorial optimization, and related approaches [15–17]. For exam-
ple, Jiang et al. used a support vector machine to extract data on positive samples from 
negative samples. This method extracted features from miRNA target data and pheno-
typic similarity data and achieved favourable results [18]. Chen et al. applied the random 
walk algorithm with a restart, which is also a classic network-based prediction model, 
to miRNA–disease association (MDA) prediction [19]. In 2013, Qabaja et al. proposed a 
protein–protein interaction network based on the lasso regression model. They first used 
the lasso regression model to identify miRNAs associated with markers of diseases and 
then integrated biological networks and multisource data to define the gene signatures 
of miRNAs and diseases. Finally, this method achieved good predictive performance 
[20]. Xuan et al. proposed a prediction method based on the K-nearest neighbour algo-
rithm. This method constructs a similarity network by integrating the miRNA–disease 
phenotype similarity network, the family information of miRNAs, and the relationships 
between diseases and miRNAs identified by biological experiments. The disadvantage of 
this method is that it cannot be applied to the association prediction of diseases without 
any known related miRNAs [21].

In 2014, Chen et al. proposed a semi-supervised algorithm named regularized least 
squares (RLSMDA) to predict potential disease-miRNA associations. The advantage 
of this method is that it does not require negative MDAs information and can be 
applied to the prediction of isolated diseases. In 2017, Chen et  al. proposed a pre-
dictive model for the associations between miRNAs and diseases based on Laplacian 
regularized sparse subspace learning (LRSSLMDA) [22]. They used Laplacian regu-
larization to keep local information and then used the L1 norm to select important 
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miRNA/disease features, further improving the precision of the algorithm. Chen 
et  al. proposed a computational method, ensemble learning and link prediction for 
miRNA-disease association (ELLPMDA), which combines both machine learning 
methods and similarity-based algorithms. This method is based on a globally similar 
measurement method for diseases without any associated miRNAs [23]. Algorithms 
such as neural networks are also used to predict miRNA–disease associations. In 
2017, Fu et al. proposed a deep integration model (DeepMDA), which uses a stack-
type autoencoder to extract high-level features from similar information and then 
predicts disease-miRNA associations through a three-layer neural network [24]. In 
addition, matrix factorization is also used to predict the association between miR-
NAs and diseases. In 2019, Gao et al. proposed a computational model, dual-network 
sparse graph regularized matrix factorization (DNSGRMF), for predicting miRNA–
disease associations by integrating the miRNA functional similarity matrix, the dis-
ease semantic similarity matrix and Gaussian kernel similarities with the addition of 
the L2,1 norm. They used collaborative matrix factorization to predict miRNA–dis-
ease associations [25]. Later, a more efficient miRNA-disease associations predic-
tion model, nearest profile-based collaborative matrix factorization (NPCMF), was 
proposed by Gao et  al., which integrates Gaussian kernel similarity and the nearest 
profile, taking the nearest neighbour information into account. Finally, DNSGRMF 
and NPCMF achieved excellent predictive accuracy based on fivefold cross-validation 
[26].

Although there are many advanced methods to predict MDAs, they still have some 
shortcomings. For instance, several methods trigger bias to miRNAs (diseases). 
Moreover, the small number of known relationships cannot be utilized to predict new 
miRNAs and diseases. More importantly, in some methods, the nearest neighbour 
information of the miRNA and the disease is not considered. To address the limita-
tions of previous methods, a computational method of bipartite graphs based on col-
laborative matrix factorization (BGCMF) is proposed. The specific contributions of 
our method include the following two aspects:

In our method, the miRNA similarity matrix and disease similarity matrix are 
constructed by combining Gaussian interaction kernel similarity, miRNA func-
tional similarity, and disease semantic similarity. This could help to infer potential 
miRNA–disease associations.
It is worth noting that the bipartite graph algorithm (BG) is introduced to our 
method for maximum consideration of neighbouring information for miRNAs 
and diseases. Then, it calculates a weighted average of similarities between miR-
NAs and diseases to eliminate the bias on prediction.

In addition, there are quite a few missing associations in the original matrix Y , and 
Weight K Nearest Known Neighbours (WKNKN) [27] is implemented as a pre-treat-
ment step to minimize the error. Moreover, five-fold cross-validation is exploited in 
our method to evaluate our experimental results. We also introduce simulation exper-
iments to further evaluate the performance of our method. Overall, the results dem-
onstrate that our BGCMF method is superior to other existing advanced methods.
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Results
Human miRNA–disease associations association dataset

In this study, the gold standard human miRNA–disease association dataset was down-
loaded from the Human microRNA Disease Database (HMDD) v2.0 [28]. HMDD v2.0 
includes 495 miRNAs, 383 diseases and 5430 experimentally verified miRNA-disease 
associations. In this paper, the dataset includes three matrices: the adjacency matrix Y , the 
miRNA functional similarity matrix Sm , and the disease semantic similarity matrix Sd . The 
information for the dataset is listed in Table 1.

We use an adjacency matrix Y ∈ R
n×m to describe the associations between miRNAs 

and diseases that have been validated, where n represents the number of miRNAs and m 
represents the number of diseases. When M(i) and D

(
j
)
 are associated, Y

(
M(i),D

(
j
))

 is 
set to 1; otherwise, Y

(
M(i),D

(
j
))

 is set to 0. The following is the expression of the matrix Y:

Performance evaluation

In this study, we implement fivefold cross-validation to evaluate the prediction perfor-
mance of each method. The principle of fivefold cross-validation is to randomly divide the 
known miRNA-disease associations into five subsets, one of which is used as a test set, and 
the rest are used as a training set. Then, five models are trained by cycling five times, and 
the average of the five evaluation results is calculated as the final score of the model. Finally, 
fivefold cross-validation was performed 100 times, and the final score was taken as the 
average. It is worth noting that in our BGCMF method, WKNKN is used as a preprocessing 
procedure to evaluate unknown MDAs. At the same time, the nearest neighbour informa-
tion is applied to our method, and it has the advantage of taking into account the nearest 
neighbour information and improving the accuracy of the prediction.

To verify the effect of the prediction, the area under the curve (AUC) value was applied 
in this study, which is widely used in previous studies. Therefore, a receiver operating char-
acteristic (ROC) curve was obtained. In this curve, the x-axis is the false-positive rate (FPR, 
specificity), and the y-axis is the true positive rate (TPR, sensitivity). The definitions for cal-
culating specificity and sensitivity are as follows:

(1)Y
(
M(i),D

(
j
))

=

{
1, M(i) is associated with disease D

(
j
)
,

0, otherwise.

(2)Specificity =
TN

TN + FP
,

Table 1  The gold standard dataset of miRNAs, diseases and associations

Dataset Gold 
standard 
dataset

MiRNAs 495

Diseases 383

Associations 5430
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where TP represents the number of positive samples, FP represents the number of false-
positive samples, TN  represents the number of negative samples and FN  represents the 
number of false-negative samples. An AUC value between 0.5 and 1 is considered feasi-
ble, with AUC = 1 representing the best predictive performance and AUC = 0.5 repre-
senting stochastic prediction.

Comparison with other methods

Based on experimentally confirmed associations between diseases and miRNAs, five-
fold cross-validation is implemented in this paper to evaluate the predictive accuracy of 
BGCMF. We compared our method with other advanced methods, such as HDMP [21], 
CMF [29], ELLPMDA [23], DNSGRMF [25] and NPCMF [26]. The experimental results 
are listed in Table 2. More intuitively, the ROC curves are shown in Fig. 1. The AUCs of 
HDMP, CMF, ELLPMDA, DNSGRMF and NPCMF were 0.8342, 0.8697, 0.9193, 0.9304, 
and 0.9429, respectively, while the AUC of BGCMF was 0.9514. The best value is in bold.

(3)Sensitibity =
TP

TP + FN
,

Table 2  The AUC results of fivefold cross validation experiments

Methods AUC​

HDMP 0.8342(0.0010)

CMF 0.8697(0.0011)

ELLPMDA 0.9193(0.0002)

DNSGRMF 0.9304(0.0011)

NPCMF 0.9429(0.0011)

BGCMF 0.9514(0.0007)

Fig. 1  The ROC curve for HDMP, CMF, ELLPMDA, DNSGRMF, NPCMF and BGCMF in fivefold cross validation 
experiment, respectively
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From the above statistical results, our method is 11.72% higher than the lowest value 
of HDMP. The BGCMF is 2.1% and 0.85% higher than the values of DNSGRMF and 
NPCMF, respectively. Therefore, we can conclude from the experimental results that the 
BGCMF has excellent predictive performance.

Sensitivity analysis from WKNKN

If a miRNA or a disease is known, it must have one or more associations. However, there 
are many missing unknown associations in the interaction matrix Y . WKNKN pre-pro-
cessing is used to estimate the interaction possibilities to minimize the error. There are 
two parameters K  and p in WKNKN, where K  represents the number of known nearest 
neighbours and p represents the decay term for the neighbour. The value of p is between 
0 and 1. As shown in Fig. 2, when K = 7 and p = 0.6 , the AUC value tends to be stable.

Case study

The previous sections verify that our proposed method has outstanding predictive per-
formance. Colon, prostate, and kidney are selected in the case study to further illustrate 
the superior performance of our BGCMF. The known miRNA–disease associations in 
the standard dataset are used as a training set to predict potential disease-associated 
miRNAs. Our specific process first uses the BGCMF method to predict these three 
diseases, and the choice of parameters is as described above. Then, the predicted score 
matrix is compared to the original miRNA-disease association matrix. The associa-
tions of predicted scores with changes are filtered and compared. Finally, we validated 
whether the predicted new miRNA–disease associations exist in the updated dbDEMC 
[30], miR2Disease [31] and the HMDD v3.2 [32].

Fig. 2  Sensitivity analysis from WKNKN
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Colon neoplasms, also known as bowel cancer, are one of the three most common 
cancers, accounting for 10% of all cancer cases. Due to the low detection rate of colon 
tumours in the early stages, it creates a huge threat to people’s lives. New biomarkers 
may help to improve the early detection of colon tumours. Recent studies have found 
that miRNA dysregulation can be used as a marker for colon tumour diagnosis in colon 
neoplasm cells. For example, miR-145 and miR-126 can inhibit the growth of colon neo-
plasm cells, and an increasing number of miRNAs associated with colon neoplasms 
have been found to be of great significance for improving the early detection of colon 
neoplasms. Here, the first type of case is colon neoplasms. In the dataset used in our 
experiments, there are 5 existing associations between miRNAs and colon neoplasms. 
After the simulation experiment is performed, the top 30 miRNAs of colon neoplasms 
are extracted, and all existing associations are successfully predicted. At the same time, 
25 novel MDAs are predicted. Among these 25 new miRNAs, all of the miRNAs are vali-
dated by dbDEMC, miR2Disease and HMDD v3.2. More importantly, fourteen of them 
are confirmed by the above three databases. For example, in 2007, Shi et al. found that 
the target gene of miR-145 is insulin receptor substrate-1 and can inhibit the growth of 
colon cancer cells [33]. In 2013, Wan et al. identified that patients with colon cancer with 
high expression of miR-199a-3p had a lower survival rate [34]. Table 3 lists the simula-
tion results of colon tumours, and the known associations are shown in bold. I, II, III 
represent dbDEMC, miR2Disease and the HMDD v3.2.

The next case is prostate neoplasms, which are the third most common cause of male 
cancer-related death. In our simulation experiments, we also select the top 30 miRNAs 
with the highest correlation scores, and seven known miRNAs associated with prostate 
neoplasms are successfully predicted. Among the 23 newly predicted miRNAs associ-
ated with prostate neoplasms, miR143, miR21, and miR126 are the highest ranked 
miRNAs, as confirmed by three databases at the same time. Only miR-200b is not con-
firmed in either dbDEMCs or miR2Disease associated with prostate neoplasms, but it is 
confirmed by HMDD v3.2. Although a large number of miRNAs have been discovered, 

Table 3  Prediction MIRNAs for colon neoplasms

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-145 Known 16 hsa-mir-19b I;II

2 hsa-mir-1 Known 17 hsa-let-7a I; II; III

3 hsa-mir-106a Known 18 hsa-mir-200b I; III

4 hsa-mir-126 Known 19 hsa-mir-34a I; II; III

5 hsa-mir-17 Known 20 hsa-mir-221 I; II; III

6 hsa-mir-143 I; II; III 21 hsa-mir-200c I; II; III

7 hsa-mir-21 I; II; III 22 hsa-mir-146a I; III

8 hsa-mir-155 I; II; III 23 hsa-mir-141 I; II; III

9 hsa-mir-20a I; II; III 24 hsa-mir-19a I; II; III

10 hsa-mir-125b I; III 25 hsa-mir-29a I; II; III

11 hsa-mir-9 I; II 26 hsa-mir-200a III

12 hsa-mir-22 I; III 27 hsa-mir-142 III

13 hsa-mir-16 I; III 28 hsa-mir-7 I

14 hsa-mir-31 I; II; III 29 hsa-mir-92a III

15 hsa-mir-18a I; II; III 30 hsa-let-7b I; II; III
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knowledge regarding their function and physiological/pathological significance remains 
limited. Table 4 lists the details of the experiment and the existing associations.

The last case is kidney neoplasms. Kidney neoplasms, also known as kidney cancer, are 
cancers that originate in kidney cells and include several different types of tumours. Kid-
ney neoplasms account for 3% of adult malignancies [35]. According to previous stud-
ies, a large number of miRNAs have been examined for kidney tumours. For example, 
circulating levels of miR-15b in patients with advanced kidney cancer are significantly 
reduced [36]. In addition, overexpression of miR-210 leads to the amplification of renal 
cancer cell centrosomes [37]. In this case, there are 9 miRNAs that have associations 
with kidney neoplasms. Nine known miRNAs are successfully predicted in our results. 
Simultaneously, 35 new miRNAs are predicted. Among the 35 new miRNAs, 29 miRNAs 
connected with kidney neoplasms have discovered experimental proof from three data-
bases. For example, studies have found that miR-17 is carcinogenic and overexpressed 
in renal cell carcinoma. Although the predicted novel miRNAs, including miR205, 
miR125b, miR-7, miR-221, miR-31, and miR-92a, are unconfirmed by miR2Disease or 
dbDEMC, these miRNAs are closely associated with kidney neoplasms. Table 5 lists the 
simulation results of kidney neoplasms, and the known associations are shown in bold. 
To show the simulation experiment of BGCMF more intuitively, Cytoscape software 
was used to map the three predicted disease-miRNA association networks. As shown in 
Fig. 3, large ellipses indicate the three diseases, and small ellipses indicate the predicted 
miRNAs.

Discussion
MiRNAs are involved in many physiological processes, such as organismal development, 
cell differentiation and proliferation, apoptosis, hormone secretion, and lipid metabo-
lism. miRNAs are closely related to the occurrence and development of tumours, met-
abolic diseases, stress diseases, and cardiovascular diseases. With the development of 
miRNA bioinformatics, direction prediction and other advances in biological science 

Table 4  Prediction MIRNAs for prostate neoplasms

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-125b Known 16 hsa-mir-100 I; III

2 hsa-mir-1 Known 17 hsa-mir-375 I; III

3 hsa-mir-183 Known 18 hsa-mir-20a I; III

4 hsa-mir-145 Known 19 hsa-mir-31 I; III

5 hsa-mir-99a Known 20 hsa-mir-7 I; III

6 hsa-mir-9 Known 21 hsa-mir-96 I; III

7 hsa-mir-574 Known 22 hsa-mir-200a I; III

8 hsa-mir-143 I; II; III 23 hsa-mir-200b III

9 hsa-mir-21 I; II; III 24 hsa-mir-34a I; II; III

10 hsa-mir-126 I; II; III 25 hsa-mir-141 I; III

11 hsa-mir-182 I; II; III 26 hsa-mir-221 I; III

12 hsa-mir-133a I; III 27 hsa-mir-155 I; III

13 hsa-mir-199a I; II; III 28 hsa-mir-17 II; III

14 hsa-mir-223 I; II; III 29 hsa-mir-200c I; III

15 hsa-mir-22 I; III 30 hsa-mir-146a II; III



Page 9 of 16Zhou et al. BMC Bioinformatics          (2021) 22:573 	

Table 5  Prediction MIRNAs for kidney neoplasms

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-141 Known 23 hsa-mir-34a I

2 hsa-mir-15a Known 24 hsa-mir-126 I; II; III

3 hsa-mir-21 Known 25 hsa-mir-146a I

4 hsa-mir-1 Known 26 hsa-mir-7 unconfirmed

5 hsa-mir-192 Known 27 hsa-mir-221 unconfirmed

6 hsa-mir-200c Known 28 hsa-mir-17 II; III

7 hsa-mir-215 Known 29 hsa-mir-31 unconfirmed

8 hsa-mir-23b Known 30 hsa-mir-92a unconfirmed

9 hsa-mir-200 Known 31 hsa-mir-15b I

10 hsa-mir-200b I; II; III 32 hsa-mir-19a I

11 hsa-mir-200a I; III 33 hsa-mir-143 I

12 hsa-mir-9 I 34 hsa-mir-29c I; III

13 hsa-mir-16 I 35 hsa-mir-183 I; III

14 hsa-mir-155 I; III 36 hsa-let-7a I

15 hsa-mir-210 I; II 37 hsa-mir-222 I

16 hsa-mir-429 I 38 hsa-mir-199a I; II; III

17 hsa-mir-203 I 39 hsa-mir-182 I; II

18 hsa-mir-205 Unconfirmed 40 hsa-mir-32 I

19 hsa-mir-125b Unconfirmed 41 hsa-mir-18a I

20 hsa-mir-20a I; II 42 hsa-mir-194 I

21 hsa-mir-145 I 43 hsa-mir-34c I

22 hsa-mir-22 I 44 hsa-mir-218 I

Fig. 3  Visualized miRNA–disease associations association network of case study
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and technology, a large number of miRNAs have been discovered and verified. However, 
validating the associations between miRNAs and diseases through biological experi-
ments is time-consuming and expensive. Therefore, it is absolutely necessary to develop 
new and effective computational models to predict potential associations between miR-
NAs and diseases. In this paper, an efficient and useful method to predict potential 
MDAs is developed. Our method can be divided into three parts. The entire calculation 
process is described in detail in Fig. 4. The first step in this method is to process the data 
for subsequent prediction. Then, we use the CMF algorithm and BG algorithm to make 
predictions based on the processed data separately. Finally, we combine the prediction 
results of the two algorithms to obtain the final prediction matrix. The BGCMF achieves 
an overall result that is better than the two results given by single models.

Conclusions
The success of our method can be mainly attributed to several factors. First, we com-
bined Gaussian interaction profile similarity with miRNA functional similarity and disease 
semantic similarity to obtain accurate information about miRNA pairs and disease pairs. 
In addition, WKNKN is an essential pretreatment process. It is worth noting that our larg-
est contribution is combining the bipartite graph algorithm with the collaborative matrix 

Fig. 4  Flow chart of BGCMF in novel MDAs prediction by integrating miRNA function similarity, disease 
semantic similarity, and known miRNA-disease associations. Then combine the prediction results of the BG 
algorithm and CMF algorithm to obtain the final prediction matrix
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factorization model. This allows for maximum consideration of neighbouring information 
for miRNAs and diseases, preventing the network similarity of miRNAs and diseases from 
being affected. Finally, both fivefold cross-validation results and three kinds of case studies 
on colon neoplasms, prostate neoplasms, and kidney neoplasms demonstrated the reliable 
prediction performance of BGCMF.

In the future, an increasing number of useful methods will be applied to predict potential 
MDAs. We will continue to study this aspect of research. At the same time, more mean-
ingful datasets are being published in online bio-databases. Therefore, our next work will 
focus on developing effective methods to predict novel miRNA–disease associations and to 
evaluate the effectiveness of the method on diverse datasets.

Method
This novel method is named bipartite graph-based collaborative matrix factorization 
(BGCMF). The method is divided into two major steps. First, the Gaussian interaction pro-
file kernel (GIP) and nearest neighbour profile (NP) are introduced in our method to pro-
cess the original miRNA matrix and the disease matrix to obtain their network information. 
At the same time, WKNKN is used to handle the original interaction matrix Y to minimize 
the error. Second, the BG algorithm is implemented to obtain prediction matrix Y1 and 
collaborative matrix factorization (CMF) to obtain the prediction matrix Y2 , respectively. 
Finally, the prediction matrix Ypredict is obtained by combining our two improved models. 
The flowchart of BGBMF is shown in Fig. 4.

MiRNA functional similarity

With the hypothesis that functionally similar miRNAs tend to be associated with pheno-
typically similar diseases, a computing method of miRNA functional similarity was pre-
sented by Wang et al. [10]. The functional similarity score matrix can be downloaded from 
http://​www.​cuilab.​cn/​files/​images/​cuilab/​misim.​zip. Here, the obtained functional similar-
ity for miRNA is denoted by Sm ∈ R

n×n , and the value of entity S
(
M(i),M

(
j
))

 measures 
the closeness between miRNA M(i) and M

(
j
)
.

Disease semantic similarity

A directed acyclic graph (DAG) is proposed to describe the relationships among various 
diseases. In addition, the disease D can be described by DAG(D) = (D,T (D),E(D)) . T (D) 
is the node set and represents both its ancestor nodes and D itself. E(D) is used to represent 
all direct edges between child nodes and parent nodes. The semantic similarity value of dis-
ease D is as follows:

where � represents the semantic contribution factor and D1D(d) is the contribution of 
disease d . For each disease d , its contribution to itself is 1, and the contribution of its 

(4)SV 1(D) =
∑

d∈T (D)

D1D(d),

(5)D1D(d) =

{
1 if d = D,

max
{
� ∗ D1D

(
d
′
)∣∣∣d

′
∈ childrenof d

}
if d �= D ,

http://www.cuilab.cn/files/images/cuilab/misim.zip
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child node decreases with increasing distance. Obviously, when the two diseases have 
a larger shared part in their DAGs , they will obtain a greater similarity score. SV (di) 
and SV

(
dj
)
 represent the semantic similarity values of di and dj , respectively. Thus, the 

semantic similarity score of the two diseases di and dj can be calculated as follows:

Gaussian Interaction Profile Kernel for miRNAs and diseases

According to the previous work [38], the method is based on the idea that it relies on the 
topological structure of known miRNA–disease associations in a network to compute 
the similarity of diseases and miRNAs [26]. Here are two miRNAs mi and mj and two 
diseases di and dj . The network similarity between them can be calculated with the fol-
lowing formulas:

where γ is an adjustable parameter that can control the bandwidth of the kernel. In addi-
tion, Y(mi) and Y

(
mj

)
 are the miRNA interaction profiles of mi and mj , respectively. 

Similarly, Y(di) and Y
(
dj
)
 are the disease interaction profiles of di and dj , respectively. 

Then, the network similarity matrix Km of miRNA and the Kd of disease are obtained by 
combining the original matrix Sm and Sd . The detailed descriptions are as below:

where α is an adjustable parameter range in [0, 1], and Km represents the miRNA inte-
grated similarity matrix, which is a linear combination of the Gaussian interaction pro-
file kernel similarity for miRNA GIPmiRNA and the miRNA functional matrix Sm . Similar 
to Km , Kd represents the disease integrated similarity matrix, which is a linear combina-
tion of the Gaussian interaction profile kernel similarity for disease GIPdisease and the 
disease semantic matrix Sd . When α is equal to 0.5, BGCMF achieves the highest AUC 
value. The sensitivity analysis of α is shown in Fig. 5.

Bipartite graph method

Based on the assumption that miRNAs that are similar will interact with similar dis-
eases, the interaction profile for a new miRNA candidate could be inferred from the 
known interactions of their neighbours. MiRNAs with large similarities to new poten-
tial miRNAs are said to be their neighbours. Therefore, we introduce the nearest profile 
(NP) to our method [39]. Below are the formulas for calculating a new miRNA mi and a 
new disease di.

(6)Sd
(
di, dj

)
=

∑
t∈T (di)∩T(dj)

(
Ddi(t)+ Ddj (t)

)

SV (di)+ SV
(
dj
) .

(7)GIPmiRNA

(
mi,mj

)
= exp

(
−γ

∥∥Y(mi)− Y
(
mj

)∥∥2
)
,

(8)GIPdisease
(
di, dj

)
= exp

(
−γ

∥∥Y(di)− Y
(
dj
)∥∥2

)
,

(9)Km = αSm + (1− α)GIPmiRNA,

(10)Kd = αSd + (1− α)GIPdisease,
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where mnearest and dnearest are the miRNAs most similar to mi and the diseases most sim-
ilar to di , respectively. Nm(mi) and Nd(di) are the association profiles of the miRNAs 
and diseases, respectively. The NP process in this method can be divided into four steps. 
First, remove the self-similarity of miRNA matrices Km and Kd . Next, obtain the nearest 
neighbour for each miRNA and disease. Then, ignore all miRNA similarities and disease 
similarities. Finally, the miRNA nearest neighbour matrix Nm and disease nearest neigh-
bour matrix Nd can be obtained.

Weighted profile

The weighted profile (WP) is proposed as a simple predictive model in [39]. The idea of 
the weighted profile is to perform a similarity-weighted average of all other miRNAs or 
diseases to obtain the prediction matrix. For instance, the WP for a new miRNA mi and 
a new disease are computed as:

(11)Nm(mi) = Km(mi,mnearest)× Y(mnearest),

(12)Nd(di) = Km(di, dnearest)× Y(dnearest),

(13)Ŷ(mi) =

∑nm
j=1Nm

(
mi,mj

)
× Y

(
mj

)
∑nm

j=1Nm

(
mi,mj

) ,

(14)Ŷ(di) =

∑nd
j=1Nd

(
di, dj

)
× Y

(
dj
)

∑nd
j=1Nd

(
di, dj

) ,

Fig. 5  Sensitivity analysis for α
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where Nm and Nd are the nearest neighbour matrices we construct for miRNA and dis-
ease. Y

(
mj

)
 and Y

(
dj
)
 are association matrices of miRNA mj and disease dj , respectively. 

First, the BG algorithm is used to obtain the neighbour information about miRNAs 
and diseases, and then predictions from both miRNA and disease sides are averaged to 
obtain the final prediction matrix:

BGCMF for MiRNA‑disease associations association prediction

The traditional collaborative matrix factorization (CMF) method is effective in predicting 
the underlying interactions between miRNAs and diseases [29]. The objective function of 
CMF method is defined as:

where �l , �d , and �t are non-parameters and �·�2F represents the Frobenius norm. In this 
formula, the first item is used to find the low-rank matrices A and B of the reconstructed 
Y . The second item is the Tikhonov regularization term. The last two items are regu-
larization terms that demand potential feature vectors of similar miRNAs/diseases to 
be similar and potential feature vectors of dissimilar miRNAs/diseases to be dissimilar. 
However, traditional CMF does not take into account the network relationship between 
the miRNA and the disease, which will reduce the accuracy of predicting MDAs. There-
fore, we introduce the Gaussian kernel similarity Km of miRNA and the Kd of disease 
into CMF [40]. The objective function can be rewritten as:

where �·�2F is the Frobenius norm. �l , �d and �t represent the positive parameters. In this 
study, the setting of the three parameters is done by cross-validation. The grid search is 
adopted to select the optimal parameters among these values:�l ∈

{
2−2, 2−1, 20, 21, 22

}
 , 

�d/�t ∈
{
2−6, 2−5, 2−4, 2−3, 2−2, 2−1, 20, 21, 22

}
 . The association matrix Y is decom-

posed into two low-rank matrices A and B , where Y ≈ AB
T . Tikhonov regularization is 

adopted to minimize the norms of both A and B . The roles of the third and fourth terms 
are to minimize the squared error Sm ≈ AA

T and Sd ≈ BB
T , respectively.

Initialization of A and B

In the CMF method, the first step is to initialize the adjacency matrix Y . We use singular 
value decomposition (SVD) to decompose the input matrix Y ∈ R

n×m into Un×k , Sk×k and 
V
k×m . Then, matrix A and matrix B are obtained by the following formula:

where S is a diagonal matrix and k represents the maximum number of singular values.

(15)Y1 =
Ŷ(mi)+ Ŷ

(
dj
)

2
.

(16)

min
A,B

=

∥∥∥Y − AB
T
∥∥∥
2

F
+ �l

(
�A�2F + �B�2F

)
+ �d

∥∥∥Sm − AA
T
∥∥∥
2

F
+ �t

∥∥∥Sd − BB
T
∥∥∥
2

F
,

(17)

min
A,B

=

∥∥∥Y − AB
T
∥∥∥
2

F
+ �l

(
�A�2F + �B�2F

)
+ �d

∥∥∥Km − AA
T
∥∥∥
2

F
+ �t

∥∥∥Kd − BB
T
∥∥∥
2

F
,

(18)[U, S,V] = SVD(Y, k), A = US
1/2
k , B = VS

1/2
k ,
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Alternating least squares

In this study, alternating least squares is used to optimize A and B until convergence. 
Here, L is used to represent the objective function of BGCMF. Then, A and B are 
obtained by letting ∂L/∂A = 0, and ∂L/∂B = 0, respectively. Moreover, the optimal val-
ues of �l , �d and �t are automatically obtained through a fivefold cross-validation experi-
ment. The iterative formulas for A and B are represented by:

Finally, the final prediction matrix Y is obtained by combining both the BG algorithm 
and the optimized CMF model.
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