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Background
Transcriptome analysis at single cell level by RNA sequencing (scRNA-seq) is a technol-
ogy growing in popularity and applications [1]. It has been applied to study the biol-
ogy of complex tissues [2, 3], tumor dynamics [4–7], development [8, 9] and to describe 
whole organisms [10, 11].

A key step in the analysis of scRNA-seq data and, more in general, of single cell data, 
is the identification of cell populations, that is groups of cells sharing similar properties. 
Several approaches have been proposed to achieve this task, based on well established 
clustering techniques [12, 13], consensus clustering [14–16] and deep learning [17]; 
many more have been recently reviewed [18, 19] and benchmarked [20]. As the popu-
larity of single cell analysis frameworks Seurat [21] and scanpy [22] raised, meth-
ods based instead on graph partitioning became the de facto standards. Such methods 
require the construction of a cell neighbourhood graph (e.g. by k Nearest Neighbours, 
kNN, or shared Nearest Neighbours, sNN). Encoding cell-to-cell similarities into graphs 
has practical advantages beyond clustering, as many algorithms for graph analysis can 
be applied and interpreted in a biological way. A notable example is the analysis of cell 
trajectories which can be derived from the analysis of Markov processes traversing the 

Abstract 

Single cell profiling has been proven to be a powerful tool in molecular biology to 
understand the complex behaviours of heterogeneous system. The definition of the 
properties of single cells is the primary endpoint of such analysis, cells are typically 
clustered to underpin the common determinants that can be used to describe func-
tional properties of the cell mixture under investigation. Several approaches have been 
proposed to identify cell clusters; while this is matter of active research, one popular 
approach is based on community detection in neighbourhood graphs by optimisation 
of modularity. In this paper we propose an alternative and principled solution to this 
problem, based on Stochastic Block Models. We show that such approach not only is 
suitable for identification of cell groups, it also provides a solid framework to perform 
other relevant tasks in single cell analysis, such as label transfer. To encourage the use 
of Stochastic Block Models, we developed a python library, schist, that is compatible 
with the popular scanpy framework.
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NN graph [23, 24]. In another context, computation of RNA moments in scRNA velocity 
is also based on the NN graph structure [25]. Arguably, the biggest utility of NN struc-
ture is the possibility to identify cell groups by partitioning the graph into communities; 
this is typically achieved using the Louvain method [26], a fast algorithm for optimisa-
tion of graph modularity. While fast, this method does not guarantee the identification 
of internally connected communities. To overcome its limits, a more recent approach, 
the Leiden algorithm [27], has been implemented and it has been quickly adopted in the 
analysis of single cell data, for example by scanpy [22] and PhenoGraph [28]. In addi-
tion to Newman’s modularity [29], other definitions currently used in single cell analysis 
make use of a resolution parameter [30, 31]. In lay terms, resolution works as a threshold 
on the density within communities: lowering the resolution results in less and sparser 
communities and vice versa. Identification of an appropriate resolution has been rec-
ognised as a major issue [32], also because it requires the definition of a mathematical 
property (clusters) over biological entities (the cell groups), with little formal description 
of the latter. In addition, the larger the dataset, the harder is to identify small cell groups, 
as a consequence of the well-known resolution limit [33]. Moreover, it has been demon-
strated that random networks can have modularity [34] and its optimisation is incapable 
of separating actual structure from those arising simply of statistical fluctuations of the 
null model. Lastly, it is a common error to assume that the resolution parameter reflects 
a hierarchical structure of the communities in the graph when, in general, this is not rig-
orously true. Additional solutions to cell group identification from NN graphs have been 
proposed, introducing resampling techniques [35, 36] or clique analysis [37]. It has been 
proposed that high resolution clustering, e.g. obtained with Leiden or Louvain methods, 
can be refined in agglomerative way using machine learning techniques [38].

An alternative solution to community detection is the Stochastic Block Model, a gen-
erative model for graphs organised into communities [39]. In this scenario, identification 
of cell groups requires the estimation of the proper parameters underlying the observed 
NN graph. According to the microcanonical formulation [40], the parameters are parti-
tions and the matrix of edge counts between them. Under this model, nodes belong-
ing to the same group have the same probability to be connected together. It is possible 
to include node degree among the model parameters [41], to account for heterogene-
ity of degree distribution of real-world graphs. A Bayesian approach to infer param-
eters has been developed [42] and implemented in the graph-tool python library 
(https://​graph-​tool.​skewed.​de). There, a generative model of network A has a probability 
P(A|θ , b) where θ is the set of parameters and b is the set of partitions. The likelihood 
of the network being generated by a given partition can be measured by the posterior 
probability

and inference is performed by maximising the posterior probability. The numerator in 
Eq. 1 can be rewritten exponentiating the description length

(1)P(b|A) =
P(A|θ , b)P(θ , b)

P(A)

(2)� = − ln P(A|θ , b)− ln P(θ , b)

https://graph-tool.skewed.de
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so that inference is performed by minimising the information required to describe the 
data (Occam’s razor); graph-tool is able to efficiently do this by a Markov Chain 
Monte Carlo approach [43]. SBM itself may fail to identify small groups in large graphs, 
hence hierarchical formulation has been proposed [44]. Under this model, communities 
are agglomerated at a higher level in a block multigraph, also modelled using SBM. This 
process is repeated recursively until a graph with a single block is reached, creating a 
nested Stochastic Block Model (nSBM).

In this work we propose nSBM for the analysis of single cell data, in particular scRNA-
seq data. This approach identifies cell groups in a statistical robust way and, moreover, 
it is able to determine the likelihood of the grouping, thus allowing model selection. In 
addition, it is possible to measure the confidence of assignment to groups, a measure 
that can be exploited in various analysis tasks.

We developed schist (https://​github.​com/​dawe/​schist), a python library compat-
ible with scanpy, to facilitate the adoption of Stochastic Block Models in single-cell 
analysis.

Results
Overview of schist

schist is a convenient wrapper to the graph-tool python library, written in python 
and designed to be used with scanpy. The most prominent function is schist.
inference.nested_model() which takes a AnnData object as input and fits 
a nested Stochastic Block Model on the kNN graph built with scanpy functions (e.g. 
scanpy.tools.neighbors()). When launched with default parameters, schist 
fits a model which maximises the posterior probability of having a set of cell groups (or 
blocks) given a graph. schist then annotates cells in the data object with all the groups 
found at each level of a hierarchy. Given the large size of the NN graph in real-world 
experiments, it is possible that a single solution represents local minima of the fitting 
process. In addition, it is possible that multiple solutions are equally acceptable to repre-
sent the graph partitioning and a better description is given by the consensus over such 
solutions [45]. To overcome these issues, schist fits multiple instances in parallel and 
returns the inferred consensus model, alongside the marginal probabilities for each cell 
to belong to a specific group (cell marginals). Moreover, the Stochastic Block Model 
has no constraints on what type of modular structure is fitted, meaning that groups are 
not necessarily identified only by assortativity (i.e. cells are mostly connected within the 
same group). When assortativity is thought to be the dominant pattern another model 
(the Planted Partition Block Model, PPBM [46]), also implemented in schist, is better 
suited to find statistically significant assortative communities, also eliminating the need 
to set a resolution parameter as required in standard community detection by maximisa-
tion of modularity.

Analysis of the impact of noise

One of the most relevant difference between the SBM and other methods to cluster 
single cells is that it relies on robust statistical modelling. In this sense, the number of 
groups identified strictly mirrors the amount of information contained in the data. An 
important consequence is that absence of information (i.e. maximal entropy) can be 

https://github.com/dawe/schist
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properly handled. To show this property we performed a simple experiment on a ran-
domised kNN graph. We collected data for 3k PBMC (available as preprocessed data in 
scanpy, Fig. 1A) and shuffled the edges of the prebuilt kNN graph, this to keep the gen-
eral graph properties unchanged. We tested that the degree distribution does not change 
after randomisation (Kolmogorov-Smirnov D = 0.0733 , p = 0.703 ). We found that the 
default strategy, based on maximisation of modularity, identifies 24 cell groups at default 
resolution, whereas schist does not identify any cell group, at level 0 (Fig. 1B).

Only by reducing resolution to γ < 0.6 we were able to obtain a single partition by 
modularity (Additional file 1: Fig. S1). Of course, this experiment is a deliberate extreme 
case. The quality of grouping proposed by a standard approach can be disputed in many 
ways, and the UMAP embedding indeed reflects the absence of any information. Nev-
ertheless, real-world data may include an unknown amount of random noise. Hence, it 
is important to identify cell groups that are not artefacts arising from processing and 
that do reflect the information contained in the dataset. To understand the impact of 
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Fig. 1  Modeling randomised data. A UMAP embedding of 3k PBMC after standard processing with Leiden 
approach (left) or nSBM (right). Cell grouping is consistent for both the approaches (Adjusted Rand Index 
ARI = 0.869 ). B UMAP embedding of the same data after randomisation of kNN graph edges. In this case 
schist does not return any cell grouping, while optimisation of modularity finds up to 24 different cell 
groups
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random noise on structured data, we considered the same PBMC dataset and added 
white noise to the normalised counts at increasing levels of σ , ensuring that the noise 
level is modelled after the feature-wise distribution of detected genes. We then com-
pared partitions to the original annotation by Adjusted Rand Index (ARI), we found 
that schist is more robust to perturbations and that, again, optimising the modularity 
results in overestimation of the number of communities at high noise levels (Additional 
file 1: Table S1). Of note, the concordance with original annotations drops at σ ≥ 1.5 for 
both the approaches.

schist correctly identifies cell populations

To benchmark schist, we tested it on scRNA-seq mixology data [47], a dataset explic-
itly developed to benchmark single cell analysis tools without the need to simulate data. 
In particular, we used the mixture of 5 cell lines profiled with Chromium 10x platform. 
At a first evaluation of the UMAP embedding, all lines appear well separated. Only the 
lung cancer line H1975 shows a considerable degree of heterogeneity and appears to be 
split into two cell groups (Fig. 2A). Using default parameters, schist is able to iden-
tify correct cell groups ( ARI = 0.829 ), with a further split in H2228 cell line (Fig. 2B), 
whereas Leiden method clusters the dataset into 10 groups ( ARI = 0.549 , Fig.  2C). 
schist correctly identifies H1975 groups as a single entity at level 1 of the nSBM hier-
archy. We then sought to check if an independent agglomerative method, SCCAF [38], 
was able to recover cell line groupings starting from both partition schemes. Given the 
ground truth, the cell lines, SCCAF is able to assess the maximal accuracy that can be 
achieved in the dataset (0.992). When trained with this target accuracy, SCCAF precisely 
reconstructs the original cell line annotations starting from schist partitions with high 
accuracy (Fig. 2D). When Leiden partitions are set as input, SCCAF merges H2228 and 
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Fig. 2  Analysis of a mixture of 5 known cell lines. A UMAP embedding coloured and labeled by cell line 
identity. H1975 cells (orange) show two distinct groups reflecting an internal heterogeneity. B UMAP 
embedding showing cells coloured by level 1 of the hierarchy proposed by the nested Stochastic Block 
Model. C UMAP embedding showing cells coloured according to the Leiden method at resolution γ = 1 . D 
UMAP embedding coloured by the classification made by SCCAF when partitions in (B) are used. E UMAP 
embedding coloured by the classification made by SCCAF when partitions in (C) are used



Page 6 of 19Morelli et al. BMC Bioinformatics          (2021) 22:576 

HCC827 cells into a single cluster and keeps H1975 cells split into two groups (Fig. 2E), 
highlighting potential limitations of this approach.

In another experiment, we analysed data from the Tabula Muris project [48] mixing 
four different tissues as previously performed [49] (i.e. skin, spleen, large intestine and 
brain, Additional file  1: Fig. S2A). In this experiment we expect higher heterogeneity 
than controlled cell lines, however schist is able to correctly identify the original tis-
sues (Additional file 1: Fig. S2C), which are again almost perfectly classified after SCCAF 
is applied (Additional file 1: Fig. S2D). Similarly to the cell line experiment, optimisa-
tion of modularity isolates cell clumps evident in UMAP embedding (Additional file 1: 
Fig. S2E) which could not be correctly merged after SCCAF iteration (Additional file 1: 
Fig.S2F). In all, these data support the suitability of schist, hence of nested Stochastic 
Block Models, for cell group identification in single cell studies.

Hierarchy modelling complies with biological properties

When grouping is performed by optimisation of modularity, there is often the implicit 
assumption that the resolution parameter reflects a hierarchical structure of the graph, 
i.e. communities are consistently grouped at lower resolutions. Not only this assump-
tion is wrong, but it may also lead to spurious groupings in real experiments, whereas a 
nSBM inherently encodes hierarchies by merging communities in a tree. The improper 
use of resolution parameter may lead to two types of errors: grouping of cells that are in 
fact distinct and creating an inconsistent hierarchy.

To show this we took advantage of public spatial RNA dataset of a coronal section 
of murine brain tissue profiled with 10X Visium H&E technology [50], as provided by 
the recently introduced package SquidPy [51]. We chose to stick to the given tissue 
annotation by the package authors. At default resolution, Leiden clustering resolves the 
tissue structure, as does the first level of the nSBM hierarchy (Fig. 3). When resolution 
is decreased (e.g. γ = 0.5 ), the dentate gyrus is incorrectly merged to the hippocampus, 
whereas schist correctly identifies the pyramidal layer.

In another context, we tested the effect on the interpretation of the hierarchy vary-
ing the resolution parameter. We analysed data for hematopoietic differentiation [52], 
previously used to benchmark the consistency of cell grouping with differentiation tra-
jectories by graph abstraction [53] (Additional file 1: Fig. S3A). Data show three major 
branchings (Erythroids, Neutrophils and Monocytes) stemming from the progenitor 
cells, mostly recapitulated by level 2 of the hierarchy computed by schist (Fig. 4). Not 
only the hierarchic model recapitulates the branching trajectories, also the cell groups 
appear to be consistent with the estimated pseudotime (Additional file 1: Fig. S3B). Con-
versely, the Leiden method at default resolution identified 24 groups. By lowering the γ 
parameter we observed cell groups that merge and split at different resolutions disrupt-
ing the hierarchy (Additional file 1: Fig. S4).

In all, these data show that the common intuition that γ parameter acts as a threshold-
ing factor over a hierarchy is wrong. Not only the hierarchy is not conserved, but also 
very different cell types may be mixed in spurious clusters. By using nSBM, schist 
is able to represent hierarchical relations in appropriate way. Moreover, the hierarchy 
appears to be more robust in aggregating different cell types at coarser scales.
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Fig. 3  Analysis of spatial transcriptomics of a coronal section of mouse brain by Visium H&E. In the first panel, 
original tissue annotation is given. Tissues are well defined at default resolution for the standard approach. 
When resolution is decreased to γ = 0.5 , cells are aggregated breaking the histological types, e.g. cells from 
the dentate gyrus are merged to the hippocampus. When a nSBM is applied, the structure of the pyramidal 
layer is maintained at different levels of the hierarchy
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Fig. 4  Analysis of hematopoietic differentiation. Each panel presents a low dimensional embedding of single 
cells next to a radial tree representation of the nSBM hierarchy. Cells are coloured according to groupings 
at level 2 of the hierarchy, group 0 marks the most primitive population (A). In subsequent panels, cells are 
coloured using a signature of Erythroid lineage (B), Monocytes (C) or Neutrophils (D)
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Cell marginals can be used to assess the data quality

By computing the consensus among multiple models, schist returns the marginal 
probability for each cell to belong to a specific cluster at each level of the hierarchy. Ide-
ally, all cells should always be assigned with p = 1 to a cluster. When the uncertainty is 
maximal, cells are assigned to clusters randomly with p = 1/Bi , where Bi is the number 
of groups for the i-th level in the hierarchy. We sought to check if these probabilities 
could be interpreted in terms of data quality.

We devised a simple metric, cell stability, that is defined by the fraction of levels for 
which the marginal probability is higher than 1− 1/Bi . To do so, we only consider lev-
els with at least two groups, hence excluding the root of the tree. We tested this metric 
on four datasets from [54] with different quality levels (iCELL8, MARS-seq, 10XV3 and 
Quartsz-seq2) (Additional file 1: Fig. S5). By taking a summary metric, e.g. the mean S 
or the fraction of cells with S > 0.5 , we observed that it correlates with the data quality 
(Table 1).

These data suggest that measures of uncertainty of cell clustering can be useful for 
general quality control assessment. In addition to this, we foresee they could be used to 
isolate cells with specific patterns.

Cell affinities can be used for label transfer

The modelling approach we adopted allows the estimation of the information required 
to describe a graph given any partitioning scheme, not limited to the solution given by 
the model itself. Differences in entropy can be used to perform model selection, hence 
we can choose which model better describes the data. We sought to exploit this property 
to address the task of annotating cells according to a reference sample. To this end we 
analysed datasets from [54], which includes mixtures of human PBMC and HEK293T 
cells profiled with various technologies. We chose cells profiled with 10X V3 platform 
as reference dataset and performed annotation on cells profiled with Quartz-seq2 or 
MARS-seq. These are at the extremes of the capability to distinguish cell types, so they 
provide good benchmark configurations for this task.

After preprocessing raw data according to the parameters given in [54], we inte-
grated each dataset with 10XV3 into a unified representation using Harmony [55], 
and computed the kNN graph. In each merged dataset, we retained cell type annota-
tions for 10X cells, while we assigned a “Unknown” label to all cells derived from the 
other technology (i.e. MARS-seq or Quartz-seq2). We then calculated the cell affinity 
matrix, that is we computed the difference in entropy that can be observed by assign-
ing each cell to each annotation cluster, this being either one of the original cell types 

Table 1  Cell stability as indicator of data quality

Table shows summary metrics derived from the Cell Stability calculated for various datasets. S is the average Cell Stability 
over all cells, S > .5 indicates the fraction of cells with Cell Stability higher than 0.5

Dataset S S > .5

iCELL8 [54] 0.368 0.312

MARS-seq [54] 0.579 0.536

Chromium 10x [54] 0.716 0.728

Quartz-seq2 [54] 0.705 0.739
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or “Unknown”. Once the matrix has been computed, each cell from the query data is 
assigned to the group with the highest likelihood. The rationale behind this approach 
is that if cells belong to the same annotation group, then more information is required 
to describe the graph if they were annotated as different cell types; hence, cells from 
the query datasets should retain their “Unknown” label if and only if there is not 
enough evidence to associate them to another group. We compared the accuracy 
of the outcome to kNN classification, given by the closest entry in the kNN graph, 
and to ingest, a tool included in scanpy based on kNN classification of UMAP 
embeddings. Analysis of a well defined dataset, such as Quartz-seq2, reveals that the 
three approaches are equally good in classifying unknown cells (Fig.  5, central col-
umn), with accuracies ranging from .870 to .927. When data are noisy, instead, kNN-
based methods show low accuracy and a tendency to assign the most represented cell 
group (HEK293T) to the unlabelled cells. This misannotation is particular evident 
for ingest, in which only CD4 T cells and HEK cells are transferred, resulting in 
the lowest accuracy (0.243). Conversely, schist is able to assign correct labels with 
higher accuracy (0.641). Moreover, kNN methods assign a label to each cell, whereas 
schist does not relabel cells if there are no sufficient evidence (e.g. the “Unknown” 
state is the most likely). Interestingly, we found that for the largest part of cells with-
out assigned label, the second choice by affinity ranking was indeed the appropriate 
one (Additional file 1: Fig. S6).

Choice of an optimal hierarchy level

schist fits a hierarchical model of communities into a graph. When it comes to 
analysis of single cell data, it means that the cells are best described by the hierarchy 
itself and that cells can be grouped consistently at each level of the tree. In addition, 
the size of groups at the deepest level scales as O(N/ logN ) [44], where N is the num-
ber of cells. Given the current throughput in single cell experiments ( ∼10k cells), the 
number of groups is difficult to handle. For this reason, in most of single cell experi-
ments, it is preferable to identify an optimal level of the hierarchy that best resembles 
the cell properties at the scale they can be validated.

A possible strategy is based on Random Matrix Theory, as suggested by the authors 
of the SC3 package [15], for which a suitable number of clusters, k̂ , is determined 
by the number of eigenvalues of the Z⊤

Z matrix (where Z is the normalised count 
matrix) significantly different at p < .001 from the appropriate Tracy-Widom distri-
bution. According to this strategy, the optimal level ik is the one that minimises the 
number of partitions and k̂:

where Bx is the number of non empty partitions at level x.
An alternative strategy is to evaluate the behaviour of modularity at different hier-

archy levels. While schist does not optimise the graph modularity Q, we observed 
that this tends to be maximal for the level better describing known cell populations, 
so the optimal level iQ is

(3)ik = argmin
x

|Bx − k̂|



Page 11 of 19Morelli et al. BMC Bioinformatics          (2021) 22:576 	

Where Qx is modularity at level x. We collected values arising from both the approaches 
for some datasets used in this work (Table 2 and Additional file 1: Fig. S7)

As expected, the larger the network, the higher the optimal level. For relatively small 
datasets (i.e. less than 10k cells), the first level of the hierarchy contains a number of 
groups in line with how many observable populations are. Notwithstanding, cell groups 

(4)iQ = argmax
x

|Qx|

Fig. 5  Label transfer using SBM. The first line reports UMAP embeddings for datasets profiled with Chromium 
10X V3, Quartz-seq2 and MARS-seq, each annotated by known cell types. Quartz-seq2 and MARS-seq were 
reannotated using kNN method, scanpy.tools.ingest() or schist. The accuracy of each label 
transfer task is reported above the corresponding UMAP
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identified at leach level may have a biological interpretation. In particular, groups at 
deepest levels (0 or 1) may be relevant when studying rare populations. For example, 
in the hematopoiesis dataset shown in Additional file 1: Fig. S3A, groups 11 (DC) and 
19 (Lymph) cannot be distinguished from nSBM level 1 and up; a closer investigation 
to level 0, however, revealed that these cells are clearly separated (Additional file 1: Fig. 
S3D). To better understand the role of deepest levels, we performed an additional analy-
sis of a single cell dataset of mouse crypt cells [56], which was also covered in a recent 
paper proposing GapClust as an optimal approach to identify rare cell populations [57]. 
We sought to identify the four rare populations identified by GapClust. We could distin-
guish all but the erythrocyte group (R3) at level 1 of the hierarchy (Fig. 6 and S8), sug-
gesting that exploring nSBM levels with appropriate community size is a valid method to 
spot rare populations. Of note, modularity optimisation could not pinpoint Tuft cells in 
appropriate way (Additional file 1: Fig. S8C), not even at high resolution, hence prompt-
ing the development of specific approaches such as GapClust.

As the size and number of communities is strictly dependent on the kNN graph gen-
eration, we investigated how different parameters (i.e. number of principal components 
and number of neighbors) affect the partition structure (Additional file 1: Fig. S9). We 
found, as a general pattern, that increasing the number of neighbors results in more 
granular structure at level 0, with different solutions being consistent (Additional file 1: 
Fig. S10), suggesting that higher number of neighbors provides richer description of the 
dataset. The number of PCs used to evaluate cell-to-cell distance influences the variabil-
ity of community sizes; the consistency among different solutions is high when a suf-
ficient number of PCs is chosen, data suggest that for large datasets more PCs should be 
included to include adequate fraction of overall variability.

Analysis of runtimes

Minimisation of a nSBM is a process that requires a large amount of computational 
resources. While the underlying graph-tool library is efficient in exploring the solu-
tion space using a multiflip MCMC sampling strategy, the number of required iterations 
before convergence is considerable and the running time scales linearly with the num-
ber of edges. Moreover, to collect a consensus partition, we minimise multiple models 
(default: 100) that need to be averaged. To give a reference, we report runtimes for some 

Table 2  Selection of the optimal level in the nSBM hierarchy

For each dataset we report the number of groups D that were given by the authors. The optimal level selection should 
recover a number of groups in the order of magnitude of D. Value of D in Planaria dataset is derived from manual curation 
of Louvain clustering. k̂ : number of groups according to RMT, ik : level selected according to RMT criterion, Bk : number of 
partitions at level ik , iQ : level at which modularity is maximal, BQ : number of groups at level iQ

Dataset Cells D k̂ ik Bk iQ BQ

sc-mixology [47] 860 5 21 1 6 1 6

Chromium 10x [54] 1523 8 43 0 58 1 13

Quartz-seq2 [54] 1266 8 37 0 62 1 12

MARS-seq [54] 1401 9 9 1 16 1 16

iCELL8 [54] 1830 9 20 1 21 2 6

Mouse brain [50] 2688 15 8 2 8 1 23

Planaria [10] 21,612 51
∗ 34 2 22 3 10
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example datasets in Table 3 on a commodity hardware (Intel i7@2.8 GHz, 32 GB RAM). 
Compared to Leiden approach, nSBM requires at best ∼ 6× times more, and ∼ 30× at 
worst. A reasonably fast alternative to the nSBM is the Planted Partition Block Model 
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27

29

nSBM (level 1) Signature R1_1

0

1

2
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Signature R1_2

0.0

0.5
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Fig. 6  Identification of rare populations. UMAP embeddings of mouse crypt cells highlighting the groups 
found at level 1 of nSBM hierarchy corresponding to rare populations identified by GapClust [57]. Each rare 
population is colored by a signature calculated from published gene lists (see methods)

Table 3  Time required to run different partitioning strategies implemented in schist on various 
datasets

All approaches fit 100 models. Number of nodes and edges refer to the structure of the kNN graph as built by scanpy. 
Times are expressed in MM:SS

Dataset Cells Edges Leiden PPBM nSBM

sc-mixology [47] 860 9186 00:06 00:13 00:36

Quartz-seq2 [54] 1266 14,603 00:10 00:19 00:45

MARS-seq [54] 1401 21,756 00:20 00:34 02:14

iCELL8 [54] 1830 30,636 00:23 00:40 03:02

Chromium 10x [54] 1523 21,447 00:14 00:26 01:07

Hematopoiesis [52] 2730 15,444 00:37 01:27 05:52

Mouse Cortex [58] 3005 54,460 00:59 00:53 07:32

Endocrinogenesis [59] 3696 74,670 01:15 01:29 10:56

Baron Pancreas [60] 8569 294,480 03:51 07:35 1:33:40

Airzani Liver [61] 10,368 354,440 04:13 09:47 1:42:23

Tabula Muris [48] 12,434 265,610 03:07 10:00 1:23:35

Planaria [10] 21,612 173,667 05:41 13:52 1:20:40
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(PPBM), for which we also report runtimes. The PPBM [46] is able to find statistically 
significant assortative modules and eliminates the resolution parameter; differently from 
nSBM, PPBM is not hierarchic.

Conclusions
Identification of cells sharing similar properties in single cell experiments is of para-
mount importance. A large number of approaches have been described, although the 
standardisation of analysis pipelines converged to methods that are based on modular-
ity optimisation. We tackled the biological problem using a different approach, nSBM, 
which has several advantages over existing techniques. As random data may have modu-
lar structure [34], an important property of our approach is that it does not overfit data 
by finding partitions when, in fact, there are not. Another important advantage is that 
the hierarchical definition of cell groups eliminates the choice of an arbitrary threshold 
on clustering resolution. In addition, we showed that the hierarchy itself could have a 
biological interpretation, implying that the hierarchical model is a valid representation 
of the cell ensemble. We performed experiments to evaluated the impact of parameters 
to build the kNN graph on the final partitions. We found that our solutions were con-
sistent across parameters; we also found that the more information is included during 
graph generation, the more granular the final description. Our results suggest that the 
number of principal components used to evaluate the cell-to-cell distance may have an 
impact on the final results and that the number of components to include depends on 
the data size and heterogeneity; while intuitive, this finding is in contrast with what has 
been observed for other PCA-based methods [18], whereas has an impact on probabilis-
tic methods [49].

The Bayesian formulation of Stochastic Block Models provides the possibility to per-
form inference on a graph for any partition configuration, thus allowing reliable model 
selection using an interpretable measure, entropy. We exploited this property to perform 
label transfer with high accuracy and with the possibility to discard cells with unreli-
able assignments. In all, schist facilitates the adoption of nSBM by the bioinformatics 
community and exposes a robust framework to perform tasks that go beyond the princi-
pled identification of cell clusters.

The major drawback of adopting this strategy is the substantial increase of runtimes. 
As observed, model minimisation is many times slower than the extremely fast Leiden 
approach. It should be noted that schist initialises multiple models that are treated by 
multiple concurrent processes. graph-tool itself supports CPU-level parallelisation 
for some of its tasks. These optimisations are well suited for clustered computing infra-
structure. Further development, possibly including GPU-level parallelisation, is surely 
required to accomodate the large size of datasets that are being produced.

Materials and methods
Unless differently stated, all the analysis were produced using scanpy v1.7.1 [22] and 
schist v0.7.6 and the corresponding dependencies. All models were initialised 100 
times, herein including Leiden partitioning for which we also calculated the consensus 
partition.
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Analysis of randomized data

Data were retrieved in scanpy environment using scanpy.datasets.pbmc3k_
processed() function. The random kNN graph was obtained shuffling the node labels 
of each edge. UMAP embedding was recomputed after randomisation using the shuffled 
graph. To generate data with white noise we computed the genewise means ( µg ) and 
standard deviations ( σg ) of log-normalized counts excluding 0 values. We generated ran-
dom values using µg and kσg , k ∈ {0.5, 1, 1.5, 2} , and added to original expression values.

Analysis of cell mixtures

Data and metadata for five cell mixture profiled by Chromium 10x were downloaded 
from the sc-mixology repository (https://​github.​com/​LuyiT​ian/​sc_​mixol​ogy). Cells with 
less than 200 genes were excluded, as genes detected in less than 3 cells. Cells with less 
than 5% of mitochondrial genes were retained for subsequent analysis. Data were nor-
malised and log-transformed; number of genes and percentage of mitochondrial genes 
were regressed out. kNN graph was built with default parameters (50 components and 
15 nearest neighbours). Data were assessed by SCCAF using cell line annotation. Mean 
cross-validated accuracy was set as target for all the models.

Analysis of Tabula Muris data

Data for FACS isolated cells sequenced with Smart-seq2 were downloaded from the 
Tabula Muris consortium [49] (https://​doi.​org/​10.​6084/​m9.​figsh​are.​59753​92), analysis 
was restricted to Skin, Spleen, Large Intestine and Brain-Myeloid count matrices. Cells 
with less than 200 genes were excluded, as genes detected in less than 3 cells. Data were 
normalised and log-transformed. Merged data were then processed using Harmony 
[55] by the scanpy.external.pp.harmony_integrate() function with default 
parameters. kNN graph was built on integrated data using 50 components and 30 near-
est neighbours. Data were assessed by SCCAF using tissue annotation. Mean cross-vali-
dated accuracy was set as target for all the models.

Analysis of visium H&E data

Data were retrieved using squidpy.datasets.visium_hne_adata() built-in 
function, without further processing. Leiden clustering was performed using schist.
inference.leiden() function, allowing for 100 initialisations, with resolutions 
γ = 1 and γ = 0.5.

Analysis of hematopoietic differentiation

Data were retrieved using scanpy’s built-in functions and were processed as in [53], 
except for kNN graph built using 30 principal components, 30 neighbours and diff-
map as embedding. Gene signatures were calculated with scanpy.tools.score_
genes() using the following gene lists

https://github.com/LuyiTian/sc_mixology
https://doi.org/10.6084/m9.figshare.5975392
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•	 Erythroids: Gata1, Klf1, Epor, Gypa, Hba-a2, Hba-a1, Spi1
•	 Neutrophils, Elane, Cebpe, Ctsg, Mpo, Gfi1
•	 Monocytes, Irf8, Csf1r, Ctsg, Mpo

Processing of PBMC data from various platforms

Count matrices were downloaded from GEO using the following accession numbers: 
GSE133535 (Chromium 10Xv3), GSE133543 (Quartz-seq2), GSE133542 (MARS-seq) 
and GSE133541 (iCELL8). Data were processed according to the methods in the original 
paper [54]. Briefly, cells with less than 10,000 total number of reads as well as the cells 
having less than 65% of the reads mapped to their reference genome were discarded. 
Cells in the 95th percentile of the number of genes/cell and those having less than 25% 
mitochondrial gene content were included in the downstream analyses. Genes that were 
expressed in less than five cells were removed. Data were normalised and log-trans-
formed, highly variable genes were detected at minimal dispersion equal to 0.5. Neigh-
bourhood graph was built using 30 principal components and 20 neighbours.

Analysis of crypt cells data

Count matrix for untreated crypt cells (GSM3308718) was downloaded from GEO. 
Cells with less than 200 genes and genes detected in less than 2 cells were excluded from 
the analysis. After normalization and log-transformation, highly variable genes were 
selected with a cutoff on the mean expression equal to 0.05. Rare subpopulations were 
first highlighted with scanpy.tools.score_genes() using signatures published 
in [57]:

•	 R1_1: Cd8a, Cd3g, Ccl5, Gzma, Gzmb, RGs1, Nkg7, Cd7, Fcer1g
•	 R1_2: H2-Aa, H2-Ab1, H2-Eb1, Cd74, Ly6d, Ebf1, Cd79a, Mef2c
•	 R2: Krt18, Cd24a, Adh1, Cystm1, Aldh2, Dclk1, Sh2d6, Rgs13, Hck, Trpm5
•	 R3: Alas2, Hbb-bs, Hba-a1, Hbb-bt

Label transfer

Processed data for MARS-seq or Quart-seq2 platforms were merged to data for 10X V3. 
Merged data were then processed using Harmony [55] by the scanpy.external.
pp.harmony_integrate() function with default parameters. Cells not belonging 
to the 10X data were assigned an “Unknown” label. We calculated cell affinity to each 
annotation label using schist.tl.calculate_affinity() function. We assigned 
the most affine annotation only to “Unknown” cells. For kNN-based procedure, we built 
a kNN graph on the merged data using pynndescent library on the 10XV3 subset 
of cells in the merged data, then we assigned “Unknown” cells to the closest entry in 
the graph. Assignment by scanpy.tools.ingest() was performed using default 
parameters.
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