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Abstract 

Background:  Existing computational methods for studying miRNA regulation are 
mostly based on bulk miRNA and mRNA expression data. However, bulk data only 
allows the analysis of miRNA regulation regarding a group of cells, rather than the 
miRNA regulation unique to individual cells. Recent advance in single-cell miRNA-
mRNA co-sequencing technology has opened a way for investigating miRNA regula-
tion at single-cell level. However, as currently single-cell miRNA-mRNA co-sequencing 
data is just emerging and only available at small-scale, there is a strong need of 
novel methods to exploit existing single-cell data for the study of cell-specific miRNA 
regulation.

Results:  In this work, we propose a new method, CSmiR (Cell-Specific miRNA regula-
tion) to combine single-cell miRNA-mRNA co-sequencing data and putative miRNA-
mRNA binding information to identify miRNA regulatory networks at the resolution of 
individual cells. We apply CSmiR to the miRNA-mRNA co-sequencing data in 19 K562 
single-cells to identify cell-specific miRNA-mRNA regulatory networks for understand-
ing miRNA regulation in each K562 single-cell. By analyzing the obtained cell-specific 
miRNA-mRNA regulatory networks, we observe that the miRNA regulation in each 
K562 single-cell is unique. Moreover, we conduct detailed analysis on the cell-specific 
miRNA regulation associated with the miR-17/92 family as a case study. The compari-
son results indicate that CSmiR is effective in predicting cell-specific miRNA targets. 
Finally, through exploring cell–cell similarity matrix characterized by cell-specific 
miRNA regulation, CSmiR provides a novel strategy for clustering single-cells and helps 
to understand cell–cell crosstalk.

Conclusions:  To the best of our knowledge, CSmiR is the first method to explore 
miRNA regulation at a single-cell resolution level, and we believe that it can be a useful 
method to enhance the understanding of cell-specific miRNA regulation.
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Background
As an abundant class of small, conserved and non-coding RNAs, microRNAs (miR-
NAs) play an important role in regulating gene expression through post-transcriptional 
repression or messenger RNA (mRNA) degradation [1]. In a cell, it is estimated that 
miRNAs can regulate the expression of up to one-third of the encoded human genes 
[2]. Such cellular effects of miRNAs influence a wide range of basic cellular functions, 
including cell proliferation, cell differentiation, and cell death [3].

Just as each individual cell is unique in the context of its microenvironment, miRNA 
regulation would tend to be unique in each individual cell accordingly. Previously, based 
on bulk RNA sequencing expression data from large populations of cells, many com-
putational methods have been developed for exploring miRNA regulation [4, 5], but at 
the resolution of groups of cells. This may have obscured the heterogeneity of miRNA 
regulation across individual cells within these populations. Fortunately, single-cell RNA 
sequencing technology has now provided us the opportunity to study miRNA regulation 
at the single-cell level.

To investigate miRNA regulation at the single-cell level, Wang et al. [6] used a half-
cell genomics approach to generate single-cell miRNA-mRNA co-sequencing expres-
sion data of 19 K562 half cells, and then applied Pearson correlation method to identify 
miRNA targets. By using the half-cell genomics method, a single cell is lysed and the 
lysate is split evenly into two half-cell fractions. Then, each half-cell fraction can be used 
for either miRNA or mRNA transcriptome sequencing. They have found that miRNA 
expression variability alone may cause non-genetic intercellular heterogeneity. How-
ever, the identification of the miRNA targets by their work was in the grouped 19 K562 
half cells rather than individual K562 half cells, consequently ignoring the heterogeneity 
of miRNA regulation between single-cells. To investigate the heterogeneity of miRNA 
regulation between different single-cells, it is necessary to explore cell-specific miRNA 
regulation (i.e. one miRNA regulatory network for one cell).

Although single-cell miRNA-mRNA co-sequencing data is emerging, the number 
of single-cells included in each single-cell dataset is still small mainly due to the lack 
of mature single-cell RNA sequencing technology for genome-wide profiling of both 
mRNAs and miRNAs [7]. To explore cell-specific miRNA regulation using single-cell 
miRNA-mRNA co-sequencing data, in this work, we adapt the cell-specific network 
(CSN) method proposed in [8] to infer cell-specific miRNA-mRNA regulatory networks. 
Given a single-cell gene expression data set including g genes and n cells, CSN infers 
n cell-specific networks. Each cell-specific network is an undirected gene association 
network, and consists of g nodes corresponding to g genes and the edges representing 
undirected gene–gene associations. CSN uses a statistic (see Eq.  (2) in the “Methods” 
section) to calculate the strength of a gene–gene association in each cell. To identify the 
gene–gene associations in each cell by using the statistic, CSN takes a one-sided hypoth-
esis test. The null hypothesis is that two genes are independent in cell k, and the alterna-
tive hypothesis is that two genes are associated with each other in cell k. If the statistic 
of a gene–gene association in cell k is larger than a significant level (e.g. 0.01), the gene–
gene association in cell k exists. Although CSN can infer cell-specific gene regulatory 
networks consisting of cell-specific gene–gene associations, it can’t be directly utilized 
to identify cell-specific miRNA regulatory network as described below.
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To explore cell-specific miRNA regulation, our method CSmiR extends CSN from the 
following three aspects. Firstly, CSN is only applicable to single-cell gene expression 
data with more than 100 single-cells. To address the issue, we introduce pseudo-cells to 
enlarge the number of single-cells in a single-cell miRNA-mRNA co-sequencing data set 
with less than 100 single-cells. Secondly, CSN is developed to infer all types of gene–gene 
interactions from single-cell RNA sequencing data. For single-cell miRNA-mRNA co-
sequencing data, we focus on identifying the interactions between miRNAs and mRNAs 
rather than all the types of interactions (including miRNA-miRNA, miRNA-mRNA and 
mRNA-mRNA interactions). Thirdly, CSN is an unsupervised method without using 
prior knowledge. To improve the accuracy of the predicted miRNA targets, we incorpo-
rate putative miRNA-mRNA binding information as prior knowledge into CSmiR.

We have applied the proposed CSmiR method to single-cell miRNA-mRNA co-
sequencing expression data across 19 K562 half cells, and the analysis results indicate 
that CSmiR can help with the investigation of miRNA regulation at the resolution of 
individual cells.

Results and discussion
The miRNA regulation in each K562 cell is unique

As discussed above, to investigate cell-specific miRNA regulation using single-cell 
miRNA-mRNA co-sequencing data with a small number of samples, we propose to 
interpolate pseudo-cells to the data before inferring the miRNA-mRNA interactions 
of interest (see the “Methods” section). Accordingly, as shown in Fig. 1, our proposed 
method CSmiR consists of three main components, Interpolating pseudo-cells by sam-
pling with replacement, identifying cell-specific miRNA-mRNA regulatory networks 
by integrating putative miRNA-mRNA binding information, and downstream analysis 
with cell-specific networks. Following the workflow of CSmiR, we have identified 19 cell-
specific miRNA-mRNA regulatory networks for the 19 K562 cells. In this section, we 
present the results on the investigation of the uniqueness of each K562 cell in terms of 
cell-specific miRNA-mRNA interactions and hub miRNAs.

Firstly, we have investigated the identified cell-specific miRNA-mRNA regulatory 
networks and hub miRNAs in four aspects: (1) the number of predicted cell-specific 
miRNA-mRNA interactions, (2) the percentage of validated cell-specific miRNA-mRNA 
interactions, (3) the percentage of CML-related cell-specific miRNA-mRNA interac-
tions, (4) the percentage of CML-related hub miRNAs. In the case of the four aspects, 
the miRNA regulation is different in each of the 19 K562 cells (see Fig. S1 in Addi-
tional file 1). Furthermore, we have discovered that the percentage of the conserved and 
rewired miRNA-mRNA interactions is 32.86% (17,889 out of 54,439) and 21.26% (11,575 
out of 54,439), respectively, indicating that a large portion of miRNA-mRNA interac-
tions prefer to be conserved and rewired across K562 cells. In terms of the similarity 
of the miRNA-mRNA interactions between these cell-specific regulatory networks, the 
range of cell similarity is [0.63, 0.94]. As shown in Fig. 2A, the cell similarity between 
any pair of the 19 K562 cells is less than 100%. In addition, the percentage of conserved 
and rewired hub miRNAs is 36.59% (15 out of 41) and 21.95% (9 out of 41) respectively, 
indicating the majority of hub miRNAs tend to be conserved and rewired across K562 
cells. In terms of hub miRNAs in the cell-specific regulatory networks, the range of cell 
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similarity is [0.71, 0.95]. As shown in Fig. 2B, the cell similarity between any pair of the19 
K562 cells is less than 100%. The detailed information of conserved and rewired miRNA-
mRNA regulatory networks and hub miRNAs can be seen in Additional file 2. In terms 
of cell-specific miRNA-mRNA regulatory networks and cell-specific hub miRNAs, the 

Fig. 1  Workflow of CSmiR. For each pseudo-cell, we sample from the original dataset (i.e. the 19 single-cells 
uniformly with replacement) to generate it. Based on the B bootstrapping datasets (matched miRNA and 
mRNA expression data in the single-cells of the original dataset and interpolated pseudo-cells), we identify m 
cell-specific miRNA-mRNA regulatory networks by integrating putative miRNA-mRNA binding information for 
the real m cells (one miRNA-mRNA regulatory network for one cell). Finally, we conduct downstream analysis 
with the identified m cell-specific miRNA-mRNA regulatory networks
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above observations show that the miRNA regulation in any two different K562 cells are 
not completely the same, demonstrating the uniqueness of miRNA regulation in each 
cell.

The miR‑17/92 family regulation across K562 single‑cells

To further understand the miRNA family regulation across K562 single-cells, we con-
duct a case study to investigate cell-specific regulation of the miR-17/92 family. The 
miR-17/92 family includes six members: miR-17 (miR-17-3p, miR-17-5p), miR-18a 
(miR-18a-3p, miR-18a-5p), miR-19a (miR-19a-3p, miR-19a-5p), miR-19b-1 (miR-
19b-3p, miR-19b-1-5p), miR-20a (miR-20a-3p, miR-20a-5p) and miR-92a-1 (miR-
92a-3p, miR-92a-1-5p). They play important roles in cell cycle, cell proliferation, cell 
apoptosis and other pivotal biological processes [9]. Previous studies [10–13] have also 
shown that the miR-17/92 cluster is in association with chronic myelogenous leukemia 
(CML). Out of the six members, miR-18a (miR-18a-3p and miR-18a-5p) with constant 
expression values across the 19 K562 single-cells is removed after data pre-processing. 
Hence in this section, we will focus on the regulation of the other five members (miR-17, 
miR-19a, miR-19b-1, miR-20a and miR-92a-1) from the miR-17/92 family.

To evaluate whether there is significant difference in the regulation of miR-17/92 fam-
ily between each pair of the 19 K562 single-cells, we compare the distributions of the 
number of predicted targets, the distributions of the percentages of validated targets and 
the distributions of the percentages of CML-related targets of miR-17/92 family in dif-
ferent K562 single-cells using a two-sample Kolmogorov–Smirnov (KS) test [14]. The KS 
test is non-parametric, and can be used to assess whether the distribution of the num-
ber of predicted targets, the distribution of the percentages of validated targets or the 
distribution of the percentages of CML-related targets of miR-17/92 family in one K562 
single-cell is significantly shifted compared with the distribution in another K562 sin-
gle-cell. To estimate the distributions, we calculate the number of predicted targets, the 
percentage of validated targets and the percentage of CML-related targets of miR-17/92 
family respectively in each K562 single-cell for each run of bootstrapping. As shown in 

Fig. 2  Single-cell similarity plot. A Similarity plot in terms of cell-specific miRNA-mRNA interactions. B 
Similarity plot in terms of cell-specific hub miRNAs. Colored areas indicate higher similarity between 
single-cells
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Fig. 3A–C, in the case of predicted targets, validated targets and CML-related targets, 
the regulations of miR-17/92 family between most of pairs of the 19 K562 single-cells 
are significantly different (p value < 0.05). This result indicates that the regulation of miR-
17/92 family is likely to be cell-specific. From Fig. 3D, the number of rewired targets of 
miR-17/92 family is larger than the number of conserved targets of them. This difference 
shows that the dominant miRNA regulation type (conserved or rewired) across cells 
may be rewired miRNA regulation. The detailed information of conserved and rewired 
targets associated with miR-17/92 family can be seen in Additional file 3.

Generally, through regulating target genes, miRNAs implement a specific biological 
function in the form of communities or modules. Therefore, based on the conserved 
and rewired miRNA-mRNA regulatory interactions associated with miR-17/92 family, 
we identify the conserved and rewired miRNA-mRNA modules associated with miR-
17/92 family. As a result, we have identified five rewired miRNA-mRNA modules, and 
none of the conserved miRNA-mRNA modules are found. We discover that most of 

Fig. 3  The miR-17/92 family regulation. A Difference in predicted targets of miR-17/92 family. B Difference in 
validated targets of miR-17/92 family. C Difference in CML-related targets of miR-17/92 family. D Number of 
conserved and rewired targets of miR-17/92 family. Empty square shapes denote p values > 0.05
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the rewired miRNA-mRNA modules are significantly enriched in at least one term of 
Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG), 
Reactome, Hallmark or Cell marker (see Table S1 in Additional file 1). Several significant 
terms, e.g. the GO biological process “positive regulation of cell cycle” [15], KEGG path-
way “Chronic myeloid leukemia”, Reactome pathway “Signaling by TGF-beta Receptor 
Complex” [16] and Hallmark “HALLMARK_TGF_BETA_SIGNALING” [17], are closely 
associated with leukemia. This result shows that most of the identified rewired miRNA-
mRNA modules are functional modules. The detailed enrichment analysis results of the 
rewired miRNA-mRNA modules can be seen in Additional file 4.

CSmiR is effective in predicting cell‑specific miRNA targets

As shown in Fig. 4, to evaluate the effectiveness of CSmiR, we compare the performance 
of CSmiR with the other three methods (CSmiR without using prior knowledge, random 
method, and TargetScan [18]) in terms of the percentage of validated miRNA-mRNA 
interactions across 19 K562 single-cells. Firstly, to investigate whether using prior 
knowledge can improve the accuracy of miRNA target prediction or not, we compare 
the performance of CSmiR with its variant that does not use prior knowledge. As for 
CSmiR with and without using prior knowledge, the average percentage of validated 

Fig. 4  Comparison in terms of the percentage of validated miRNA-mRNA interactions. A Comparison results 
between CSmiR (with prior knowledge) and CSmiR (without prior knowledge). B Comparison results between 
CSmiR and Random method. C Comparison results between CSmiR and TargeScan
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miRNA-mRNA interactions across 19 K562 single-cells is 47.09% and 8.26%, respec-
tively. A paired t-test is used to assess whether the percentage of validated miRNA-
mRNA interactions by CSmiR (using prior knowledge) is significantly larger than that 
of CSmiR’s variant (without using prior knowledge). As a result, the percentage of val-
idated miRNA-mRNA interactions across 19 K562 single-cells by CSmiR (using prior 
knowledge) is larger than that of CSmiR’s variant (without using prior knowledge) at a 
significant level (p value = 1.35E−32), demonstrating that using prior knowledge can 
improve the accuracy of miRNA target prediction. Moreover, we further compare the 
performance of CSmiR with a random method. For each cell-specific miRNA-mRNA 
regulatory network identified by CSmiR, the random method performs a permutation 
test by randomly generate 100 networks with the same number of miRNA-mRNA inter-
actions to compute the average percentage of validated miRNA-mRNA interactions 
in these random networks. As for the random method, the average percentage of vali-
dated miRNA-mRNA interactions across 19 K562 single-cells is 5.52%. By using a paired 
t-test, we have discovered that the percentage of validated miRNA-mRNA interactions 
across 19 K562 single-cells by CSmiR is larger than that of the random method at a sig-
nificant level (p value = 2.91E−32). Finally, we also compare the performance of CSmiR 
with TargetScan that is a popular sequence-based miRNA target prediction tool. As for 
TargetScan, the average percentage of validated miRNA-mRNA interactions across 19 
K562 single-cells is 45.31%. By using a paired t-test, the percentage of validated miRNA-
mRNA interactions across 19 K562 single-cells by CSmiR is also larger than that of Tar-
getScan at a significant level (p value = 2.22E−08). These results indicate that CSmiR is 
effective in predicting cell-specific miRNA targets.

CSmiR provides a novel strategy for clustering single‑cells

Existing methods for clustering single-cells are mainly based on cluster analysis of single-
cell RNA expression data. Different from these methods, we propose to cluster single-
cells based on the interaction similarity and hub miRNA similarity as mentioned in the 
“Methods” section. We compare the proposed clustering method with the result of the 
clustering based on the Euclidean distance (normalized to the range of [0, 1]) between 
cells calculated using the expression data of single-cells (see the “Methods” section).

As shown in Fig. 5, we use hierarchical clustering to perform clustering analysis of the 
19 K562 single-cells based on interaction similarity (Fig. 5A) and hub miRNA similar-
ity (Fig.  5B) respectively, in comparison with the clustering based Euclidean distance 
(Fig. 5C). The clustering results differ due to different similarity/distance measures used. 
However, our method (either using the interaction similarity or hub miRNA similarity) 
gives rather distinct clusters, whereas the conventional cluster analysis directly based on 
the difference in gene expression does not produce any clear clusters. This result can be 
explained by previous studies [19, 20] showing that gene regulatory networks are more 
‘stable’ than gene expressions to characterize the status of the biological process or cell. 
Although our clustering analysis results should be further validated by wet-lab experi-
ments, CSmiR provides a novel strategy to help biologists discover clusters of cells which 
may indicate novel cell subtypes.
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CSmiR helps to understand cell–cell crosstalk

It is known that cell–cell communication or crosstalk is crucial for multicellular organ-
isms (i.e. human) because it allows multiple cells to communicate and coordinate to per-
form important life activity [21, 22]. Here, if the similarity value between celli and cellj 
is larger than the median similarity value, celli and cellj have a crosstalk relationship. In 
terms of interaction similarity or hub miRNA similarity, we assemble the cell–cell cross-
talk relationships to generate cell–cell crosstalk network. Based on the interaction and 
hub miRNA similarity matrices, we obtain two cell–cell crosstalk networks (details in 
Additional file 5).

By analyzing the identified cell–cell crosstalk networks, we can understand which cells 
frequently communicate with other cells. We call these frequently communicated cells as 
hub cells or active cells. Similar to identifying cell-specific hub miRNAs, we also regard 
the top 20% of cells in terms of node degrees in each cell–cell crosstalk network as hub 
cells. These hub cells may act as pivots to link different subtypes of K562 single-cells 

Fig. 5  Hierarchical cluster analysis of the 19 K562 single-cells. A Hierarchical cluster analysis by using 
interaction similarity. B Hierarchical cluster analysis by using hub miRNA similarity. C Hierarchical cluster 
analysis by using expression similarity. Each color denotes a cluster
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(see Table S2 in Additional file 1). Moreover, we can also understand which cells tend to 
form a module in the process of communication. By using the Markov Clustering Algo-
rithm (MCL) [23] implemented in the miRspongeR R package [24], we identify cell–cell 
crosstalk modules from the identified cell–cell crosstalk networks. For each module, 
the number of K562 single-cells is at least 3. We have discovered that most of the K562 
single-cells only form a single module to communicate with each other (see Table S3 in 
Additional file 1). This observation can be explained that the 19 K562 single-cells used 
are phenotypically identical, and most of them are more likely form a module in cell–cell 
crosstalk.

Conclusions
It is well known that miRNA regulation is essential to a wide range of important biologi-
cal processes, including RNA silencing, transcriptional regulation of gene expression, 
cellular functions, signaling pathways and human cancers. Previous studies [25–27] have 
shown that miRNA regulation is condition-specific, implying that the miRNA regulation 
is cell-specific even these single-cells are phenotypically identical. Fortunately, single-cell 
RNA sequencing technology provides us an opportunity to gain insights into miRNA 
regulation at single-cell level. In this work, we have proposed CSmiR, a novel method to 
construct cell-specific miRNA-mRNA regulatory networks for each single-cell and use 
the networks to investigate cell-specific miRNA regulation. When identifying cell-spe-
cific miRNA-mRNA regulatory networks, since the cell-specific miRNA-mRNA regula-
tory networks are identified from single-cell miRNA-mRNA co-sequencing expression 
data with using prior knowledge, CSmiR is a supervised method.

Our proposed method can be enhanced in several areas. Firstly, the identified cell-spe-
cific miRNA-mRNA networks are all correlation networks. Actually, to uncover miRNA 
causal regulation in single-cells, it is our future plan to identify cell-specific miRNA 
causal regulatory networks. Secondly, to further improve the accuracy of the predicted 
cell-specific miRNA-mRNA regulatory networks, it is necessary to incorporate compre-
hensive miRNA-mRNA binding information as prior knowledge into CSmiR. Finally, 
the miRNA regulation can be generally classified into two types: miRNA-directed reg-
ulation and miRNA-indirected regulation. In this work, we only consider the type of 
miRNA-directed regulation where miRNAs directly regulate the expression of mRNAs, 
and have not considered the type of miRNA-indirected regulation where miRNAs act as 
mediators to involve in gene regulation. According to the competing endogenous RNA 
(ceRNA) hypothesis [28], miRNAs act as mediators to involve in the crosstalk between 
different RNA transcripts (e.g. mRNAs, transcribed pseudogenes, circular RNAs and 
long noncoding RNAs). We also plan to infer cell-specific miRNA sponge interaction 
networks in future.

Although CSmiR can be improved as suggested above, it provides a new way to 
explore the heterogeneity of miRNA regulation in each single-cell. Especially, CSmiR can 
be applied in the study of germ cells or reproductive development [29], in which few 
cells could be profiled. We believe that CSmiR can be a useful method to speed up non-
coding RNA (e.g. miRNA) research at single-cell level.
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Methods
In the following, we will describe the details about the single-cell miRNA-mRNA co-
sequencing data used, interpolating pseudo-cells in small-scale single-cell transcrip-
tomics data, the identification of cell-specific miRNA-mRNA regulatory networks, 
and subsequent analysis of the identified single-cell miRNA regulation.

Single‑cell miRNA‑mRNA co‑sequencing data

We obtain matched miRNA and mRNA co-sequencing expression data in 19 half 
K562 cells from Gene Expression Omnibus (GEO, https://​www.​ncbi.​nlm.​nih.​gov/​
geo/) with accession number GSE114071. The K562 cells used are the first human 
chronic myelogenous leukemia (CML) cell line. For the duplicate miRNAs or mRNAs 
with the same gene symbols in the dataset, we compute the average expression values 
of them as their final expression values. Since gene expression variability may be a 
reason of non-genetic cell-to-cell heterogeneity [6], as a feature selection, we remove 
all the miRNAs and mRNAs with constant expression values (the standard devia-
tion of their expression values in all single-cells is 0) across the 19 half K562 cells. 
The matched miRNA and mRNA expression data are then pre-processed by using 
log2(x + 1) transformation. As a result, we have the matched expression profiles of 
212 miRNAs and 15,361 mRNAs in the 19 half K562 cells.

Interpolating pseudo‑cells in small‑scale single‑cell transcriptomics data

When the number of samples in a dataset is small, it is not guaranteed that a good 
representation of the population can be inferred from the data. It is required in [8] 
that when applying the CSN method, to estimate the association of each miRNA-
mRNA pair, the number of cells in the single-cell transcriptomics dataset used should 
be more than 100. Since the proposed CSmiR method is adapted from the CSN 
method, for small-scale single-cell transcriptomics dataset like the one with 19 K562 
half cells, it is necessary to enlarge the number of cells.

After interpolating pseudo-cells into original single-cell transcriptomics data, the 
main challenge is that the distribution of each gene (miRNA or mRNA) and joint 
distribution of each miRNA-mRNA pair will not be changed. To tackle this prob-
lem, we need to guarantee that the proportion of each cell type in the interpolated 
pseudo-cells is the same as that in the real single-cells. That is to say, the cell-type 
of the interpolated pseudo-cells should be the same as that in the real single-cells, 
and the number of the interpolated pseudo-cells of each cell-type also increases with 
the same probability. Based on this, for each pseudo-cell, we sample from the orig-
inal single-cell transcriptomics data, i.e. the 19 single-cells uniformly with replace-
ment, to generate it. To meet the requirement of having at least 100 single-cells, the 
number of interpolated pseudo-cells between two adjacent half K562 cells is set to 5. 
Here, two K562 single-cells with adjacent sample IDs (generated by half-cell genomics 
method) are regarded as adjacent single-cells. As a result, for each run of bootstrap-
ping, we obtain the expression profiles of 212 miRNAs and 15,361 mRNAs in 109 half 
K562 cells (including both real and pseudo half K562 cells). All the B bootstrapping 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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datasets are used for subsequent analysis. In this work, the number of bootstrapping 
B is set to 100.

Identifying cell‑specific miRNA‑mRNA regulatory networks by integrating putative 

miRNA‑mRNA binding information

To reconstruct cell-specific miRNA-mRNA regulatory networks for real cells from the 
given single-cell dataset (including both real cells and interpolated pseudo-cells), it is 
necessary to construct a reliable statistic to evaluate the association between miRNAs 
and mRNAs. By using the statistic, the identified cell-specific miRNA-mRNA regula-
tory networks should be robust in the case of high dropout rate (also called technical 
noise from single-cell sequencing technology) and adding new cells (pseudo-cells in this 
work). Based on this, for each cell (including both real cells and interpolated pseudo-
cells) in the given single-cell dataset, we apply the statistic used in the CSN method [8] 
to build a miRNA-mRNA regulatory network. In the case of high dropout rate and add-
ing new cells, it is demonstrated that the CSN method is robust in identifying cell-spe-
cific networks. Therefore, when building the network, we adapt the CSN method for the 
discovery of miRNA-mRNA regulation. Moreover, we use the putative miRNA-mRNA 
binding information from TargetScan v7.2 [18] as prior knowledge to constrain the com-
putational space between miRNAs and mRNAs. Specifically, for each putative miRNA-
mRNA pair miRr and mRt in cell k, we evaluate the association between the miRNA and 
mRNA using the statistical test as described in the following.

To estimate the association between miRr and mRt in cell k, the CSN method draws 
a scatter diagram using the expression values of miRr and mRt. As shown in Fig.  6, 
rk and tk denote expression values of miRr and mRt in cell k respectively, and the 
medium, light and dark grey boxes represent the neighborhood of rk, tk and (rk, tk) 

Fig. 6  Statistic model for regulation between miRr and mRt in cell k. In the scatter diagram, rk and tk denote 
expression values of miRr and mRt in cell k respectively. The medium and light grey boxes denote the 
neighbourhood of rk and tk, respectively. The dark grey box (the intersection between the medium and light 
grey boxes) is the neighbourhood of (rk, tk). The number of points in the medium, light and dark grey boxes is 
nr

(k), nt
(k) and nrt

(k) respectively
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respectively. The number of points in the medium, light and dark grey boxes are nr
(k), 

nt
(k) and nrt

(k) respectively. Then we construct the statistic,ρ(k)
rt  as:

where n is the total number of cells in the given dataset, n
(k)
r
n  and n

(k)
t
n  are the marginal 

probabilities of the expression levels of miRr and mRt respectively 
(

n
(k)
r
n = n

(k)
t
n = 0.1

)

 as 

empirically suggested by the CSN method), and n
(k)
rt
n  is the joint probability of miRr and 

mRt.
It has been proved in [8] that ρ(k)

rt  approximately follows a normal distribution, and 
the normalized statistic z(k)rt  is:

where µ(k)
rt = 0 and σ (k)

rt =

√

n
(k)
r n

(k)
t (n−n

(k)
r )(n−n

(k)
t )

n4(n−1)
 are the mean value and standard devi-

ation of ρ(k)
rt  , respectively. z(k)rt  obeys standard normal distribution with mean value of 0 

and standard deviation of 1. Each z(k)rt  value corresponds to a p value for evaluating the 
significance of the association between miRr and mRt. The smaller pvalue indicates that 
the miRNA miRr and the mRNA mRt are more likely to be associated with each other in 
cell k. Here, the significant p value cutoff is set to 0.01.

For example, if we have a single-cell transcriptomics dataset containing 100 
cells, the association between miRr and mRt in cell k is calculated as follows. Fig-
ure  6 is the scatter diagram using the expression values of miRr and mRt. Then, 
we draw the two boxes near rk and tk based on the predetermined nr

(k) and nt
(k) 

( n(k)r = n
(k)
t = 0.1n = 10 ). The value of n(k)rt  is 4 by counting the red points in the third 

box which is the intersection between the drawn two boxes. According to Eqs. (1) and 
(2), the association ρ(k)

rt  and normalized association z(k)rt  between miRr and mRt in cell 
k is 0.03 and 

√
11 . By using pnorm R function, the corresponding significance p value 

of z(k)rt =
√
11 is 4.56E−04 ( 1− pnorm(

√
11) ). Given the significant p value cutoff of 

0.01, the miRNA miRr and the mRNA mRt are regarded as to be associated with each 
other in cell k.

Unstable estimation between the miRNA miRr and the mRNA mRt in cell k caused 
by small number of samples is a challenge to CSmiR. It is known that bootstrapping 
is a re-sampling technique used to obtain a reasonably accurate estimate of the popu-
lation, and can be used to tackle the small sample problem. Therefore, to tackle this 
issue, we regard the median value of all the normalized associations z(k)rt  calculated in 
all the B runs of booststrapping as the final estimation of the asscociation between 
miRr and mRt in cell k. If the final association corresponds a small significance p value 
(i.e. less than 0.01), the miRNA miRr and the mRNA mRt are associated with each 
other in cell k. As we are only interested in the miRNA-mRNA regulatory networks 

(1)ρ
(k)
rt =

n
(k)
rt

n
−

n
(k)
r

n
·
n
(k)
t

n

(2)

z
(k)
rt =

ρ
(k)
rt − µ

(k)
rt

σ
(k)
rt

=

√
n− 1 · (n · n(k)rt − n

(k)
r n

(k)
t )

√

n
(k)
r n

(k)
t (n− n
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for each of the real cells (in the K562 dataset, they are the 19 real half K562 cells in 
the original dataset), at the end of this stage, we only keep the cell-specific miRNA-
mRNA regulatory networks for the real cells. It is noted that each cell-specific 
miRNA-mRNA regulatory network is a bipartite graph where nodes are miRNAs and 
mRNAs and an edge is pointing from a miRNA to a mRNA.

Downstream analysis with cell‑specific networks

At the network level, it is known that gene regulatory network provides an insight into 
investigating gene regulation. In the same vein, the discovered cell-specific miRNA-
mRNA regulatory networks in the previous step could also help to explore miRNA regu-
lation. To explore cell-specific miRNA regulation, based on the identified cell-specific 
miRNA-mRNA regulatory networks, CSmiR conduct the following types of downstream 
analyses: (1) discovering conserved and rewired miRNA regulation, (2) single-cell clus-
tering analysis, (3) cell–cell crosstalk analysis, and (4) functional analysis of miRNA 
regulation.

Discovering conserved and rewired miRNA regulation

In a cell, the regulation of some miRNAs is “on” whereas the regulation of some miRNAs 
is “off” [30], indicated by having outgoing edges from the miRNAs or having no outgoing 
edges in the cell-specific network, respectively. It is possible that the regulation of some 
miRNAs is “on” in multiple cells and some miRNA regulations only maintain “on” in one 
cell. This “on/off state” phenomenon could help reveal the heterogeneity and commonal-
ity of miRNA regulation across different cells. Assuming that each cell is characterized 
by miRNA regulation, the conserved and rewired miRNA regulation across different 
cells can reflect the commonality and heterogeneity of cells, respectively. In this work, 
we discover conserved and rewired miRNA regulation in terms of both miRNA-mRNA 
regulatory network and hub miRNAs. Previous studies [31, 32] have shown that nearly 
20% of the nodes in a biological network are regarded as essential nodes. The essential 
nodes in a biological network are subject to several topological properties (e.g. node 
degree) or biological relevance. Here, for simplicity, we select the top 20% of miRNAs 
based on node degrees in each cell-specific miRNA-mRNA regulatory network as hub 
miRNAs. Normally, if a miRNA-mRNA interaction or hub miRNA exists in more sin-
gle-cells, the miRNA-mRNA interaction or hub miRNA tends to be more conservative. 
Here, the miRNA-mRNA interactions or hub miRNAs that are always “on” in at least 
17 real K562 cells (~ 90%, generally ranked as a highly  conservative  level) are defined 
as conserved interactions or hubs, and the miRNA-mRNA interactions or hub miRNAs 
that are “on” in only one K562 cell are defined as rewired interactions or hubs. By assem-
bling the conserved and rewired miRNA-mRNA interactions or hubs, we can obtain 
conserved and rewired miRNA-mRNA regulatory networks or hub miRNAs, respec-
tively. These networks and hubs could provide insights into the heterogeneity and simi-
larity of miRNA regulation across different single-cells.

Single‑cell clustering analysis

Clustering single-cells based on single-cell RNA sequencing data is a fundamental task 
to understand tissue complexity, e.g. the number of subtypes [33]. In this paper, instead 
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of directly using single-cell RNA sequencing data, we can use cell–cell similarity matri-
ces for clustering single-cells, i.e. clustering cells based on their similarities on miRNA-
mRNA interactions or hub miRNAs.

To reveal the heterogeneity of miRNA regulation across different cells, we investigate 
cell–cell similarity in terms of their miRNA-mRNA regulatory networks. The smaller 
the similarity between two single-cells is, the more heterogeneous they are.

We consider two types of similarities between two single-cells: the similarity on 
miRNA-mRNA interactions in their networks and the similarity on hub miRNAs in their 
networks. Following the similarity calculation method in [34], we calculate the interac-
tion similarity and hub miRNA similarity using Eq. (3) below.

where termi and termj denote the numbers of interactions or numbers of hub miR-
NAs in the cell-specific miRNA-mRNA regulatory networks of cells i and j, respec-
tively, intersect(termi, termj) denotes the number of miRNA-mRNA interactions or hub 
miRNAs common to the cell-specific miRNA-mRNA regulatory networks of cells i and 
j, and min(termi, termj) returns the smaller value out of termi and termj, i.e. the smaller 
value out of the numbers of miRNA-mRNA interactions or the numbers of hub miRNAs 
in the cell-specific miRNA-mRNA regulatory networks of cells i and j.

For comparison, we also calculate the similarity between two single-cells based on sin-
gle-cell expression data. The normalized Euclidean distance nor_disij between cells i and 
j is calculated as follows:

where eik and ejk denote the expression levels of gene k in cells i and j respectively, g is the 
total number of genes (miRNAs and mRNAs), m is the number of real K562 single-cells.

After calculating the similarity and the distance between each pair of real half K562 
cells, we obtain two similarity matrices SIm×m and SHm×m (where m is the number of 
real cells) in terms of cell-specific miRNA-mRNA interactions and cell-specific hub 
miRNAs respectively, and one distance matrix dism×m in terms of single-cell expression 
data. Based on the similarity and distance matrices, we can conduct single-cell clustering 
analysis, e.g. hierarchical clustering analysis.

Cell–cell crosstalk analysis

In addition to single-cell clustering analysis, the similarity matrices can also be used 
for cell–cell crosstalk analysis. The cell–cell crosstalk is an indirect cell–cell com-
munication and plays an important role in biological systems. For instance, cell–cell 
crosstalk can influence gene expression patterns [35], and involve in the develop-
ment and regeneration of the respiratory system as well [36]. For each cell–cell pair, 
a higher similarity means sharing more number of miRNA-mRNA interactions or 

(3)simij =
intersect(termi, termj)

min(termi, termj)

(4)

nor_disij =
disij −min(dis)

max(dis)−min(dis)

disij =
√

(ei1 − ej1)2 + · · · (eik − ejk)2 + · · · + (eig − ejg )2

dis = (disij) ∈ R
m×m
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hub miRNAs between two cells. Previous studies [37, 38] have shown that miRNAs 
and their targets play important roles in cell signaling pathways. Therefore, when the 
shared miRNA-mRNA interactions or hub miRNAs involve in cell signaling path-
ways, a higher similarity between the cell pair implies that the two cells share more 
common cell signaling pathways and have a higher probability of signaling with each 
other (crosstalk). Based on this assumption, empirically, we use the median similar-
ity value of all cell–cell pairs in the interaction or hub miRNA similarity matrix as 
the cutoff to evaluate whether two cells have crosstalk relationship or not. That is, if 
the similarity value between celli and cellj is larger than the median similarity value, 
celli and cellj have a crosstalk relationship. Following the empirical principle, we can 
evaluate whether each cell–cell pair has a crosstalk relationship or not. After assem-
bling the cell–cell crosstalk relationships in terms of miRNA-mRNA interactions or 
hub miRNAs, we can obtain a cell–cell crosstalk network.

Functional analysis of miRNA regulation

To validate and apply the identified cell-specific miRNA regulatory networks, we also 
conduct functional analysis of miRNA regulation at both network and module levels.

At the network level, we conduct functional validation of the cell-specific miRNA-
mRNA regulatory networks by using third-party databases. Since there are no 
experimentally validated databases at single-cell level, we use two well-known experi-
mentally validated databases named miRTarBase v8.0 [39] and TarBase v8.0 [40] at 
bulk-cell level for validation. Meanwhile, since the K562 cells used are closely asso-
ciated with chronic myelogenous leukemia (CML), we collect a list of miRNAs and 
mRNAs associated with CML to investigate CML-related miRNA regulation. The list 
of CML-related miRNAs is from Human MicroRNA Disease Database HMDD v3.0 
[41], and the list of CML-related mRNAs is from DisGeNET v5.0 [42], which is one 
of the largest publicly available collections of genes and variants associated to human 
diseases. We focus on identifying CML-related miRNA-mRNA pairs where the miR-
NAs and mRNAs individually are in the list of CML-related miRNAs and mRNAs.

At the module level, we discover miRNA-mRNA regulatory modules by using the 
biclique R package [43]. We consider each miRNA-mRNA regulatory module is a com-
plete bipartite graph or a biclique, and the numbers of miRNAs and mRNAs in each 
module are at least 2 and 3, respectively. Here, a complete bipartite graph or a biclique 
is a special type of bipartite graph where every miRNA is connected to every mRNA. 
To understand potential biological implications associated with the identified miRNA-
mRNA regulatory modules, we perform Gene Ontology (GO) [44], Kyoto Encyclope-
dia of Genes and Genomes (KEGG) [45], Reactome [46], Cancer hallmark [47], and 
Cell marker [48] enrichment analysis by using the clusterProfiler R package [49]. A GO, 
KEGG, Reactome, Hallmark or Cell marker term with adjusted p value < 0.05 (adjusted 
by Benjamini–Hochberg method) is regarded as a significant term. We also conduct 
CML enrichment analysis by using a hyper-geometric test to evaluate whether the miR-
NAs and mRNAs in each module are significantly enriched in CML or not. The signifi-
cance p value of each module enriched in CML is calculated as:
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where N is the total number of genes (miRNAs and mRNAs) expressed in the dataset, 
Q represents the number of CML-related genes in the dataset, M is the total number of 
genes in each module, and s is the number of CML-related genes in each module. The 
cutoff of p value is set as 0.05.
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