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Abstract 

Background:  In population genomics, polymorphisms that are highly differentiated 
between geographically separated populations are often suggestive of Darwinian 
positive selection. Genomic scans have highlighted several such regions in African and 
non-African populations, but only a handful of these have functional data that clearly 
associates candidate variations driving the selection process. Fine-Mapping of Adaptive 
Variation (FineMAV) was developed to address this in a high-throughput manner using 
population based whole-genome sequences generated by the 1000 Genomes Project. 
It pinpoints positively selected genetic variants in sequencing data by prioritizing high 
frequency, population-specific and functional derived alleles.

Results:  We developed a stand-alone software that implements the FineMAV statis‑
tic. To graphically visualise the FineMAV scores, it outputs the statistics as bigWig files, 
which is a common file format supported by many genome browsers. It is available as 
a command-line and graphical user interface. The software was tested by replicating 
the FineMAV scores obtained using 1000 Genomes Project African, European, East and 
South Asian populations and subsequently applied to whole-genome sequencing 
datasets from Singapore and China to highlight population specific variants that can 
be subsequently modelled. The software tool is publicly available at https://​github.​
com/​fadil​la-​wahyu​di/​finem​av.

Conclusions:  The software tool described here determines genome-wide FineMAV 
scores, using low or high-coverage whole-genome sequencing datasets, that can be 
used to prioritize a list of population specific, highly differentiated candidate variants 
for in vitro or in vivo functional screens. The tool displays these scores on the human 
genome browsers for easy visualisation, annotation and comparison between different 
genomic regions in worldwide human populations.
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Background
Human whole-genome sequencing projects have contributed to the advancement of popu-
lation genomics, specifically the unbiased detection of positive selection in human popula-
tions. In comparison to genotyping, sequencing mitigates ascertainment bias and captures 
greater genomic variation [1] making it suitable for selection scans. The rise in population-
based sequencing initiatives has garnered an interest in the study of positive selection, 
because identifying genetic variants that are positively selected can provide insight into new 
molecular functions that come with adaptation. These selective scans have provided vast 
lists of genes and variants and except for a few classical examples [2], it has been difficult to 
identify potentially functional variants that should be followed up in vitro or in vivo models.

Fine-Mapping of Adaptation Variation (FineMAV) is a statistical method that prioritizes 
functional SNP candidates under selection and depends upon population differentiation 
[3]. It pinpoints candidate positively selected variants at putative loci in a high-throughput 
manner, thus, enabling the modelling of such variants in vitro or in vivo [3]. FineMAV was 
developed to overcome a challenge that existing positive selection statistical methods face 
in that they are unable to distinguish between neutral, hitchhiked variants and true posi-
tively selected variants [3]. FineMAV does this by incorporating methods that detect regions 
showing signatures of positive selection (population differentiation and high frequency of 
derived alleles) and subject these regions to functional annotation under the assumption 
that it is unlikely for a deleterious or functional variant to reach high frequency in a given 
randomly mating population unless it confers some sort of functional advantage [3].

To measure population differentiation, FineMAV employs a derived allele purity (DAP) 
equation to describe the disparate spread of derived alleles across populations [3]. The 
derived allele frequency (DAF) equation is used to determine sites with high frequency 
of derived alleles [3]. To annotate functionality, FineMAV uses the Combined Annota-
tion-Dependent Depletion (CADD) method which takes into account multiple variant 
annotations and condenses it into a single score called the C score [4]. The C scores pre-
dict whether a SNP or indel in the human genome is functional, deleterious or pathogenic 
[4]. The phred-scaled C scores (CADD_PHRED) are expressed as rankings relative to all 
possible substitutions of the human genome and range from 1 to 99 [4]. For example, a 
variant that scores more than 10 would be within the top 10% of potentially deleterious 
substitutions. A score of 20 would indicate the top 1% and 30 would be 0.1% and so on 
[4]. Incorporating CADD scores can, therefore, differentiate between neutral alleles, which 
are predicted as non-deleterious, and true positively selected alleles, which are predicted as 
effectively functional or deleterious [3]. In this article, we introduce a stand-alone applica-
tion that can perform FineMAV calculations on whole-genome sequencing data and can 
output bigWig files which can be used to graphically visualise the scores on genome brows-
ers. We test the software using the 1000 Genomes Project phase 3 dataset [5] and whole-
genome sequencing datasets from Singapore and China [6–8].

Implementation
Pipeline

The Python-based FineMAV software works with high-throughput, massively parallel, 
sequencing data and relies on the information that can be extracted from variant call 
format (VCF) files (version 4.2 and above) (Table 1). The Python script can be found in 
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Additional file 1. The pipeline for the software is illustrated in Fig. 1. We recommend 
users to use jointly-called, multi-sample genomic VCF (gVCF) as it reports every site in 
the genome regardless of whether they carry variation or not. This is preferable for Fin-
eMAV analysis as it can distinguish between sites that are homozygous for the reference 
allele and those with missing data.

Input files and dataset

The FineMAV software requires the user to provide the input data from the VCF file in a 
tab-delimited file format (Table 1). We recommend extracting the information utilising 
the BCFtools [9] query command. Some of the information mentioned in Table 1 can be 
found in the INFO column and are not mandatory in VCF files.

In instances where the allele frequency (AF) for each population is not annotated in 
the INFO column, we suggest using the BCFtools fill-tags plugin to determine the AF 
first, and then piping it to the BCFtools query command for extraction. If the ancestral 
allele and/or the CADD_PHRED are not available in the VCF file, the software allows the 
user to supplement this information using the Ensembl Variant Effect Predictor (VEP) 
[10]. The output file must be tab-delimited and the first column must be the “Location”, 
which indicates the position of the variant using the standard coordinate format (i.e. 
chromosome:start).

We tested our implementation code by generating genome-wide FineMAV scores 
using the 1000 Genomes Project low coverage whole-genome sequences from Afri-
can, European, East and South Asian continental populations to replicate the published 
results [3]. Subsequently, we used the pipeline to calculate FineMAV scores for high-cov-
erage whole-genome sequencing datasets generated by the Singapore Sequencing Indian 
Project (SSIP) [6], the Singapore Sequencing Malay Project (SSMP) [7] and a dataset of 
90 Han Chinese individuals (90HC), that included 83 samples from the 1000 Genomes 
Project [8].

Calculating the genome‑wide FineMAV score

The FineMAV score was estimated for genome-wide single nucleotide polymorphisms 
(SNPs) as only the ancestral allele could be unambiguously determined only for this 
class of variations. The derived allele for each SNP was calculated by multiplying three 

Table 1  Information needed for the tab-delimited input files

This information can be extracted from the VCF file and provided in a tab-delimited format for the software to calculate the 
FineMAV scores

Information needed 
from the VCF file

Description Mandatory 
VCF 
column

CHROM:POS Chromosome number:position Yes

ID Identifier Yes

REF Reference base Yes

ALT Alternative base Yes

AA Ancestral allele No

CADD_PHRED Phred-scaled Combined Annotation Dependent Depletion (CADD) score No

AF Allele frequency (AF) for the alternative base. The AF should be reported 
for each population

No
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metrics: DAP, DAF and the CADD_PHRED score [3]. DAP was calculated for each 
variant using the following equations: dN =

∑n
i=1 di , fi =

di
dN

 and DAP =
∑n

i=1 f
x
i  

respectively, where n is the number of populations, di is the derived allele count in one 
population i where i ∈ {1, 2 . . . , n} and x is the penalty parameter used to penalize allele 
sharing between the populations [3]. The aforementioned DAP equation is used when 
the population sizes are equal. In this software, the DAP is calculated using the derived 
allele frequency instead of counts in order to take into account population sizes that 
might be different.

The penalty parameter x was determined empirically by Szpak et  al. [3] for varying 
number of n populations, ranging from 2 to 7 (Table 2). However, should the user intend 
to analyse more than 7 populations or decide on another value for x , they are able to 
change it.

Fig. 1  Pipeline for calculating the genome-wide FineMAV scores. The boxed region highlighted in grey are 
the parts of the workflow that are automated by the software. The intermediate output files are deleted when 
the pipeline is complete. AA: ancestral allele, CADD_PHRED: phred-scaled Combined Annotation Dependent 
Depletion scores, VEP: Variant Effect Predictor, AF: allele frequency of the alternative allele
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FineMAV calculations are done by splitting the file(s) into smaller chunks to optimise 
the random access memory (RAM) usage (Fig.  2A). The default size of the chunk is 
200,000 lines. However, the user can specify the chunk size they require. We also tested 
the performance of the chunk size option using 66,236,516 biallelic SNPs across four 
population groups. Computational experiments were run on Ubuntu 16.04 LTS with a 
3.60 GHz 8-core Intel Core i7-4790 processor with 31.3 GB RAM and 950.6 GB of hard 
disk memory. The size of the input file, which contains the data extracted from the VCF 
file, and the VEP-generated file was 2.0 GB and 2.1 GB respectively. Figure 2B illustrates 
the maximum RAM usage and the time taken when different chunk sizes are utilised. 
As expected, the larger the chunk size, the faster the run time, up to a certain point. The 
optimal chunk size would vary depending on the size of the input files and the comput-
ing power.

Generating the output files

The software produces three kinds of output files: a log file, a tab-delimited file contain-
ing the genome-wide FineMAV scores along with the intermediate calculations and a 
bigWig file. The bigWig [11] is a common file format used for graphical visualisation 
on downloadable and online genome browsers such as Ensembl or the UCSC genome 
browsers [12, 13].

Results and discussion
We initially tested our implementation code by generating genome-wide FineMAV 
scores using the 1000 Genomes Project African, European, East and South Asian con-
tinental populations [5] and obtained FineMAV scores that were significantly correlated 
with the published data (Spearman’s correlations ≥ 0.9999 and the p-values < 0.00001) 
for all four continental populations [3]. When comparing the top 100 FineMAV outli-
ers across all four continental populations with the published data, only 5/300 variants 
did not overlap with the published results and all five of these variants were missing, 
because they did not pass our data filtering criteria.

Next, we used the pipeline to calculate FineMAV scores for three high-coverage 
whole-genome sequencing datasets: the SSIP [6], SSMP [7] and 90HC [8]. These data-
sets were mapped to the GRCh37/hg19 reference genome. The VCF files for the auto-
somal and the X chromosome were merged and filtered to select high-quality biallelic 

Table 2  Recommended minimal value of the penalty parameter ( x ), rounded off to two decimal 
places, for a given n as determined by Szpak et al. [3]

Number of populations ( n) Penalty 
parameter 
( x)

2 4.96

3 3.50

4 2.98

5 2.71

6 2.53

7 2.41
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sites that were variable in all three populations. This resulted in a final VCF file contain-
ing 5,748,704 SNPs in which the CHROM:POS, ID, REF, ALT and AF for each popula-
tion were retrieved and stored in a tab-delimited file. As the VCF files did not contain 
the CADD_PHRED nor the ancestral alleles, a separate tab-delimited file containing this 
information for these SNPs was generated by leveraging the Ensembl VEP’s plugins. For 
CADD_PHRED annotation, we used the CADD version (v1.4) for the reference genome 
GRCh37/hg19 (https://​krish​na.​gs.​washi​ngton.​edu/​downl​oad/​CADD/​v1.4/​GRCh37/​
whole_​genome_​SNVs.​tsv.​gz) [4, 14] The FASTA files containing the ancestral sequences 
were downloaded from the Ensembl webpage using the following URL: ftp://​ftp.​ensem​
bl.​org/​pub/​relea​se75/​fasta/​ances​tral_​allel​es/​homo_​sapie​ns_​ances​tor_​GRCh37_​e71.​tar.​
bz2 [15, 16]. These two files were then fed to the software to produce bigWig files which 
can be visualised in genome browsers as presented in Fig. 3.

The FineMAV statistic was able to replicate known positively selected vari-
ants as well as pinpoint novel ones from the three populations (Table  3, Additional 
file  2). Examples of known variants included the derived alleles for rs3827760 

Fig. 2  Utilising the chunk size option. A Diagram illustrating how the software separates the input files 
into chunks and iterates through them when performing the FineMAV calculations. It proceeds to merge 
them into one output file. B Utilising the chunk size option. A graph that compares the time taken and the 
maximum random access memory (RAM) when different chunk sizes for a dataset of 66,236,516 biallelic SNPs 
is used

https://krishna.gs.washington.edu/download/CADD/v1.4/GRCh37/whole_genome_SNVs.tsv.gz
https://krishna.gs.washington.edu/download/CADD/v1.4/GRCh37/whole_genome_SNVs.tsv.gz
ftp://ftp.ensembl.org/pub/release75/fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh37_e71.tar.bz2
ftp://ftp.ensembl.org/pub/release75/fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh37_e71.tar.bz2
ftp://ftp.ensembl.org/pub/release75/fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh37_e71.tar.bz2
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(NC_000002.12:g.108897145A > G, ENSP00000258443.2:p.Val370Gly) in ectod-
ysplasin A receptor (EDAR) and rs2293766 (NC_000007.13:g.100371358G > A, 
ENSP00000423579.1:p.Trp1883Ter) in zonadhesin (ZAN). These variants have also 
been highlighted previously in several genomic scans for selection in East Asian 
populations [3, 17, 18] and in this study, they were high scoring in the 90HC and 
SSMP (Table 3). Several studies that have looked at the missense variant rs3827760 
in EDAR have confirmed its pleiotropic effects. The non-synonymous mutation has 
been found to be associated with hair thickness [19–21], shovel-shaped incisors 

Fig. 3  Annotated screenshot of the bigWig files of the genome-wide FineMAV scores. A FineMAV scores for 
Han Chinese (90HC, orange), Singaporean Indian (SSIP, blue) and Singaporean Malay (SSMP, grey) populations 
displayed on the Integrative Genomics Viewer (IGV). The genomic regions on display are the autosomal 
and the X chromosomes and the horizontal line depicts the 99th percentile. B A multi-locus view of two 
regions where the left panel displays a locus with a well-known positively selected missense variant in EDAR 
(rs3827760) in East Asians that also stands out in the SSMP population. The right panel displays a novel locus 
with two high scoring variants in SSIP: rs151233, a synonymous variant in APOBR and rs151234, an intronic 
variant in CLN3 that stand out in the SSIP
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Table 3  Top 10 FineMAV candidates from the Han Chinese (90HC), Singaporean Indian (SSIP) and 
Singaporean Malay (SSMP) populations

Chr Position a SNP ID Gene Consequence b DAF 
90HC

DAF 
SSIP

DAF 
SSMP

FineMAV Known 
or novel

90HC

2 109513601 rs3827760:A > G EDAR Missense 
(p.Val370Ala)

0.922 0.029 0.490 4.661 Known [3, 
17, 18]

5 176099727 rs13186794:A > G – Intergenic 0.494 0.057 0.047 4.114 Novel

5 176099728 rs13186795:A > G – Intergenic 0.494 0.057 0.057 4.096 Novel

4 31442427 rs56345433:G > A – Intergenic 0.528 0.086 0.021 3.211 Novel

3 98031307 rs2316271:T > A OR5H8 Stop gained 
(p.Leu184Ter)

0.767 0.314 0.599 3.102 Novel

16 31088347 rs749671:G > A ZNF646 Synonymous 
(p.Glu234 =)

0.906 0.043 0.776 3.053 Known 
[18]

5 76129053 rs631465:T > C F2RL1 Synonymous 
(p.Ile207 =)

0.522 0.014 0.208 3.008 Novel

2 109451118 rs72627476:A > G CCDC138 Intronic 0.917 0.029 0.484 2.961 Known [3]

12 132106717 rs10794470:T > C AC117500.3 Intronic 0.272 0.000 0.005 2.940 Novel

7 14587199 rs10236893:G > A DGKB Intronic 0.417 0.029 0.120 2.895 Novel

SSIP

16 28506428 rs151233:C > T APOBR Synonymous 
(p.Leu22 =)

0.006 0.571 0.026 7.677 Novel

16 30936081 rs35675346:G > A FBXL19 Missense 
(p.Glu10Lys)

0.061 0.800 0.188 7.213 Known 
[18, 43]

16 28505660 rs151234:G > C CLN3 Intronic 0.006 0.571 0.031 6.839 Novel

16 31044683 rs58726213:A > G STX4 Upstream gene 0.089 0.871 0.214 6.686 Known 
[18, 43]

15 64592833 rs114713921:T > C CSNK1G1 5 prime UTR​ 0.006 0.486 0.036 6.341 Novel

16 30666367 rs3747481:C > T PRR14 Missense 
(p.Pro359Leu)

0.100 0.857 0.245 6.090 Known 
[18]

19 49206674 rs601338:G > A FUT2 Stop gained 
(p.Trp154Ter)

0.011 0.186 0.016 6.033 Known 
[44]

15 91452595 rs2106673:A > G MAN2A2 Missense 
(p.Gln412Arg)

0.017 0.514 0.063 5.746 Novel

10 17407147 rs729170:G > T ST8SIA6 Intronic 0.006 0.343 0.005 5.736 Novel

15 64653984 rs8026043:G > T PCLAF Downstream 
gene

0.006 0.486 0.036 5.726 Novel

SSMP

2 98272491 rs2290123:A > G ACTR1B 3 prime UTR​ 0.033 0.029 0.380 3.378 Known 
[18]

2 97613974 rs114979404:C > G FAM178B Intronic 0.022 0.029 0.375 2.806 Known 
[18]

17 2238152 rs79597880:T > C TSR1 Missense 
(p.Lys199Glu)

0.089 0.014 0.297 2.747 Novel

16 31088347 rs749671:G > A ZNF646 Synonymous 
(p.Glu234 =)

0.906 0.043 0.776 2.616 Known 
[18]

7 100371358 rs2293766:G > A ZAN Stop gained 
(p.Trp1883Ter)

0.528 0.257 0.557 2.531 Known [3, 
45]

2 109513601 rs3827760:A > G EDAR Missense 
(p.Val370Ala)

0.922 0.029 0.490 2.474 Known [3, 
17, 18]

3 98031307 rs2316271:T > A OR5H8 Stop gained 
(p.Leu184Ter)

0.767 0.314 0.599 2.424 Novel

11 62848487 rs11231341:A > C SLC22A24 Stop gained 
(p.Tyr501Ter)

0.867 0.757 0.792 2.421 Novel

12 57865558 rs2229300:G > T GLI1 Missense 
(p.Gly1012Val)

0.050 0.014 0.224 2.402 Novel

16 31075175 rs2303223:G > A ZNF668 Synonymous 
(p.Gly225 =)

0.911 0.043 0.781 2.290 Known [3]
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[22–24], ear morphology [25, 26], increased density of eccrine sweat glands, reduced 
mammary fat pad and increased mammary ductal gland branching [21] and despite 
extensive research, it still remains unclear as to why this allele is positively selected 
in the region. Some have theorised that increased sweat gland density resulted in 
better thermoregulation during warmer climates or that perhaps male sexual prefer-
ence may have played a role in its selection [21]. Others hypothesise that selection 
for increased mammary gland branching would lead to better mother-to-child nutri-
ent transfer, especially for vitamin D, to prevent vitamin D deficiency in regions with 
lower ultraviolet (UV) levels [27]. ZAN encodes an acrosomal protein in the sperm 
called zonadhesin. A study employing Zan knockout mice found that their sperms 
remained fertile and had increased adhesion to the jelly-like coating of the egg (zona 
pellucida) of other species like pig, cow and rabbit [28]. As ZAN is responsible for 
species-specific binding, it can be speculated that a truncation, as a result of the non-
sense mutation in rs2293766, could have mediated interbreeding between archaic 
humans and modern humans in Asia [29].

As seen in Fig.  3, the Singaporean Indian population have more population-specific 
signals than the Han Chinese and Singaporean Malay populations. This is because the 
Han Chinese and Singaporean Malays are genetically more closely related to each other 
than the Singaporean Indian population [18], and FineMAV penalizes allele sharing 
between populations and highlights high frequency population-specific mutations. Some 
of the highest-scoring SNPs observed in SSIP are located in chromosome 16 (Fig.  3, 
Table 3). We suspected that this could be due to the effect of genetic hitchhiking, driven 
by the selection of rs201075024 (NC_000016.9:g.31099000C > T, ENSP00000280606.6:p.
Gly34Ser) (PRSS53), a SNP that has been reported to be positively selected in South 
Asian populations and was missing in our dataset [3]. PRSS53 encodes a serine pro-
tease and is expressed in hair follicles [30] and rs201075024 lies 10 base pairs away 
from rs11150606 (NC_000016.9:g.31099011  T > C, ENSP00000280606.6:p.Gln30Arg), 
another SNP in the same gene that is positively selected in East Asians [3, 30] and has 
been associated with hair shape in Latin Americans [30]. The functional effects of the 
rs201075024 missense mutation on the serine protease is still unknown. However, based 
on previous publications, it can be hypothesised that this variant also influences hair 
shape in South Asians. rs201075024 (PRSS53) was excluded from this selection scan 
because it was not polymorphic in all three datasets. Within the top 10 FineMAV can-
didates in SSIP, three SNPs are in linkage disequilibrium with rs201075024 (PRSS53): 
rs35675346 (NC_000016.9:g.30936081G > A, ENSP00000369666.2:p.Glu10Lys) 
(FBXL19), rs58726213 (NC_000016.9:g.31044683A > G) (STX4) and rs3747481 
(NC_000016.9:g.30666367C > T, ENSP00000300835.4:p.Pro359Leu) (PRR14), with r2 val-
ues of 0.45, 0.26 and 0.16, respectively. This suggests that the three SNPs may be neutral 
and tagging the PRSS53 rs201075024 variant. Interestingly, according to the Genotype-
Tissue Expression (GTEx) database (V8 release), these SNPs were reported as expression 
and splicing quantitative trait loci (eQTL/sQTL) for PRSS53 in various tissues [31].

Table 3  (continued)
a The genomic position according to the GRCh37/hg19 reference genome
b The most severe variant consequence according to Ensembl

Chr: chromosome, DAF: derived allele frequency, UTR: untranslated region
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Examples of novel SNPs that were identified in this study included two missense 
mutations: rs79597880 (NC_000017.10:g.2238152  T > C, ENSP00000301364.4:p.Lys-
199Glu) in the pre-rRNA-processing protein TSR1 homolog (TSR1) and rs2229300 
(NC_000012.11:g.57865558G > T, ENSP00000228682.2:p.Gly1012Val) in glioma-associ-
ated oncogene family zinc finger 1 (GLI1) in the Singaporean Malay population (Table 3). 
So far, the effects of these SNPs on their respective proteins are unknown. The exact 
function of TSR1 is yet to be elucidated, but it plays a role in ribosome maturation [32]. 
It was reported that several rare (minor allele frequency < 1%) mutations of this gene, 
including missense mutations, may be associated with spontaneous coronary artery dis-
section (SCAD), a condition where the coronary artery tears resulting in two lumens: 
the true lumen and a false one [33]. However, there are no functional studies to confirm 
this association. GLI1, on the other hand, is a well-established oncogene and its protein 
is a drug target for several anti-cancer medications [34]. According to the Catalogue of 
Somatic Mutations in Cancer (COSMIC), 65.55% of mutations that are observed in GLI1 
are missense substitutions [35]. The missense mutation rs2229300 is listed as an entry in 
COSMIC (COSV57366104) and was found in 14 tissue samples: 12 in the prostate [36], 
one in the large intestine and one in the lung [35].

It should be noted that admixture, or shared ancestry, can result in less population-
specific signals [3]. This could mean that non-population-specific variants can be ranked 
high if the variants are highly deleterious and, therefore, have a high CADD_PHRED 
score. This is true for the derived allele in rs11231341 (NC_000011.9:g.62848487A > C, 

Fig. 4  Screenshot of the FineMAV software as a graphical user interface
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ENSP00000396586.1:p.Tyr501Ter) (SLC22A24) in which the global allele frequency is 
0.75 [5] but was the 8th highest scoring allele in Singaporean Malays (Table 3), a highly 
admixed population.

Conclusions
We developed a user-friendly command line and graphical user interface (Fig. 4) platform 
to enable determination of genome-wide FineMAV scores using whole-genome sequenc-
ing datasets and to subsequently display these scores on genome browsers. This allows for 
easy, visual comparison between different genomic regions and human populations. It is 
designed to leverage on familiar bioinformatics tools and genome browsers, to be mem-
ory-efficient in anticipation of larger worldwide population sequencing datasets [37–42].

Availability and requirements
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