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Abstract 

Background:  Understanding the synergetic and antagonistic effects of combinations 
of drugs and toxins is vital for many applications, including treatment of multifactorial 
diseases and ecotoxicological monitoring. Synergy is usually assessed by comparing 
the response of drug combinations to a predicted non-interactive response from refer-
ence (null) models. Possible choices of null models are Loewe additivity, Bliss inde-
pendence and the recently rediscovered Hand model. A different approach is taken by 
the MuSyC model, which directly fits a generalization of the Hill model to the data. All 
of these models, however, fit the dose–response relationship with a parametric model.

Results:  We propose the Hand-GP model, a non-parametric model based on the com-
bination of the Hand model with Gaussian processes. We introduce a new logarithmic 
squared exponential kernel for the Gaussian process which captures the logarithmic 
dependence of response on dose. From the monotherapeutic response and the 
Hand principle, we construct a null reference response and synergy is assessed from 
the difference between this null reference and the Gaussian process fitted response. 
Statistical significance of the difference is assessed from the confidence intervals of the 
Gaussian process fits. We evaluate performance of our model on a simulated data set 
from Greco, two simulated data sets of our own design and two benchmark data sets 
from Chou and Talalay. We compare the Hand-GP model to standard synergy models 
and show that our model performs better on these data sets. We also compare our 
model to the MuSyC model as an example of a recent method on these five data sets 
and on two-drug combination screens: Mott et al. anti-malarial screen and O’Neil et al. 
anti-cancer screen. We identify cases in which the HandGP model is preferred and 
cases in which the MuSyC model is preferred.

Conclusion:  The Hand-GP model is a flexible model to capture synergy. Its non-para-
metric and probabilistic nature allows it to model a wide variety of response patterns.
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Background
Assessing synergy and antagonism of chemical compounds has applications in medicine, 
pharmacology and ecotoxicology. The advantage of combining synergetic drugs is that 
they can reach higher effects while having lower side effects or toxicity in comparison to 
a single drug. Similarly, antagonistic drugs reach smaller effects compared to the predic-
tion from their individual potencies. Understanding of synergy allowed the development 
of combination therapies [1] which proved useful in various areas, including treatment 
of cancer [2] and asthma [3]. In ecotoxicology, this led to an understanding of how tox-
ins interact and, in particular, how they can affect a human body [1].

By comparing the expected non-interactive (null) and observed responses, one can 
assess whether there is synergy or antagonism between two drugs. The most common 
candidates for the non-interactive response models are the Loewe additivity [4] and 
Bliss independence [5] models. However, there are other candidates such as the High-
est Single Agent (HSA) [6], the Tallarida [7] and the recently rediscovered Hand model 
[8]. Sinzger et al. [8] present detailed theoretical comparisons of the popular null models 
including comparisons between the isoboles of the corresponding null models.

Loewe additivity and Bliss independence models often serve as bases for various 
extensions that incorporate more complex interaction patterns. Jonker et al. [9] devel-
oped models for testing level-dependent and ratio-dependent synergy/antagonism. 
Level-dependent synergy/antagonism occurs when the difference (between non-inter-
active response and observed response) at low doses deviates from the difference at high 
doses. For example, antagonism can be observed at low doses at synergy and high doses. 
Ratio-dependent synergy/antagonism happens when, say, antagonism is observed when 
the mixture is dominated by drug 1 and synergy when the mixture is dominated by drug 
2. Wicha et  al. [10] study asymmetric interactions of drugs. In particular, they define 
perpetrator and victim drugs. Perpetrators cause a change of the half-maximal effective 
concentration, EC50 , of the other drug in the mixture, and victims are affected by this 
change. Both Jonker et  al. [9] and Wicha et  al. [10] develop methods for both Loewe 
additivity and Bliss independence type models.

Most null reference models—in particular Loewe additivity, Tallarida, and Hand mod-
els—are based on monotherapeutic dose–response curves. Frequently, the Hill curve is 
chosen for modeling the monotherapeutic dose–response relationship [11]. Some stud-
ies have shown that other choices of monotherapeutic dose–response curves might be 
preferable in some cases [12, 13], but the Hill curve is the most common. Importantly, 
all these models are parametric, meaning that they specify a fixed set of possible shapes 
as defined by the range of the parameters. Parametric models have advantages in that 
they are generally more interpretable than non-parametric models and perform well 
when the data follow the pattern implied by the parametric model [12, 13]. However, 
parametric models also have well-documented disadvantages, the most important one 
being their fixed set of possible shapes when data behave differently from the paramet-
ric model assumptions. Hence, non-parametric models and especially Gaussian process 
(GP) models have become popular recently. For example, even in cases where a good but 
high-dimensional model is available from physics or engineering, GPs have found appli-
cations as the workhorse of surrogate modeling [14]. Thus, the GP framework appears to 
be a natural approach, especially for complicated systems like a biological cell’s response 
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to a perturbation. We combine the flexible GP approach to dose–response surface mod-
eling with the Hand principle to construct the null reference model. The Hand model 
was shown to satisfy biochemically desirable principles [8]. Thus, combining the GP 
framework with the Hand principle results in a flexible data-driven model—Hand-GP—
which satisfies desired biological assumptions. In recent work, Ronneberg et al. [15] use 
Gaussian processes in combination with the Bliss model. However, although the Bliss 
model is convenient in terms of simplicity of the computations, it does not satisfy some 
desirable principles of null models, including the sham combination principle, as dis-
cussed in Sinzger et al. [8].

The Bliss and the HSA are two standard non-parametric models that do not require 
fitting parametric monotherapeutic curves to estimate the reference surface. Both of 
these models require only knowledge of the effect for single doses to estimate the pre-
dicted effect. However, the Bliss and the HSA models do not satisfy the sham combina-
tion property nor the associative property. The sham combination property states that a 
drug can be neither synergistic nor antagonistic when combined with itself. The associa-
tive property implies that combining combinations of drugs is equivalent to combining 
the drugs directly [8]. Additionally, since the dose–response curve is not fitted in these 
models, it is hard to estimate either the measurement noise or the uncertainty of the 
predicted effect. This is a key difference with the non-parametric Hand-GP model as it 
naturally allows to compute the uncertainty of the model parameters and the predicted 
effect.

As main competitor to our Hand-GP model, we use the recent MuSyC model [16, 
17] as this (1) also fits the entire response surface and (2) is highly parametric, with 12 
parameters to specify the full model. The advantage of this model is that the parame-
ters are interpretable and can be related to the hypothetical underlying mass-action rate 
equations [16]. Of the 12 parameters, 5 relate to synergy. Thus, a second advantage is 
that complicated synergy patterns can be captured in the parameters, say antagonism 
in efficacy (the effect for high doses) and synergy in potency (the 50% effect dose, EC50 ). 
For comparison, our Hand-GP model has only 4 hyperparameters, one of which cap-
tures the noise level, i.e. the lack of fit. We follow common machine learning terminol-
ogy where the parameters of the GP are called hyperparameters [18] because they can be 
interpreted as such in a Bayesian setting. In particular, the kernel hyperparameters can 
change the prior distribution over functions.

Our proposed model is based on Gaussian processes and is non-parametric. A Gauss-
ian process is completely defined by its mean and kernel functions. Different kernels can 
be used to express different structures observed in the data [18]. We propose a new ker-
nel optimized to capture the logarithmic dependence of the effect on compound dose in 
biochemical systems. As an extra benefit, the length scale hyperparameters of this ker-
nel allow for data-adapted plotting of response curves and surfaces, striking a middle 
ground between linear and logarithmic axes. In contrast to standard approaches to syn-
ergy [4–7], we fit a GP surface to the complete dose–response matrix instead of fitting 
only the monotherapeutic data. This helps with the estimation of the observational noise 
and with the uncertainty quantification. Also, the estimated monotherapeutic response 
curves are more robust. We construct the null reference model numerically using the 
Hand model [8] by locally inverting the GP-fitted monotherapeutic data. Synergy is then 
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assessed by a synergy effect surface as the difference between the GP-fitted response 
surface and the Hand-constructed null reference surface. This synergy effect surface 
allows for different effects at different dose combinations, for example, dose–dependent 
synergy.

Results
We compare the performance of the Hand-GP model with the MuSyC model. We also 
provide the results of the original analysis with the Loewe, Bliss, and Median Effect 
models when relevant. We analyse the performance of the models on three simulated 
and two experimental data sets. In detail, we use a simulated data set from Greco et al. 
[19] to which we refer as the Greco data, two data sets from our own hand (one with 
strong synergy and one with strong antagonism), and two experimental data sets used 
by Chou et al. [20] to showcase their Median Effect model to which we refer as the Chou 
and Talalay data.

All the data sets are inhibitory, meaning a larger compound dose leads to a smaller 
response. In the Hand-GP model, we quantify synergy by taking the difference between 
the response surface (GP fitted to the raw response data) and the null reference model, 
generated by the Hand construction from the monotherapeutic GP fitted response data. 
As generally speaking synergy is the desired effect, we subtract the GP-fitted response 
data from the null reference. Then, a positive difference means a smaller response than 
expected from the null reference, or equivalently a larger effect, i.e. more inhibition.

We fit the MuSyC model using the Python library synergy [21]. In the MuSyc model 
the response is fitted with a 12-parameter model. To make sure that the parameters of 
MuSyC model are reasonably estimated, in particular that the estimated range of the 
parameter Emax is within limits [0,100] or [0,1] depending on the application, we limited 
the parameters E1,E2,E3 to be in [0, 100] or [0, 1]. Synergy is determined from a subset 
of the parameters, termed β , α12 , α21 , γ12 and γ21 . Parameter β corresponds to a change 
in synergistic efficacy, i.e. at large doses of both drugs the effect is β larger. Parameters 
α correspond to a change in the effective dose and γ to a change in the Hill slope coef-
ficient. To enable a better comparison of the Hand-GP model with the MuSyC model, 
we also fit a constrained MySyc model with α12 = α21 = γ12 = γ21 = 1 and β = 0 . This 
constrained MuSyC model serves as an equivalent null reference model for direct com-
parison to our Hand-GP model. Subtracting the 12-parameter MuSyC model from the 
constrained MuSyC model, we obtain an effect surface for comparison to the effect sur-
face of the Hand-GP model.

One of our contributions is the logarithmic squared exponential kernel, tailored to 
dose–response modeling. In Fig. 1 we compare fits with our new kernel to fits with the 

Fig. 1  Dose–response curves for the Greco data using the squared exponential kernel (top row, a, b), the 
logarithmic squared exponential kernel (second from top, c, d), the Hill curve (third from top, e, f) and the 
MuSyC model (bottom row, g, h). For both GPs with different kernels and for the MuSyC model we fit the 
complete dose–response surface, and plot monotherapeutic slices. Left side: results for drug 1, right side: 
results for drug 2. Results from both GP regressions are plotted on their natural scale: as (linear) xi/li for the 
squared exponential kernel and as log(xi/li + 1) for the logarithmic squared exponential kernel. Note the 
difference in the estimates of the uncertainty

(See figure on next page.)
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a GP squared exponential kernel b GP squared exponential kernel

c GP squared logarithmic kernel d GP squared logarithmic kernel

e Hill curve fit f Hill curve fit

g MuSyC h MuSyC
Fig. 1  (See legend on previous page.)



Page 6 of 30Shapovalova et al. BMC Bioinformatics           (2022) 23:14 

standard (linear) squared exponential kernel. We also provide the fits with Hill curve 
and MuSyC model. The data in this figure come from Greco et al. [19] and are discussed 
in more detail in the next section. The mean squared errors (MSE’s) of the fits with the 
logarithmic squared exponential kernel (72.01 for drug 1 and 63.35 for drug 2) are con-
siderably lower than those of the fits with the (linear) squared exponential kernel (91.52 
for drug 1 and 72.1 for drug 2). This shows that a Gaussian process with the logarith-
mic squared exponential kernel can approximate these data better. We provide a simi-
lar comparison for both simulated data (Greco, LA synergy, LA antagonism) and real 
data (Chou and Talalay data) in Additional file 1: Table S1. Results in Additional file 1: 
Table S1 show that the logarithmic kernel performs better than the linear one for 3 of the 
5 data sets considered. In particular it performs better in cases where the data were gen-
erated on the logarithmic scale. Figure 1e, f also illustrate fits of the Hill curve. The MSEs 
are lower than with the logarithmic squared exponential kernel with values of 16.55 and 
13.37. This is expected since the data were generated from the Hill equation. We used 
the parametric bootstrap [22] to obtain confidence intervals for the fitted Hill curves. 
The resulting confidence intervals are considerably larger than those obtained with the 
Gaussian processes approach. The large confidence intervals in the fitted Hill curve 
come from the large confidence intervals of the parameters of the Hill curves. In particu-
lar for drug A and Fig. 1e the estimates of the parameters and corresponding 95% confi-
dence intervals are E0 = 105.14 [90.4; 110], Emax = 0.0 [0.0; 29.5], h = 0.87 [0.65; 2.57], 
C = 8.16 [3.25; 13.71]. Similarly for drug B the confidence intervals for the parameters 
are large E0 = 102.79 [87.4; 110], Emax = 0.0 [0.0; 26.15], h = 1.27 [0.86; 5.65], C = 0.79 
[0.47; 1.21] which results in large confidence intervals for the fitted Hill curve of drug 
B in Fig. 1f. Figure 1g, h illustrate monotherapeutic slices of the fits obtained with the 
MuSyC model. The MSE is the highest for the MuSyC model for drug A, 110.4, while for 
drug B the MSE, 62.7, is comparable to the GP fit and is even marginally better.

Greco simulated data

In this section, we illustrate the performance of the model on the benchmark data from 
Table 3 of Greco et al. [19]. The data set was generated with mild Loewe synergism (syn-
ergy coefficient 0.5), which in many regions of the response surface corresponds to mild 
Bliss antagonism. The data have a 6× 6 design. Greco et al. [19] considered 13 differ-
ent models and reported detailed results for Loewe additivity and Bliss independence 
models which we compare to the Hand-GP and MuSyC models in Table 1. The Hand-
GP model (third column of Table 1) predicts synergy except for a single dose combina-
tion (x1 = 5, x2 = 5) where it predicts antagonism. The MuSyC model (fourth column of 
Table 1) predicts antagonism for 15 dose combinations and synergy for 10. The Hand-
GP model appears to capture synergism even better than the Loewe model (fifth col-
umn of Table 1) although the data were simulated from this model, as the Loewe model 
incorrectly predicts antagonism for four dose combinations. The poorer performance 
of the Loewe model can be explained by measurement noise which was added to the 
data. Since the effect was constructed to be only mildly synergistic, measurement noise 
can affect the predictions for some dose combinations. Additionally, as shown in Sinzger 
et al. [8], the Hand isoboles are very close to those of the Loewe model, but non-increas-
ing dose–response curves can lead to mild Loewe antagonism and to Hand synergism. 
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The last (sixth) column of Table  1 shows results from Bliss independence which pre-
dicts antagonism except for three dose combinations. As the data were simulated from a 
Loewe model these results are not surprising and are discussed in detail by Greco et al. 
[19]. We present parameter estimates and overall effect estimates for both Hand-GP and 
MuSyC model in Table 2. We created the overall effect measure from the difference of 
the volumes under the surfaces of the regular GP model and the null reference Hand-
GP model. The volume under the surface is approximated using Delaunay triangulation 
[23]. This effect measure is presented in the lower block of Table 2. In this table, as well 
as in later tables, we color-code synergism as green, antagonism as red and additivity 
(no interaction effect) as grey. The MuSyC model has five parameters that correspond to 

Table 1  Comparison of Hand-GP model to the MuSyC, Loewe and Bliss models from Greco [19] on 
the Greco simulated data

Green denotes synergy and red denotes antagonism

Table 2  Parameters of the GP and the MuSyC models for the Greco data
GP model

Parameter Estimate 95% HPD lower 95% HPD upper Predicted effect
lx1 5.99 4.38 6.61
lx2 0.49 0.09 0.38
σ2
f 115.87 114.01 126.88

σ2 26.71 17.71 27.75
Volume difference 2.56× 104 −1.68× 104 6.45× 104 Additive

MuSyC model
Parameter Estimate 95% CI lower 95% CI upper Predicted effect

β -1.03×10−13 -0.06 0.07 (≈0) Additive
α12 0.63 0.002 3.3 (≈1) Additive
α21 1.05 0.0 6.62 (≈1) Additive
γ12 1.49 0.03 20.51 (≈1) Additive
γ21 1.06 0.01 32.72 (≈1) Additive

Volume difference -346.42 Not available Not available Not available

Also reported are highest posterior density (HPD) estimates from Bayesian inference of the GP and confidence intervals 
(CI) from maximum likelihood estimation of the MuSyC model. Green denotes synergy, red denotes antagonism and grey 
denotes additivity
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different types of synergism/antagonism, thus each of them is color-coded separately. A 
MuSyC model that corresponds to no interaction, so just an additive effect, has param-
eters β = 0 and α12 = α21 = γ12 = γ21 = 1 . We can see from Table 2 that additivity is 
predicted by all parameters of the MuSyC model as the additive effect values are within 
the 95% confidence intervals of each of these five parameters. Interestingly, the volume 
difference indicates synergy for the MuSyC model, while each of the parameters indi-
cates additivity. The uncertainty about the surface in the case of the Hand-GP model 
leads to additivity in terms of the volume difference. From Table 1 we see that the pre-
dictions from the MuSyC model are somewhat in between those of the Loewe and Bliss 
models. As it is discussed in Greco et  al. [19] in some areas a small degree of Loewe 
synergism corresponds to a small degree of Bliss antagonism, so general disagreement 
between the models is not surprising.

In Fig.  2, we provide a more detailed analysis of the differences between the Hand-
GP and MuSyC models. Note that in Fig.  2 we present the results on the linear scale 
for both models to make them directly comparable. In the following figures, we plot 
the Hand-GP model on the logarithmic scale since it is the natural presentation for the 
newly proposed kernel. The third row shows the synergistic effect surfaces as the dif-
ference between the first and second row: green (positive) indicates a synergistic effect 
and red (negative) indicates an antagonistic effect. We see that the Hand-GP model pre-
dicts synergy almost everywhere, whereas the MuSyC model predicts both synergy and 
antagonism. The bottom row shows the residuals, the difference between the data and 
the models in the top row. The mean squared errors for the whole surface are similar for 
the GP and MuSyC models, 13.07 and 13.71 respectively. As can be seen from Fig. 2g, 
the residuals are higher for the GP model around zero doses, but the overall landscape of 
the residuals appears marginally better for the GP model.

Robustness of the results to the experimental design

In this section we analyze the robustness of the synergy estimates to the experimental 
design of the Greco data set, in particular to reduction of the number of doses. The 
original matrix design is 6× 6 with six doses for drug A [0, 2, 5, 10, 20, 50] and six for 
drug B [0, 0.2, 0.5, 1, 2, 5]. We reduced the data to 4 × 6 with four doses for drug A 
[0, 2, 10, 50] and six doses for drug B [0, 0.2, 0.5, 1, 2, 5]. Figure 3 illustrates mono-
therapeutic slices of the surfaces for the MuSyC model (Fig. 3a, b) and for Hand-GP 
model (Fig. 3c, d). We obtained confidence intervals for the MuSyC model with the 
parametric bootstrap [22] and for the Hand-GP model from Eq. (6). One can see that 
the confidence intervals are reasonably narrow in comparison to those obtained with 
Hill curves as presented in Fig. 1e, f. Uncertainty for drug x1 in case of the Hand-GP 

(See figure on next page.)
Fig. 2  Analysis of Greco simulated data with the Hand-GP (left column, a, c, e, g) and MuSyC (right 
column, b, d, f, h) models. Top row (a, b) shows the fitted response surfaces. For Hand-GP this is a fit to the 
non-parametric GP model; for MuSyC a fit to the parametric MuSyC model. The second row (c, d) shows the 
null reference models. For Hand-GP this is the Hand construction derived from the fitted monotherapeutic 
responses from the top row; for MuSyC a fit to a constrained MuSyC model. The third row (e, f) shows the 
synergistic effect surfaces as the difference between the first and the second row. The bottom row (g, h) 
shows the residuals, the difference between the data and the fits from the top row
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a GP b MuSyC

c Hand-GP d MuSyC null

e GP effect f MuSyC effect

g GP residuals h MuSyC residuals
Fig. 2  (See legend on previous page.)
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model increases as can be seen from Fig.  3c. Figure  4 illustrates the effect surfaces 
of both models. We observe that the effect of the Hand-GP model becomes more 
extreme: mildly synergistic areas become more synergistic and mildly antagonis-
tic areas become more antagonistic. For the MuSyC model, the effect switches from 

a Monotherapeutic slice with
HandGP for x1

b Monotherapeutic slice with
MuSyC for x1

c Monotherapeutic slice with
HandGP for x2

d Monotherapeutic slice with
MuSyC for x2

Fig. 3  Analysis of the Greco simulated data with reduced 4× 6 design with the Hand-GP (left column, a, 
c) and the MuSyC (right column, b, d) models. For the Hand-GP model we fit the whole surface and plot 
monotherapeutic slices. The confidence intervals for the MuSyC model are obtained with the parametric 
bootstrap

a GP effect b MuSyC effect
Fig. 4  Analysis of Greco simulated data with a reduced 4× 6 design with the Hand-GP (left, a) and MuSyC 
(right, b) models. Both figures show the effect surfaces as the difference between the fitted response surface 
and the null model
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mostly mild antagonism to stronger synergy. This example illustrates the impor-
tance of the design matrix. With the reduced matrix design of 4 × 6 we get stronger 
effects in both models in comparison to the 6× 6 design. Generally, nonparametric 
approaches require more data, and for the Hand-GP model we recommend using at 
least 6× 6 or 8× 8 designs. Smaller design matrices are also not ideal for the MuSyC 
model as the number of data points approaches the number of parameters in this 
case.

Simulated data with Loewe synergy and antagonism

The Greco data set was only mildly synergistic, so we generated two data sets with 
stronger effects (synergistic and antagonistic). To highlight the differences between 
the models we used an 11× 11 design without noise. Details of the parameter values 
used to simulate the data can be found in the Additional file  1. Figure  5 and Table  3 
present results for the synergistic data set. Both the Hand-GP and the MuSyC mod-
els predict only synergy since the effect surface is always positive, unlike Fig.  2 where 
both the Hand-GP and the MuSyC model predicted antagonism for some doses. The 
stronger synergy is reflected in the volume difference of the Hand-GP model which 
was 2.57× 104 for the Greco data and now is 2.06× 105 . The volume difference of the 
MuSyC model indicates stronger synergy than the Hand-GP model with the measure 
being 4.0× 105 . Curiously, while the effect surfaces in Fig.  2 show stronger estimated 
synergy for the MuSyC model which is confirmed by the volume difference measure, the 
synergy parameters in Table 3 indicate antagonism in both the efficacy parameter β and 
the Hill slope parameters γ12 and γ21.

Figure 6 and Table 4 present results for the antagonistic data set. The Hand-GP model 
generally predicts antagonism which is also confirmed in the summary measure of vol-
ume difference in Table 4. All parameters of the MuSyC model indicate additivity. The 
volume difference measure, however, indicates antagonism.

Experimental data from Chou and Talalay

The data were initially published by Yonetani and Theorell in 1964 [24] and re-analyzed 
in Chou and Talalay in 1984 [20]. The data are from a 6× 6 design and are examples of 
mutually exclusive and non-exclusive inhibitors. In our analysis, we compare the Hand-
GP model to the MuSyC model and the reproduced combination index from the Median 
Effect model of Chou and Talalay 1984 [20, Figure 3, 5]. We follow the analysis of the 
Median Effect model as indicated in [25, Tab. 1, 2]. In detail, we show predictions from 

Fig. 5  Analysis of Loewe synergy simulated data with Hand-GP (left column, a, c, e, g) and MuSyC (right 
column, b, d, f, h) models. Top row (a, b) shows the fitted response surfaces. For Hand-GP this is a fit to the 
non-parametric GP model; for MuSyC a fit to the parametric MuSyC model. The second row (c, d) shows the 
null reference models. For Hand-GP this is the Hand construction derived from the fitted monotherapeutic 
responses from the top row; for MuSyC a fit to a constrained MuSyC model. The third row (e, f) shows the 
synergistic effect surfaces as the difference between the first and second row. The bottom row (g, h) shows 
the residuals, the difference between the data and the fits from the top row

(See figure on next page.)
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a GP b MuSyC

c Hand-GP d MuSyC null

e GP effect f MuSyC effect

g GP residuals h MuSyC residuals
Fig. 5  (See legend on previous page.)
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all models for the diagonal rays only and plot them as a function of the (fitted) fractional 
effect. However, while the Median Effect model is only fitted to the monotherapeutic 
and diagonal ray data in three separate fits, the Hand-GP and MuSyC models are fit once 
to all 36 dose–response data points.

Inhibition of alcohol dehydrogenase by two mutually exclusive inhibitors

The first study in Yonetani et  al. [24] concerned the inhibition of horse liver alcohol 
dehydrogenase by two mutually exclusive inhibitors: ADP-ribose and ADP and was re-
analyzed in Chou et al. [20] using the Median Effect model. In Fig. 7 we see that both the 
MuSyC and the Hand-GP models fit monotherapeutic data well. In Fig. 8a, c we can see 
that the Hand-GP model predicts antagonism at low doses of both drugs (along the diag-
onal ray) as the GP fitted curve lies below the null reference. Conversely, the Hand-GP 
model predicts synergy at high doses of both drugs as the GP fitted curve lies above the 
null reference. In Fig. 8e we present the combination index reproduced from Chou et al. 
[20] which shows the switch from antagonism to synergy as well, although the combina-
tion index is close to 1 which indicates additivity. The MuSyC model predicts mostly 
antagonistic effects which are close to additivity with a large uncertainty in the param-
eter β and an unidentified upper bound for the parameter γ12 which predicts synergy. 
Such uncertainty can be due to the large number of parameters (12) of the MuSyC model 
relative to the number of data points (36). Alternatively, a more conceptual explanation 
can be provided in this case (we thank an anonymous reviewer for this suggestion). In 
this example we consider a mutually exclusive pair of drugs as also reflected in the esti-
mates of the MuSyC model: α12 ≈ α21 ≈ 0 . This means that when one drug is active, the 

Table 3  Parameters of the GP and MuSyC models for Loewe synergy

GP model
Parameter Estimate 95% HPD lower 95% HPD upper Predicted effect

lx1 11.54 11.33 13.48
lx2 13.36 11.35 13.5
σ2
f 1.71 1.18 1.78

σ2 4.8 ×10−5 4.3 ×10−5 6.5 ×10−5

Volume difference 2.06× 105 1.94× 105 2.19× 105 Synergistic
MuSyC model

Parameter Estimate 95% CI lower 95% CI upper Predicted effect
β -0.06 -0.07 -0.03 (<0) Antagonistic

α12 14.56 12.3 16.53 (>1) Synergistic
α21 14.56 12.93 17.32 (>1) Synergistic
γ12 0.74 0.66 0.87 (<1) Antagonistic
γ21 0.74 0.64 0.84 (<1) Antagonistic

Volume difference 4.0× 105 Not available Not available Not available

Also reported are highest posterior density (HPD) estimates from Bayesian inference of the GP and confidence intervals (CI) 
from maximum likelihood estimation of the MuSyC model

(See figure on next page.)
Fig. 6  Analysis of Loewe antagonism simulated data set with Hand-GP (left column, a, c, e, g) and MuSyC 
(right column, b, d, f, h) models. Top row (a, b) shows the fitted response surfaces, for Hand-GP this is a 
fit to the non-parametric GP model; for MuSyC a fit to the parametric MuSyC model. The second row (c, 
d) shows the null reference models. For Hand-GP this is the Hand construction derived from the fitted 
monotherapeutic responses from the top row; for MuSyC a fit to a constrained MuSyC model. The third 
row (e, f) shows the synergistic effect surfaces as the difference between the first and second row. The 
bottom row (g, h) shows the residuals, the difference between the data and the fits from the top row
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a GP b MuSyC

c Hand-GP d MuSyC null

e GP effect f MuSyC effect

g GP residuals h MuSyC residuals
Fig. 6  (See legend on previous page.)
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dose of the other drug is multiplied by ∼ 0 . Thus, the other drug in this case is blocked. 
This principle is well illustrated in Figure 2 of Wooten et al. [26]: when α = 0 , β (which is 
based on E3) and gamma drop out of the MuSyC equation, thus they may take any value 
without impacting the fit quality. So when it happens that one parameter’s value causes 
another parameter to not matter, the latter parameter will always have a wide confidence 
interval. The results from the Hand-GP model qualitatively agree with the results from 
Yonetani et al. [24]: at lower doses indicating antagonism and at higher doses indicating 
synergy. All of the models indicate that the overall effect is close to zero (or combination 
index close to 1 for the Median Effect model) which indicates additivity of the inhibitory 
effects of ADP-ribose and ADP. The volume difference summary measure indicates mild 
synergism for the Hand-GP model and antagonism for MuSyc model. Note the different 
scales of the Hand-GP and the MuSyC model in comparison to the scale of the combina-
tion index reproduced from Chou et al. [20] (Tables 5, 6).

Inhibition of alcohol dehydrogenase by two mutually non‑exclusive inhibitors

The second study in Yonetani et al. [24] concerned the inhibition of horse liver alcohol 
dehydrogenase by two competitive, mutually non-exclusive inhibitors: o-phenanthro-
line and ADP and was re-analyzed in Chou et al. [20] using the Median Effect model. In 

Table 4  Parameters of GP and MuSyC models for Loewe antagonism
GP model

Parameter Estimate 95% HPD lower 95% HPD upper Predicted effect
lx1 16.32 16.16 19.51
lx2 19.75 16.17 19.51
σ2
f 0.72 0.64 1.06

σf 4.8 ×10−5 4.16 ×10−5 6.54 ×10−5

Volume difference – 3 – 3 – 2.03× 105 .12× 105 .93× 105 Antagonistic
MuSyC model

Parameter Estimate 95% CI lower 95% CI upper Predicted effect
β – 0.05 – 0.11 0.09 (≈0) Additive

α12 0.84 0.04 1.26 ((≈1) Additive
α21 0.84 0.05 1.28 ((≈1) Additive
γ12 1.20 0.09 11.98 (≈1) Additive
γ21 1.20 0.16 10.82 (≈1) Additive

Volume difference – 7.2× 104 Not available Not available Not available

Also reported are highest posterior density (HPD) estimates from Bayesian inference of the GP and confidence intervals (CI) 
from maximum likelihood estimation of the MuSyC model

Table 5  Parameters of GP and MuSyC models for mutually exclusive inhibitors

GP model
Parameter Estimate 95% HPD lower 95% HPD upper Predicted effect

lx1 1.7 1.42 2.28
lx2 471.73 466.65 478.89
σ2
f 1.01 0.98 1.02
σ 2.7× 10−4 9.49× 10−5 2.1× 10−3

Volume difference 3017.8 2537.7 3493.0 Synergistic
MuSyC model

Parameter Estimate 95% CI lower 95% CI upper Predicted effect
β – 1.37×104 -1.0×105 3.8×104 (≈ 0) Additive

α12 0.01 0.0 0.01 (< 1) Antagonistic
α21 0.0 0.0 0.45 (< 1) Antagonistic
γ12 18.66 18.66 inf (> 1) Synergistic
γ21 0.76 0.01 47.37 (≈ 1) Additive

Volume difference – 1780.1 Not available Not available Not available

Also reported are highest posterior density (HPD) estimates from Bayesian inference of the GP and confidence intervals (CI) 
from maximum likelihood estimation of the MuSyC model
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Fig. 10e we present the combination index reproduced from Chou et al. [20]. Using the 
Hand-GP model we obtain antagonism for the combination of low doses and synergism 
for the combination of high doses which agrees with the analysis in Chou et al. [20]. The 
MuSyC model predicts synergy for the parameters α12 and α21 (change of effective dose) 
and antagonism for γ12 and γ21 , change of the Hill coefficient. Figure 10d illustrates that 
along the diagonal MuSyC model predicts only synergy. The volume difference meas-
ure is comparable for both models and indicates mild synergy. Complete surface analy-
sis for both models can be found in the Additional file 1. In Fig. 9 we can see that the 
MuSyC model does not fit the monotherapeutic part of the data well, while the GP fits 
look good. Both models fit the diagonal of the surface quite well, which is illustrated in 
Fig. 10. In this case the results of the Hand-GP model agree with the analysis in Chou 
et al. [20].

Assessing the models on drug combination screens
In previous sections, we have compared the proposed Hand-GP model and the MuSyC 
model on multiple simulated and real-world data examples, which are commonly used 
to assess synergy models. In this section, we consider two drug combination screens. 
The first data set we consider is the Mott et  al. anti-malarial screen [27]. The second 
data set is the O’Neil et  al. anti-cancer screen [28] for which we analyze one cell line 
(isolate HB30). Both data sets were considered in the recent MuSyC paper by Wooten 
et al. [17]. We look at the volume measure to find examples that are similar and dissimi-
lar between the two models. Figure  17 illustrates scatter plots of the volume measure 
for both data sets and both models. Note that we do not expect widespread agreement 
between the two models according to the volume measure. As shown in the five detailed 

a GP b MuSyC

c GP d MuSyC
Fig. 7  Analysis of mutually exclusive inhibitors data set with with Hand-GP (left column, a, c) and MuSyC 
(right column, b, d) models. The figure illustrates monotherapeutic slices from the estimated surfaces. 
Response is the fractional inhibition of horse liver alcohol dehydrogenase. Note that confidence intervals are 
indicated in all panels but are so small as to be almost invisible
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examples from the previous sections, the volume measure disagreed in two out of five 
cases. Additionally, the dose–response matrix design differs between the two data sets. 
The Mott et  al. anti-malarial screen has 6× 6 and 10× 10 design matrices, while the 
O’Neil et al. anti-cancer screen has a 4 × 4 design matrix. We can see from Fig. 17a, b 
that the smaller design matrix results in a noisier estimate of the volume measure. This 
agrees with our earlier conclusion from the Greco data set with reduced matrix design: 
we reduced the experimental design from 6× 6 matrix to 4 × 6 matrix and observed 
that both models produced biased estimates.

Figures 11, 12, 13, 14, 15, 16 and 17 present three illustrative examples for the Mott 
et al. anti-malarial screen data: an example where both models agree, and two examples 
with disagreement each favoring a different model. The first example, for the combina-
tion of Gramicidin and Atovaquone for isolate HB30, is illustrated in Figs. 11 and  12. 
We see from Fig.  12 that both models predict overall synergy and minor antagonism 
at very low doses. Generally, the HandGP and the MuSyC models agree about the pre-
dicted effect in this example. Figure  11 shows that the estimated monotherapeutic 
curves are very similar for the example of Gramicidin and Atovaquone combination. 
The second example, the combination of Ivermectin and Clobetasonebutyrate for isolate 
HB30, is illustrated in Figs. 13 and 14. From Fig. 14 we see that the HandGP predicts 
minor antagonism at lower doses, the near-zero effect at mid-range doses, and mild syn-
ergy at higher doses. The MuSyC model predicts synergy at mid-range doses. Thus, gen-
erally, models disagree. In Fig. 13 we observe that one of the monotherapeutic curves 
for the MuSyC models has a non-smooth drop in the effect which is likely to lead to 
this disagreement. The final example is the combination of NVPBGT226 and Chloro-
quine for isolate HB30, the results for this combination are presented in Figs. 15 and  16. 
As we can see from Fig. 15 the GP exhibits non-monotonic behavior at very low and at 
very high doses. This translates into different predicted effects in Fig. 16: synergy at high 
doses and antagonism at low doses. We provide similar examples for O’Neil et al. anti-
cancer screen in Additional file 1: S4–S9.

Discussion
We introduced the Hand-GP model, a combination of the Hand principle for con-
structing null reference models with a Gaussian process using a new logarithmic 
squared exponential kernel. We demonstrated the performance of the Hand-GP 
model on multiple benchmark data sets, both simulated and experimental ones, and 
two drug combination screens. We compared the Hand-GP model with the recent 
parametric MuSyC model and with the well-established Loewe, Bliss, and Median 
Effect models. In all cases of the benchmark data sets, the Hand-GP model performed 
very well, and we obtained expected predictions of synergistic effects. It is impor-
tant to note that different models define synergy differently, thus the claim of pre-
dicting the "correct" effect can be misleading. Nevertheless, since the Hand model 
is biochemically plausible [8] and Gaussian processes are a flexible non-parametric 
framework for curve fitting and uncertainty quantification, we think the Hand-GP 
model can be advantageous in many real-world applications. In two drug combina-
tion screens, Mott et al. anti-malarial screen [27] and O’Neil et al. anti-cancer screen 
[28], we identified cases where the HandGP model is preferred and where the MuSyC 
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a GP diagonal slices of null
(HandGP) and regular GP models

b MuSyC diagonal slices of null
and regular models

c GP difference between null
(HandGP) and regular GP models

d MuSyC difference between null
and regular models

e Combination index for mutually
exclusive inhibitors

Fig. 8  Analysis of mutually exclusive inhibitors data with Hand-GP (left column, a, c) and MuSyC (right 
column, b, d) models. Estimated effect with the original Median Effect model analysis is shown in the bottom 
plot, e. Top row (a, b) shows fitted slices of the surfaces along the diagonal (in grey) and the null reference 
models along the same diagonal (in purple). The middle row (c, d) shows the difference between the regular 
and null models, plotted as a function of fitted fractional effect (inverse of the purple curve in top panels). 
Estimated synergy is shown in green and antagonism in red. Note that confidence intervals are indicated for 
the HandGP model but are so small as to be almost invisible. Bottom panel (e) shows the combination index 
reproduced from [20]

Table 6  Parameters of GP and MuSyC models for mutually non-exclusive inhibitors

GP model
Parameter Estimate 95% HPD lower 95% HPD upper Predicted effect

lx1 0.7 0.54 0.79
lx2 41.74 41.74 42.64
σ2
f 2.27 1.62 3.23
σ 3.61× 10−5 3.46× 10−5 6.49× 10−5

Volume difference 1207.9 1148.1 1218.2 Synergistic
MuSyC model

Parameter Estimate 95% CI lower 95% CI upper Predicted effect
β 0.15 – 0.05 0.32 (≈0) Additive
α12 5.43 4.32 7.1 (>1) Synergistic
α21 17.63 3.94 inf (>1) Synergistic
γ12 0.71 0.5 1.0 (<1) Antagonistic
γ21 0.28 0.0 1.03 (≈1) Additive

Volume difference 804.24 Not available Not available Not available

Also reported are highest posterior density (HPD) estimates from Bayesian inference of the GP and confidence intervals (CI) 
from maximum likelihood estimation of the MuSyC model
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is preferred. Our comparison of the proposed method to the MuSyC model shows 
that parametric models - although useful and interpretable-cannot account for some 
dose–response surfaces that are observed in practice. If the experimental data deviate 
too much from the assumed parametric curve/surface, then the predicted effect can 
be incorrect. In such situations, a non-parametric approach can be of help to predict 
an interaction effect. In this paper we restrict our attention to smooth kernels opti-
mized for data on a logarithmic scale. However, our approach can be extended with, 
for example, the linear-Matern kernel [29] which can be beneficial for non-smooth or 
non-stationary data.

While we showcased the Hand-GP model for binary and time-fixed compound inter-
actions, the model can be easily extended to include more than two compounds or time 
as an additional component in the Gaussian process. Especially time has received only 
limited attention in the synergy literature, but see [30]. More generally, viewing time as 
part of the phenotype, there can be many different types of changes in phenotype in 
response to perturbations, e.g. changes of cell shape or spatial rearrangements of the 
cell. All these changes can be flexibly modeled within the GP framework, leveraging 
research in the machine learning community [31, 32]. Further extensions are possible to 
incorporate various experimental scenarios. For example, when the data are noisy and 
thus the observations are non-monotonic, as in O’Neil et al. anti-cancer screen [28], a 
constrained Gaussian processes framework can be used [33–35] such that monotonicity 
is enforced in the GP. Ultimately, we view our model proposal as a building block in a 
pipeline that predicts the phenotype of a cell type in response to multiple perturbations. 
The flexibility of Gaussian processes makes such a vision more plausible than parametric 
modeling approaches.

a GP b MuSyC

c GP d MuSyC
Fig. 9  Analysis of mutually non-exclusive inhibitors data set with with Hand-GP (left column, a, c) and 
MuSyC (right column, b, d) models. The figure illustrates monotherapeutic slices from the estimated surfaces. 
The response is the fractional inhibition of horse liver alcohol dehydrogenase, x1 is the concentration 
o-phenanthroline and x2 the concentration ADP
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Conclusion
In this paper, we proposed a non-parametric approach to dose–response synergy mod-
eling based on Gaussian processes and the Hand principle. We proposed a new kernel 
function that operates on the log-scale of the doses and takes into account the specifics 
of cellular responses to perturbations that often depend on the logarithm of the dose. 
We estimate not only monotherapeutic dose–response curves but rather fit a complete 
dose–response surface to all of the data and use the resulting robust estimates of the 
monotherapeutic dose–response curves to construct a null reference response surface. 
Due to the probabilistic nature of Gaussian processes, we not only predict a (mean) syn-
ergy score for each dose combination but also a confidence interval for these scores. The 

a GP diagonal slices of null
(HandGP) and regular GP models

b MuSyC diagonal slices of null
and regular models

c GP difference between null
(HandGP) and regular GP models

d MuSyC difference between null
and regular models

e Combination index for mutually
non-exclusive inhibitors

Fig. 10  Analysis of mutually non-exclusive inhibitors data with Hand-GP (left column, a, c) and MuSyC (right 
column, b, d) models. Estimated effect with the original Median Effect model analysis are shown at the 
bottom plot. Top row shows the fitted slices of the surfaces along the diagonal. For Hand-GP this is a fit to 
the non-parametric GP model; for MuSyC a fit to the parametric MuSyC model. Corresponding null models 
are in grey and regular models in purple. The middle row shows the difference between predicted effects 
by regular and null models. Estimated synergy effect is shown in green and antagonism in red. Note that 
confidence intervals are indicated for the HandGP model but are so small as to be almost invisible. Bottom 
panel, e, shows the combination index reproduced from [20]
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a HandGP b MuSyC

c HandGP d MuSyC
Fig. 11  Monotherapeutic slices for the combination of Gramicidin and Atovaquone for isolate HB30 (Mott 
et al. anti-malarial screen). Left column (a, c) shows monotherapeutic slices of the Hand-GP model and right 
column (b, d) shows monotherapeutic slices of the MuSyC model

a GP effect b MuSyC effect
Fig. 12  Predicted effect for the combination of Gramicidin and Atovaquone for islate HB30 (Mott et al. 
anti-malarial screen). On the left, a, prediction by the Hand-GP model, on the right, b, prediction by the 
MuSyC model. This example demonstrates general agreement between the Hand-GP and MuSyC models
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a HandGP b MuSyC

c HandGP d MuSyC
Fig. 13  Monotherapeutic slices for the combination of Ivermectin and Clobetasonebutyrate for isolate HB30 
(Mott et al. anti-malarial screen). Left column (a, c) shows monotherapeutic slices of the Hand-GP model and 
right column (b, d) shows monotherapeutic slices of the MuSyC model

a GP effect b MuSyC effect
Fig. 14  Predicted effect for the combination of Ivermectin and Clobetasonebutyrate for isolate HB30 (Mott 
et al. anti-malarial screen). On the left, a, prediction by the Hand-GP model, on the right, b, prediction by the 
MuSyC model. This example demonstrates disagreement between HandGP and MuSyC models
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a HandGP b MuSyC

c HandGP d MuSyC
Fig. 15  Monotherapeutic slices for the combination of NVPBGT226 and Chloroquine for isolate 3D70 (Mott 
et al. anti-malarial screen). Left column (a, c) shows monotherapeutic slices of the Hand-GP model and right 
column (b, d) shows monotherapeutic slices of the MuSyC model

a GP effect b MuSyC effect
Fig. 16  Predicted effect for the combination of NVPBGT226 and Chloroquine for the cell line 3D70 (Mott 
et al. anti-malarial screen). On the left, a, prediction by Hand-GP model, on the right, b, prediction by MuSyC 
model. This example demonstrates disagreement between Hand-GP and MuSyC models in some cases
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model can be extended to incorporate more inputs, such as time or location, and is flex-
ible enough to function as a building block in a pipeline that predicts cellular response to 
multiple perturbations.

Methods
Gaussian process dose–response model

In this section, we construct Gaussian process (GP) models for dose–response data. 
The models are based on GP regression with multi-dimensional input. For ease of 
understanding we start with the univariate model. Let x be a dose and y the response. 
We assume that the dose–response relationship follows

where ǫ is a noise term and f(x) is represented by a GP: f (x) ∼ GP(0, k(x, x′)) with k(·, ·) 
a kernel function. A common choice of kernel for smooth functions is the squared 
exponential:

where σ 2
f  and l, correspondingly the variance and the length scale, are hyperparameters 

of the kernel. The variance determines how far from its mean the GP function deviates 
on average, and the length scale determines the smoothness of the function. The squared 
exponential kernel is stationary, and defines an infinitely differentiable function. Mic-
chelli et al. [36] show that this kernel is universal in the sense that under some condi-
tions, this kernel can learn any continuous structure given enough data [37]. The 
disadvantage of this kernel for dose–response modeling is that usually responses are 
affected by the logarithm of the dose, and a simple log transformation of dose is not 

y = f (x)+ ǫ ,

(1)k(x, x′) = σ 2
f exp

(

−
(x − x′)2

2l2

)

,

a Mott et al. anti-malarial screen b O’Neil et al. anti-cancer screen

Fig. 17  Scatter plots for the volume measure obtained with the Hand-GP (x-axis) and the MuSyC (y-axis) 
models. On the left, a, for the Mott et al. anti-malaria screen, on the right, b, for the O’Neil et al. anti-cancer 
screen
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desirable since we would need to take the logarithm of zero as dose zero is typically 
included in an experiment. We solve this problem by proposing the following kernel:

where l still has the interpretation of a length scale and σ 2
f  the amplitude of the GP func-

tion. Equation (2) defines a kernel for individual dose–response functions, i.e., for input 
x ∈ R , f: R → R . For doses {x, x′} ≪ l , we have log(1+ x/l) ≈ x/l , and the kernel (2) is 
indistinguishable from the squared exponential kernel (1). Figure 18 shows samples from 
the squared-exponential and logarithmic kernels.

The generalization to bivariate input is straightforward. Let x = (x1, x2) ∈ R
2 , 

f : R2 → R , then f (x) = GP(0, klog(x, x
′)) , where

The kernel in Eq. (3) is constructed by multiplying two logarithmic kernels. This kernel 
structure intuitively means that f (x1, x2) is only expected to be similar to some other 
function value f (x′1, x

′
2) if x1 is close to x′1 and x2 is close to x′2 . Note that in Eq. (3) each 

dimension has its own length-scale parameter. In the dose–response framework the ratio 
of these length scales l1/l2 corresponds to the potency ratio, i.e., the ratio with which two 
drugs can substitute each other. The complete observational model with noise now reads

where ǫ ∼ N (0, σ 2) with hyperparameter σ 2 the noise strength. In all, the bivariate GP 
model has four hyperparameters θ = {σ , σf , l1, l2}.

(2)klog(x, x
′) = σ 2

f exp

(

−
1

2

(

log
(

1+
x

l

)

− log

(

1+
x′

l

))2
)

,

(3)

klog(x, x
′) =klog(x1, x

′
1)× klog(x2, x

′
2)

=σ 2
f exp

(

−
1

2

2
∑

i=1

(

log

(

1+
xi

li

)

− log

(

1+
x′i
li

))2
)

.

(4)y = f (x1, x2)+ ǫ,

a Samples from a GP with
squared exponential kernel

b Samples from a GP with
logarithmic kernel

Fig. 18  Samples from Gaussian process with logarithmic kernel. Different colors represent different samples. 
a Samples from the logarithmic squared exponential kernel with l = 10.0 and σ 2

f
= 1.0 . b Samples from the 

squared exponential kernel with l = 10 and σ 2
f
= 1.0
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Let us denote by y = (y1, . . . , yn) the observations yi corresponding to the dose combina-
tions xi = (x1i, x2i) , which are combined into matrix X. Let x∗ = (x∗1, x

∗
2) be a test point 

with corresponding prediction f ∗ . Following Rasmussen et al. [18], we have

where K is the n× n kernel matrix with elements Kij = klog(xi, xj) , k an n× 1 vector with 
elements ki = klog(xi, x

∗) , and k∗ = klog(x
∗, x∗) . This leads to the posterior distribution

Given hyperparameters and a data set with responses for various dose combinations, we 
can use Eq. (6) to compute the posterior mean response and credible intervals for any 
possible dose combination x∗.

We used a Bayesian approach to find the posterior distributions of the hyperparam-
eters by sampling the hyperparameters using Hamiltonian Monte Carlo (HMC) meth-
ods [38]. A HMC sampling algorithm uses gradients of the target distribution, which 
allows for much more efficient exploration of the parameter space than MCMC algo-
rithms relying on random walk proposals. We used the TensorFlow Probabil-

ity library for the implementation of HMC. We ran the algorithm with 1000 burn-in 
steps and 100,000 samples. Target acceptance rate was set to 75%. Note that this accept-
ance rate is high for standard MCMC algorithms with random walk proposals such as 
Metropolis-Hastings, but common for MCMC algorithms that use Hamiltonian dynam-
ics. We found that 5 leapfrog steps worked well in all of the applications considered 
in this paper. The proposal step size was tuned individually and chosen from the set 
{0.01; 0.02; 0.03; 0.05; 0.08; 0.1; 0.2; 0.3; 0.6; 1.00} which is an equally spaced sequence 
on the logarithmic scale. In each case the largest step size that achieved the target 
acceptance rate was chosen. We used weakly informative priors for the hyperparameters 
of the kernel. We used a Gamma(α,β) distribution for the hyperparameters of the ker-
nel, length scale, and variance. For the length scale we chose α and β such that α/β is 
equal to the maximal dose of a drug scaled by a constant c and α/β2 is 0.1×half of the 
maximal dose of the drug scaled by a constant c. Constant c reflects whether the effect 
changes in the observed data points. One strategy to set c is to set it to the ratio between 
maximal and minimal effect reached on the monotherapeutic data. For the variance we 
choose α and β such that α/β is equal to half of the maximum effect reached and α/β2 is 
equal to 0.1×half of the maximum effect reached. A Gamma(0.14, 1.14) prior was used 
for the noise variance in all applications except the Greco data. For the Greco data we 
used a Gamma(2, 1) prior. This difference is due to the different scale of the data. Exam-
ples of the samples obtained with HMC can be found in the Additional file 1: Fig. S3. As 
one can see, the chains are well mixed and converged. The uncertainty about the param-
eter values is based on the 95% highest posterior density intervals obtained from the 
HMC samples.

(5)
[

y
f ∗

]
∣

∣

∣

∣

X , x∗ ∼ N

(

0,

[

K + σ 2
I k

kT k∗

])

,

(6)
f ∗|x∗, y,X ∼ N (µ̂, k̂) with µ̂ = kT (K + σ 2

I)−1y and k̂ = k∗ − kT (K + σ 2
I)−1k .
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Null reference model from the Hand principle

We are interested in whether two drugs are synergetic or antagonistic, i.e. whether the 
mixture has stronger/weaker effect compared to what we would have expected if the 
drugs had no interaction. Null reference models are designed such that there is no inter-
action between drugs. There are three desirable properties that null reference models 
should satisfy [8]:

•	 Sham combination principle a drug does not interact with itself. Hence the combina-
tion of a drug with itself leads to neither synergy nor antagonism;

•	 Commutativity swap of drugs should not change the results;
•	 Associative property combining a combination drugs should be the same as directly 

combining the drugs at their corresponding ratios.

Sinzger et  al. 2019 [8] compare various popular null reference models and show that 
the Hand model is biochemically the most plausible as it is the only model satisfying all 
three desirable properties. The Hand model construction is close to that of Loewe, which 
is detailed in Lederer et al. [39]. The Hand model can be viewed as an infinitesimal ver-
sion of the Loewe model, thereby solving the commutativity issues that plague models 
based on Loewe additivity. In Algorithm 1 we present the implementation of the Hand-
GP model and in Fig. 19 we provide an illustration of the Hand construction. In the cur-
rent implementation, Algorithm 1 requires f (·) to be invertible. Note that f −1(·) has to 
be approximated numerically since it is impossible to find the inverse of a Gaussian pro-
cess analytically. However, if we use a large enough number of test points for predicting 
a Gaussian process, we can get a very good numerical approximation. For Algorithm 1 
we need to choose N1 , the number of partitions of dose x1 , and N2 , the number of parti-
tions of dose x2 . We choose N1 and N2 depending on the number of test points for the 
Gaussian process model and where the applied doses x1 and x2 are located among these 
test points. By test points we mean here the points in which we make predictions for the 
Gaussian process regression, denoted as x∗ . For choosing N1 we find the closest point 

Fig. 19  Illustration of the Hand model. In this case doses x1 and x2 are split into N1 = N2 = 3 parts and 
the partitions are applied sequentially. The application of the first two partitions x11 and x12 is guided by the 
arrows 1-9, after that the process continues in the same way until all partitions of both drugs are applied. The 
partitions of the drug 1 are illustrated in orange and the partitions of the drug 2 are illustrated in blue



Page 28 of 30Shapovalova et al. BMC Bioinformatics           (2022) 23:14 

among the test points to x1 and choose N1 as the number of test points between 0 dose 
and closest test point to x1 . N2 is chosen in the same way considering dose x2.

MuSyC model

The MuSyC model was fitted using the Python library synergy [21]. We constrained 
certain parameters when optimizing the MuSyC model to make sure that the confi-
dence intervals for the model parameters are reasonably estimated. We imposed the 
following constraints: Emax is within limits [0,100] or [0,1] depending on the applica-
tion, we limited the parameters E1,E2,E3 to be in [0, 100] or [0, 1]. Further, when esti-
mating the null MuSyC model we imposed the constraints: α12 = α21 = γ12 = γ21 = 1 
and β = 0 . Confidence intervals for the surface of the MuSyC model were obtained 
with the parametric bootstrap [22]. We did not provide confidence intervals for the 
surface of the null MuSyC model and the summary measures which are dependent on 
it since the synergy library does not provide confidence intervals on the parameters 
of the null model.

Abbreviations
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