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Abstract 

Background:  Advances in sequencing technology have drastically reduced sequenc-
ing costs. As a result, the amount of sequencing data increases explosively. Since 
FASTQ files (standard sequencing data formats) are huge, there is a need for efficient 
compression of FASTQ files, especially quality scores. Several quality scores compres-
sion algorithms are recently proposed, mainly focused on lossy compression to boost 
the compression rate further. However, for clinical applications and archiving purposes, 
lossy compression cannot replace lossless compression. One of the main challenges for 
lossless compression is time complexity, where it takes thousands of seconds to com-
press a 1 GB file. Also, there are desired features for compression algorithms, such as 
random access. Therefore, there is a need for a fast lossless compressor with a reason-
able compression rate and random access functionality.

Results:  This paper proposes a Fast and Concurrent Lossless Quality scores Compres-
sor (FCLQC) that supports random access and achieves a lower running time based on 
concurrent programming. Experimental results reveal that FCLQC is significantly faster 
than the baseline compressors on compression and decompression at the expense of 
compression ratio. Compared to LCQS (baseline quality score compression algorithm), 
FCLQC shows at least 31x compression speed improvement in all settings, where a 
performance degradation in compression ratio is up to 13.58% (8.26% on average). 
Compared to general-purpose compressors (such as 7-zip), FCLQC shows 3x faster 
compression speed while having better compression ratios, at least 2.08% (4.69% on 
average). Moreover, the speed of random access decompression also outperforms the 
others. The concurrency of FCLQC is implemented using Rust; the performance gain 
increases near-linearly with the number of threads.

Conclusion:  The superiority of compression and decompression speed makes FCLQC 
a practical lossless quality score compressor candidate for speed-sensitive applications 
of DNA sequencing data. FCLQC is available at https://​github.​com/​Minhy​eok01/​FCLQC 
and is freely available for non-commercial usage.
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Background
Since the Human Genome Project (HGP), sequencing technology has developed rap-
idly [1]. Recently proposed Next Generation Sequencing (NGS) technologies support 
massive parallel sequencing, which lowers sequencing costs. As a result, the amount of 
sequencing data increases dramatically. In 2025, it is expected that one Zettabase of new 
sequencing data will be generated every year [2]. The sequencing data is mainly stored 
in FASTQ format, which is widely being used in bioinformatics. The size of the FASTQ 
file is gigantic, where the size of human genome data ranges from tens to hundreds of 
gigabytes. For example, the size of the homo sapiens FASTQ file SRR13587127 obtained 
from the Illumina HiSeq machine is 111 GB.

There exists a significant amount of recent works on FASTQ compression, including 
Spring [3], LFastqC [4], FQSqueezer [5], and fqzcomp [6]. Since the reads are sub-strings 
of the whole genome, there is much redundancy to be exploited for compression. Thus, 
recent works mainly focused on read compression. On the other hand, the quality scores 
have less statistical structure, and it is more challenging to compress [6]. Moreover, the 
quality scores occupy around 70% of losslessly compressed FASTQ file [7]. Thus, we 
need to focus on quality score compression.

Recently, several quality scores compression algorithms have been proposed, includ-
ing qvz [8], crumble [9], MPEG-G [10], where the above works mainly considered lossy 
compression to boost the compression rate further. However, it is highly nontrivial to 
distinguish the critical component of the data, especially in medical applications, and 
therefore lossless compression is preferred [11]. Also, lossless compression is necessary 
for archiving purposes [12]. There are number of lossless quality scores compressors 
such as AQUa [13] and LCQS [14]. The above algorithms outperform the general-pur-
pose compressors (such as Gzip), but the run time is significantly higher.

In this paper, we aim to design a fast lossless quality scores compressor. We propose 
Fast and Concurrent Lossless Quality scores Compressor (FCLQC) that achieves a com-
parable compression rate while having much faster than the baseline algorithms. We use 
concurrent programming to achieve fast compression and decompression. Concurrent 
programming executes a program independently, not necessarily simultaneously [15], 
which is different from error-prone parallel computing. We implement FCLQC using 
the modern language Rust [16].

Why Rust?

Memory safety is essential for thread safety [17], and secure coding. While memory 
safety issue occurs in C and C++ code, most recent programming languages guarantee 
memory safety, Especially, Rust [16] supports the ownership and type systems that help 
manage memory safely and convert concurrency problems to compile-time errors.

Among many memory-safe programming languages, Rust is already gaining pop-
ularity. Rust was the second-fastest-growing language on the code-sharing platform 
in 2019 [18], and it has been the “most-loved” language for the last five years in a 
row according to Stack Overflow Developer Survey 2020 [19]. Similar to the Python 
Package Index (PyPI) for Python language, Rust also has crates which contains third-
party packages for developers. It has more than 65,000 available packages, including a 
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library of algorithms in bioinformatics [20]. It shows that there is not much overhead 
to use Rust instead of C++.

Our goal is to provide a thread-safe code that can handle more than 100 threads. 
Our experimental results contain a compression and decompression with 120 threads, 
which is proof of memory-safe code.

FASTQ format

FASTQ file is a widely used data format that contains the output of sequenced data 
[21]. It has information of lots of genome fragments (called “read”). Each read infor-
mation consists of four lines: (1) id (header), (2) read (nucleotides), (3) additional 
header, and (4) a line of quality values (also called quality scores). A line of quality val-
ues is a sequence of Phred scores S = −10 log10 P , where P corresponds to an estimate 
of the error probability of each nucleotide. Quality values are often stored in ASCII 
character of Q = S + 33 (or Q = S + 64 ), ranging from 33 to 73 (or from 64 to 104). 
Since id is short and nucleotides have four (A, C, G, T) possibilities, quality values are 
the most challenging components to compress [6]. The proposed algorithm focuses 
on compressing the quality values of a FASTQ file.

Implementation
Data modeling

Since there are various sequencing technologies from different entities including Illu-
mina [22], OxfordNanopore [23], PacBio [24], and IonTorrent [25], we model the lines 
of quality values under minimal benign assumptions.

Suppose a FASTQ file consists of N reads of the same length L. Then, we have N 
lines of quality scores Q(1),Q(2), . . . ,Q(N ) , where each line of quality scores has length 
L, i.e., Q(i) = (Q

(i)
1 , . . . ,Q

(i)
L ) . Since the quality scores tend to decrease within the line 

[8], we assume that the line of quality scores is a first-order Markov process. More 
precisely, the probability of the line of quality scores Q = (Q1, . . . ,QL) is given by

for some marginal distribution Pm(·) and conditional distribution Pc(·|·).
We further assume that the lines of quality scores are independent to each other, 

i.e., for i  = j,

Under the independence assumption, we compress the lines of quality scores separately, 
which allows concurrent programming. Our modeling is universal because we do not 
rely on any assumptions, including the range of quality scores, prior distributions, or 
length of quality scores.

P(Q) = P(Q1,Q2, . . . ,QL)

= Pm(Q1)

L∏

j=2

Pc(Qj|Qj−1)

P(Q(i),Q(j)) = P(Q(i))P(Q(j)).
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Algorithm overview

Although FCLQC is a compression algorithm for the quality scores, it can take the 
whole FASTQ file with id and read information as an input. In the first step (Split and 
Extraction), we extract the quality scores from the FASTQ file and divide them into mul-
tiple sub-files so that each thread can take care of the corresponding sub-file. Then, each 
thread computes the local statistics of its sub-file, where the main thread collects local 
statistics to estimate the probability distributions Pm and Pc . In the second step (Com-
pression), all thread’s estimated distributions are shared, and each thread compresses its 
sub-file with an arithmetic encoder. Details of “Split and Extraction” and “Compression” 
are provided below.

Split and extraction

The file must be divided into sub-files for concurrent programming. The proposed 
scheme requires an input parameter Ns at program execution. The Splitter splits 
the entire file into multiple sub-files, each containing Ns lines of quality scores, i.e., 
(Q(1),Q(2), . . . ,Q(Ns)) . The number of sub-files is ⌈ N

Ns
⌉.

To compress Markov source effectively, we need to estimate conditional and marginal 
probabilities. In our implementation, the Counter estimates marginal distribution P̂m 
and a conditional distribution P̂c by counting occurrences. We implement the Counter 
concurrently so that each thread has its Counter to extract the local statistics of qual-
ity scores from sub-files. These local statistics are merged into single summary statistics 
that represent the entire FASTQ file. The algorithm also stores the summary statistics 
since the decompressor also needs the marginal and conditional distributions. Note that 
each thread may use the local statistics from the corresponding sub-file; however, stor-
ing local statistics is also burdensome. Our experiment shows that the gain in compres-
sion rate using local statistics is not significant, and therefore we use summary statistics 
for simplicity.

Compression

The next step is an actual compression with an arithmetic encoder. More precisely, we 
implement an adaptive and concurrent arithmetic encoder for the first-order Markov 
process. The main thread assigns tasks to threads, and each thread concurrently encodes 
sub-files using its dedicated adaptive arithmetic encoder with summary statistics. The 
concurrent program allows the faster threads to compress more sub-files, while slower 
threads compress fewer sub-files. Our implementation is based on Rust standard con-
currency library. Figure 1 shows a brief overview of our algorithm.

The decoding process also supports concurrency. In the decoding phase, each thread 
has its dedicated decompressor with summary statistics. The thread takes a compressed 
sub-file as an input and applies an arithmetic decoder to recover the original sub-file. 
Finally, we can recover the original quality scores by merging all decompressed sub-files.

Our algorithm supports random access, which refers to the ability to access a random 
location. Random access is convenient for many applications because it is inefficient to 
decompress the entire file to use a portion of the file. Note that outputs of an adaptive 
arithmetic encoder may have different numbers of bits for quality scores lines, which is 
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usually a bottleneck for random access. To support random access, we generate a header 
for each line of quality scores that indicates the number of bits per line. The decompres-
sor can find the exact location of the specific compressed quality scores by collecting 
header information.

In high-speed data compression, one of the challenges is a data writing step to a file. 
To minimize the I/O issue, we use the bit-buffers while compressing and decompress-
ing the quality scores. For example, while compression, the buffer collects multiple com-
pressed quality scores and flushes them to the output file.

Results
This section describes the experimental results of proposed lossless quality scores com-
pressor FCLQC as well as experimental setups. We have compared the performance of 
FCLQC with other baseline algorithms, including lossless quality scores compressor 
LCQS [14] and general-purpose compressors. All algorithms are tested with the recom-
mended options that achieve the best compression rate.

We run experiments on Linux (Ubuntu LTS 20.04.2) with the following hardware spec-
ifications: AMD Ryzen Threadripper 3990X 64-Core Processor 128-thread and 128 GB 
of memory. The number of threads is a tunable parameter in FCLQC; however, we do 
not use all 128 threads because some algorithms do not have an option to adjust the 
number of threads. We set the number of quality score lines Ns for each sub-file accord-
ingly so that the number of sub-files is 120. We discuss more the number of threads in 
the following sections.

Datasets

For a fair comparison, we selected the same FASTQ files from the experiment in LCQS 
[14]. In addition, we experiment with the additional dataset from different species, file 
size, coverage, and sequencing technology to avoid a data-dependent bias. We also 
apply compression algorithms to the synthetic data (syn_read1, syn_read2) generated by 

Fig. 1  The general workflow of FCLQC after Splitter. ConunterHandler assigns sub-files (Q) to threads, and 
each thread counts the number of occurrences (LS) of quality scores in each file. The main thread aggregates 
all local count information (LS) and then generates summary statistics (SS) which contains estimated 
marginal and conditional distributions. The estimated distributions are passed to the EncoderHandler, and 
the EncoderHandler provides a sub-file with estimated distributions to each thread. Finally, each thread 
compresses quality scores of the divided file line by line using the adaptive arithmetic coder (AAC), and 
outputs a compressed sub-file (C)
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SimNGS [26], which is not considered in [14]. The synthetic dataset is publicly available 
in Synthetic, Mouse, and Sampled Human data (SMaSH) [27]. Details of datasets are 
provided in Table 1.

FCLQC has a preprocessing step that extracts quality scores from the FASTQ file. 
However, most other quality score compression algorithms and general-purpose algo-
rithms cannot handle the raw FASTQ file. In the experiment, we extract quality scores 
from the FASTQ file, where all compression algorithms take extracted quality scores 
as an input. Also, we compute the compression ratio based on the file size of extracted 
quality scores.

Baseline compressors

State-of-the-art FASTQ compression algorithms such as Spring [3], LFastqC [4], 
FQSqueezer [5], and fqzcomp [6] are focused on compressing the entire FASTQ file, 
especially the reads, rather than specializing in quality scores. Since the final compressed 
file of these algorithms includes ids and reads, it is hard to measure the compression 
rate of quality scores separately. For this reason, in this paper, we mainly consider the 
recently proposed lossless quality scores compressor LCQS [14], which can compress 
quality scores exclusively. LCQS optimized the compression ratio with robust quality 
score partitioning and adopted SIMD-based parallelization to boost compression speed. 
We believe that LCQS is a good baseline algorithm since only a few specialized compres-
sors support random access and parallelization. Also, LCQS showed the best compres-
sion ratio and improved (de)compression speed for most datasets. Since LCQS has no 
parameters to tune, we apply LCQS in default mode.

Another quality score compressor AQUA [13] is considered. AQUa used multiple cod-
ing tools (such as different coder, average different coder, convolution predictors, etc.) 
with context-adaptive binary arithmetic coding (CABAC) scheme. We use the same 
parameters of AQUa that are described in [14]. Note that LCQS is complied with stand-
ard C++11 and g++ complier, while AQUa is implemented in JAVA.

Also, we consider general-purpose compressors, including 7-zip and pigz (paralleliz-
able Gzip) widely used in practice. For pigz and 7-zip, we compress the quality score in 
the best compression mode in all experiments.

Each baseline algorithm supports different features, which are summarized in Table 2. 
Also, the details on the algorithm configurations are given in Table 3.

Table 1  Details of quality scores datasets

Filename Organism Technology Length Size (MB) Coverage

SRR554369_1 P.Aeruginosa Illumina GAIIx 100 160 50x

SRR554369_2 P.Aeruginosa Illumina GAIIx 100 160 50x

SRR327342_1 S.Cerevisiae Illumina GAII 63 918 175x

SRR327342_2 S.Cerevisiae Illumina GAII 75 1090 175x

SRR870667_1 T.Cacao Illumina GAIIx 108 7197 35x

SRR870667_2 T.Cacao Illumina GAIIx 74 4952 35x

syn_read1 Synthetic SimNGS 101 43,775 30x

syn_read2 Synthetic SimNGS 101 43,775 30x
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Comparision: speed

The compression (or decompression) speed (MB/s) is measured by the ratio between the 
original file size (MB) of extracted quality scores and the compression time (seconds). 
Our experimental equipment has 64 cores and can use a maximum of 128 threads. How-
ever, we cannot manually adjust the number of threads of LCQS or AQUa. LCQS auto-
matically adjusts the number of threads based on the file size. LCQS uses six threads 
when it compresses SRR554369 while using 16 threads for other datasets. For a fair com-
parison, we limit the number of threads by 16 while testing FCLQC. Note that AQUa 
does not natively support multi-threading, so we measured compression speed by divid-
ing the file.

Recall that FCLQC does not require a preprocessing of FASTQ files since it takes a 
whole FASTQ file as an input and divides the file into id, read, and quality scores. 
Because other baseline algorithms take a quality scores file (which can be viewed as a 
preprocessed file) as an input, we ignore the splitting time while measuring the running 
time of FCLQC.1

In Table 4, the compression speed and average memory usage of LCQS, AQUa, 7-zip, 
and pigz are presented. FCLQC shows an average compression speed of 137 (MB/s) 
when using six threads and 306 (MB/s) when using 16 threads, which is far better than 
the other baseline compressors on all datasets. Compared to LCQS, the performance 
gain is 31x to 46x. It provides more than 23x performance improvement over AQUa, 47x 
performance improvement over 7-zip, and 3x over pigz when using 16 threads. FCLQC 
also used less memory after pigz. LCQS requires more memory to compress small file 
sizes and considerably more memory, even for large files. On the other hand, FCLQC 
uses less memory compared to the file size. Thus, we can say that FCLQC performs bet-
ter even in memory-constrained hardware environments.

Table 2  Supported features of compressors

FCLQC LCQS AQUA 7-zip pigz

Without preprocessing � ✕ ✕ ✕ ✕
Random access � � � ✕ ✕
Multi-threading � � ✕ � �

Custom number of threads � ✕ ✕ � �

Table 3  Configurations for compressors

Compressor Parameters Source URL

FCLQC Precision = 35 thead_num = 6 or 16 https://​github.​com/​Minhy​eok01/​FCLQC

LCQS https://​github.​com/​SCUT-​CCNL/​LCQS

AQUa Windowsize = 1, cabacgrouping=10485760 https://​github.​com/​tpari​dae/​AQUa

7-zip -mx9(best) -mmt6 or -mmt16 https://​www.7-​zip.​org/

pigz -9(best) -p 6 or -p 16 https://​zlib.​net/​pigz/

1  Note that preprocessing (mostly splitting) took 26 s when we split the 20 GB quality scores file into 120 sub-files using 
Linux command. It is negligible compared to other parts of compression.

https://github.com/Minhyeok01/FCLQC
https://github.com/SCUT-CCNL/LCQS
https://github.com/tparidae/AQUa
https://www.7-zip.org/
https://zlib.net/pigz/
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Table 5 presents compression time with various numbers of threads while compress-
ing SRR870667_1 dataset. Compression time is measured only with 7-zip and pigz, 
which can adjust the number of threads. It is clear that FCLQC is the fastest in all the 
number of threads. Note that 7-zip cannot handle all threads properly when the number 
of available threads is more than 40. On the other hand, FCLQC can properly control all 
threads and compress the quality scores quickly.

Figure 2 shows speedup, the ratio between the single thread execution time and the 
parallel execution time. It is clear that 7-zip cannot handle more than 40 threads. On the 
other hand, speedup of FCLQC linearly increases until 40 threads and increases steadily 
after that. It is due to some not perfectly optimized parts of FCLQC which are not paral-
lelized, such as merging local statistics. However, it is still convincing that FCLQC shows 
comparable speedup with highly optimized algorithms such as pigz. We also point out 
that the overall compression speed of FCLQC is much faster than pigz. The above result 
justifies that the concurrent implementation using Rust.

In order to evaluate random access decompression speed, we select 30 random quality 
score line indexes, where 10 of them are small indexes (low), another ten are mid-range 
indexes (mid), and the last ten are large indexes (high). Then, we measured the average 
time (seconds) to decompress a quality score line of selected indexes of each range (low, 

Table 4  Comparison results of compression speed and average memory usage

Bold denotes the fastest compression speed or lowest memory usage

Filename Compression speed (MB/s) Average memory usage (GB)

FCLQC LCQS AQUa 7-zip Pigz FCLQC LCQS AQUa 7-zip Pigz

SRR554369_1 135.59 3.09 3.29 1.02 17.40 0.0132 1.76 0.59 0.63 0.0126
SRR554369_2 139.13 2.98 3.28 0.97 14.41 0.0132 1.38 0.58 0.63 0.0126
SRR327342_1 305.64 7.12 6.43 2.87 50.70 0.0134 7.68 0.60 3.52 0.0126
SRR327342_2 301.67 6.37 8.30 3.45 77.64 0.0133 7.93 0.59 4.41 0.0126
SRR870667_1 341.74 10.36 9.47 6.12 36.33 0.0133 10.71 0.62 7.43 0.0126
SRR870667_2 316.58 7.73 8.85 4.21 43.10 0.0134 9.57 0.61 7.56 0.0126
syn_read1 292.03 8.94 12.17 6.10 41.98 0.0134 14.24 0.62 12.12 0.0126
syn_read2 275.52 7.95 11.46 5.58 38.32 0.0133 14.31 0.61 12.04 0.0126

Table 5  Compression time with the number of thread and CPU usage

Bold denotes the lowest compression time

Number of 
threads

Compression time (s) Average CPU Usage (%)

FCLQC 7-zip Pigz FCLQC 7-zip Pigz

1 311.66 9728.62 3080.33 100 100 100

10 32.47 1749.51 314.78 1000 600 1000

20 21.37 903.39 159.89 1900 900 2000

40 7.37 695.92 83.70 3200 2800 4000

60 6.54 480.06 60.13 5900 2800 6000

80 5.91 481.98 49.13 7300 2800 8000

100 5.29 478.78 42.41 9500 2800 10,000

120 5.06 481.53 36.63 11,600 2800 12,000
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mid, and high). 7-zip and pigz do not support random access, and AQUa fails to ran-
dom access with some datasets [14]. Therefore, we compare the random access result to 
LCQS only. Since the thread count of LCQS varies while random access decompression, 
it is hard to determine the number of threads for FCLQC for a fair comparison. We set 
FCLQC to use a single thread for a simple comparison, although it can handle multi-
threads for random access decompression. Table 6 shows the random access decompres-
sion speeds where FCLQC outperforms LCQS except for syn_read1 and syn_read2. This 
is due to single-thread restriction of FCLQC when the file size is huge. Note that the 
random access decompression time is nearly half if two threads are allowed for FCLQC. 
We also note that indexing in FCLQC is not fully optimized; therefore the random 
access decompression speed depends on the index. Standard deviations (std) of random 
access decompression times of FCLQC are also provided, where LCQS shows consistent 
decompression speed (we omit std of LCQS).

0 20 40 60 80 100 120
0

20

40

60

80

100

S
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ed
up

Number of Thread

FCLQC
7-zip
pigz

Fig. 2  Speedup of FCLQC, 7-zip, and pigz where thread counts are from 10 to 120

Table 6  Result of random access decompression speed

Bold denotes the fastest random access decompression

Filename Comparison of random access decompression speed (s)

FCLQC LCQS

Low Mid High Low Mid High

SRR554369_1 0.148± 0.063 0.383± 0.075 0.572± 0.055 50.027 50.082 50.213

SRR554369_2 0.133± 0.052 0.379± 0.078 0.567± 0.054 52.310 52.507 52.627

SRR327342_1 0.834± 0.399 2.194± 0.361 3.579± 0.371 52.855 55.487 56.429

SRR327342_2 1.073± 0.417 2.787± 0.440 4.554± 0.497 54.961 57.307 58.232

SRR870667_1 6.335± 1.534 14.695± 2.389 24.424± 2.323 53.417 54.124 52.771

SRR870667_2 6.048± 1.421 14.175± 2.118 21.984± 2.465 58.847 58.174 57.997

syn_read1 32.432± 4.864 73.781± 10.756 97.296± 15.459 60.651 62.135 63.547
syn_read2 31.541± 4.498 70.991± 9.648 94.623± 13.132 61.965 62.456 63.165
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Table 7 shows the results of the decompression speed when the decoder reconstructs 
the original quality scores sub-files. We set FCLQC to use two threads for SRR5543692_1 
and SRR5543692_2, and 16 threads for other datasets. Averaged decompression speeds 
of FCLQC are 41.36 (MB/s) and 121.28 (MB/s) for two threads and 16 threads, respec-
tively, which outperforms LQCS on all datasets. The peak thread count of LCQS was 120 
threads while decompressing, and recall that the number of threads is not an adjustable 
parameter for LCQS. Although LCQS flexibly varies the thread count while FCLQC is 
restricted to 16 threads, FCLQC shows better performance (13.9x in SRR870667_1 and 
5.6x in SRR870667_2).

In Table  8, we also measured the decompression time when the number of threads 
increases.2 Similar to the compression time, the decompression time is (roughly) 
inversely proportional to the number of threads. Note that the decompression took 
longer than the compression because of the arithmetic decoder’s binary search.

Table 7  Comparison results of decompression speed

Bold denotes the fastest decompression speed

Filename Decompression speed (MB/s)

FCLQC LCQS

SRR554369_1 40.27 3.21

SRR554369_2 42.44 3.07

SRR327342_1 111.66 11.38

SRR327342_2 116.46 11.81

SRR870667_1 122.38 8.21

SRR870667_2 124.95 18.8

syn_read1 125.85 10.29

syn_read2 126.40 10.35

Table 8  Decompression time of FCLQC when the number of threads increases

Filename Decompression time (s)

10 30 60 90 120

SRR554369_1 1.49492 0.80012 0.55523 0.51588 0.48690

SRR554369_2 1.52766 0.80448 0.56461 0.52217 0.48321

SRR327342_1 11.26921 6.51885 4.63464 3.98554 3.35740

SRR327342_2 12.21315 7.17441 4.93512 4.40018 4.08363

SRR870667_1 67.20655 35.34112 24.08606 21.38290 18.88168

SRR870667_2 54.44474 31.43011 21.77509 18.16317 16.11619

syn_read1 412.46256 217.53169 151.75177 130.78657 111.23652

syn_read2 433.82677 223.34369 153.61791 132.44471 112.75674

2  To focus on the role of the number of threads, we ignore the post-processing (merging sub-files) while measuring 
decompression time. Note that it took 10 s to merge all decompressed sub-files for the reconstructed quality score file of 
size 20 GB. This is relatively small compared to the total decompression time.
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Comparision: compression ratio

The compression ratio is defined by the ratio between the original quality scores file 
size and the compressed file size. Table  9 shows the compression ratios of compres-
sion schemes under the same settings when we measured compression/decompression 
speeds in Tables 4 and 7. LCQS tends to obtain better compression ratios than the other 
methods in all datasets. The compression ratios of FCLQC are comparable (or slightly 
worse) to that of LCQS for most datasets. Compared to AQUa and 7-zip, the proposed 
algorithm shows better performance, 3% and 4.69% on average, respectively. For all data-
sets, FCLQC shows a better compression ratio (about 14%) on average than pigz.

Figure 3 visualizes the trade-off between average compression ratio and compression 
speed of compression schemes for all dataset. Although FCLQC has a lower compres-
sion ratio than LCQS, it shows a significantly faster compression speed. Figure 4 shows 
the average compression ratio and decompression speed of compression schemes for 
all dataset. In this experiment, LCQS used more than two threads, and all other algo-
rithms used only one thread. Although pigz has a faster decompression speed than other 

Table 9  Comparison results of compression ratio

Bold denotes the highest compression ratio

Filename Compression ratio

FCLQC LCQS AQUa 7-zip pigz

SRR554369_1 3.02 3.43 2.97 2.94 2.59

SRR554369_2 3.04 3.32 2.93 2.87 2.54

SRR327342_1 2.59 2.79 2.57 2.51 2.25

SRR327342_2 2.42 2.57 2.35 2.31 2.09

SRR870667_1 2.89 3.25 2.86 2.83 2.50

SRR870667_2 2.66 2.86 2.58 2.54 2.27

syn_read1 2.52 2.62 2.39 2.29 2.14

syn_read2 2.20 2.32 2.07 2.07 1.91
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Fig. 3  The average compression ratio and the compression of FCLQC and baseline compressors for all 
dataset
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algorithms, it does not support random access and the compression rate is degraded up 
to 25% compared to LCQS. The performance degradation of FCLQC is not significant 
considering the extreme boosts on compression/decompression speeds and the general-
ity of the algorithm.

It is clear that the better compression ratio is one of the most important goals for com-
pression algorithms; however, it is not the only criterion. There are applications where 
the compression speed is a bottleneck, many commercial compression algorithms pro-
vide an option to sacrifice compression rate to achieve better compression speed. For 
example, pigz has a “best” option, which provides the best compression ratio but slow. 
On the other hand, pigz also has a “fast” option with faster compression, but the com-
pression ratio is worse. More precisely, if we compress SRR_554369_1 using pigz, the 
compression ratio is 2.59 with the “best” option and 2.23 with the “fast” option. We 
believe that FCLQC is a reasonable choice for speed sensitive applications.

Conclusions
We proposed a new lossless quality scores compressor FCLQC, which focuses on the 
algorithm’s running time. We implemented FCLQC using Rust and achieved thread 
safety via concurrent programming. FCLQC was evaluated on various quality score 
datasets and showed significant boosts on compression speed while maintaining the 
compression ratio. Also, FCLQC is universal since it does not have any assumptions on 
sequencing technologies and supports desired features such as random access. Thus, 
FCLQC is a good candidate for FASTQ file compression in practice, where the compres-
sion and decompression speed is a bottleneck.
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Fig. 4  The average compression ratio and decompression speed of FCLQC and baseline compressors for all 
dataset
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Availability and requirements

•	 Project name: FCLQC.
•	 Project home page: https://​github.​com/​Minhy​eok01/​FCLQC.
•	 Operating systems: Linux/Windows.
•	 Programming language: Rust.
•	 Other requirements: cargo 1.42.0 or higher.
•	 License: The MIT License.
•	 Any restrictions to use by non-academics: For commercial use, please contact the 

authors.

Abbreviations
GB: Gigabyte; HGP: Human genome project; IO: Input and output; LTS: Long term support; MB: Megabyte; MPEG-G: 
Moving Picture Experts Group—Genomic information; NGS: Next generation sequencing; SMaSH: Synthetic, mouse and 
sampled human data.
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