
pyKVFinder: an efficient and integrable
Python package for biomolecular cavity
detection and characterization in data science
João Victor da Silva Guerra1,2*, Helder Veras Ribeiro‑Filho1, Gabriel Ernesto Jara1, Leandro Oliveira Bortot1,
José Geraldo de Carvalho Pereira1 and Paulo Sérgio Lopes‑de‑Oliveira1,2*   

Background
At present, we are going through the era of data science and the computational and
structural biology fields have hugely benefited from the growing availability of biostruc-
tural data, as pointed out by [1]: “Structural biology meets data science”. Advances in

Abstract 

Background:  Biomolecular interactions that modulate biological processes occur
mainly in cavities throughout the surface of biomolecular structures. In the data sci‑
ence era, structural biology has benefited from the increasing availability of biostruc‑
tural data due to advances in structural determination and computational methods. In
this scenario, data-intensive cavity analysis demands efficient scripting routines built
on easily manipulated data structures. To fulfill this need, we developed pyKVFinder, a
Python package to detect and characterize cavities in biomolecular structures for data
science and automated pipelines.

Results:  pyKVFinder efficiently detects cavities in biomolecular structures and com‑
putes their volume, area, depth and hydropathy, storing these cavity properties in
NumPy arrays. Benefited from Python ecosystem interoperability and data structures,
pyKVFinder can be integrated with third-party scientific packages and libraries for
mathematical calculations, machine learning and 3D visualization in automated work‑
flows. As proof of pyKVFinder’s capabilities, we successfully identified and compared
ADRP substrate-binding site of SARS-CoV-2 and a set of homologous proteins with
pyKVFinder, showing its integrability with data science packages such as matplotlib,
NGL Viewer, SciPy and Jupyter notebook.

Conclusions:  We introduce an efficient, highly versatile and easily integrable software
for detecting and characterizing biomolecular cavities in data science applications and
automated protocols. pyKVFinder facilitates biostructural data analysis with scripting
routines in the Python ecosystem and can be building blocks for data science and drug
design applications.

Keywords:  Cavity detection, Cavity characterization, NumPy, Python, Data structure,
Data science, Automated pipelines, Molecular dynamics

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Guerra et al. BMC Bioinformatics (2021) 22:607
https://doi.org/10.1186/s12859-021-04519-4 BMC Bioinformatics

*Correspondence:
joao.guerra@lnbio.cnpem.
br; paulo.oliveira@lnbio.
cnpem.br
1 Brazilian Center
for Research in Energy
and Materials (CNPEM),
Brazilian Biosciences
National Laboratory (LNBio),
R. Giuseppe Máximo
Scolfaro, 10000 ‑ Bosque
das Palmeiras, Campinas, SP
13083‑100, Brazil
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-1287-8019
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04519-4&domain=pdf

Page 2 of 13Guerra et al. BMC Bioinformatics (2021) 22:607

X-ray crystallography and electron microscopy techniques have expanded the determi-
nation of novel structures [2]. In the meantime, advances in computational resources
have driven the use of in silico methods to simulate the dynamics of biomolecules and
carried out the implementation of artificial intelligence to model biomolecular struc-
tures [3]. Together, all of this structural data provides fertile ground for data interpreta-
tion through data science or automated analysis frameworks, but data-intensive analysis
asks for efficient and integrable scripting routines with an easily manipulated data
structure.

In this scenario, we developed pyKVFinder, an open-source python package for cav-
ity detection and characterization abstracted into multidimensional arrays. In proteins
or other macromolecules, solvent-exposed clefts or buried cavities play a key role in
ligand binding, which can ultimately regulate biological function of the macromolecule
[4]. For this reason, the identification and characterization of ligand-binding sites are the
basis of rational structure-based drug discovery and design [5, 6]. pyKVFinder adopts
the original geometrical grid-and-sphere-based detection method as implemented in
KVFinder [7], which has been improved in the latest parallel version, parKVFinder [8].
Detected cavities in parKVFinder, as in many other well-known programs, such as Cav-
Vis [9], fpocket [10], GHECOM [11], ConCavity [12], MSpocket [13] and POVME 3.0
[14], are human-readable and easily displayed in molecular visualization programs, but
are not properly structured to be directly scripted into automated pipelines or data sci-
ence frameworks. Programming languages are constantly evolving in the data science
field, with Python being one of the most popular in the community [15]. However, only
a few initiatives have been launched to make cavity detection programs easier to inte-
grate into data science protocols. For instance, Cambridge Crystallographic Data Centre
has licensed commercial software suites that use a Python API to integrate its structural
database with workflows and third-party applications [16], and one of its API modules
is aimed at detecting ligand-binding cavities using the LIGSITE algorithm [17]. As an
open-source initiative, Biobb_vs is a Python package designed to detect and analyze cav-
ities in automated workflows. Biobb_vs is part of BioExcel Building Blocks [18] and uses
fpocket to detect cavities in virtual screening pipelines. In this case, despite the inter-
operability achieved, the workflows depend on handling data files generated by fpocket.

To fulfill this need, pyKVFinder is wrapped into Python and, using Python’s well-
established data structure (e. g., NumPy array), benefits from the language ecosystem
interoperability. pyKVFinder can be integrated with third-party scientific packages and
libraries for mathematical calculations, statistical analysis, and tridimensional visualiza-
tion. Moreover, users can explore the functionality of pyKVFinder step-by-step using
interactive interfaces, such as IPython/Jupyter notebooks. As mentioned above, one of
pyKVFinder’s main contributions in data science workflows is to translate the detected
cavities from tridimensional coordinates of cavity points to NumPy arrays, a data struc-
ture that allows for a wide diversity of scientific computation and efficient storage and
access to N-dimensional arrays (ndarrays), also called tensors [19]. Ndarrays also pro-
vide efficient ways of handling data for mathematical operations and are the popular
choice of input data type for machine learning Python libraries such as scikit-learn [20].

Besides conventional cavity properties such as volume and area, which are stored as
Python dictionaries, pyKVFinder computes cavity depth and hydropathy. Similar to

Page 3 of 13Guerra et al. BMC Bioinformatics (2021) 22:607 	

cavity points, these spatial and physicochemical properties are stored as Python ndarrays
and can be visualized using Python molecular visualization widgets. Thus, pyKVFinder
provides a versatile way to detect and characterize biomolecular cavities and integrate
this information into data science or automated workflows.

Implementation
Python-C parallel KVFinder (pyKVFinder) applies a Simplified Wrapper and Interface
Generator (SWIG; http://​www.​swig.​org/) to extend grid operations written in C to
Python, a high-level programming language. pyKVFinder can be easily installed with the
pip package management system. In pyKVFinder, the target biomolecule is inserted into
a regular 3D grid, which is stored as an ndarray, considering the van der Waals radii
of the atoms. To detect cavities, pyKVFinder uses a dual-probe algorithm that scans
the biomolecular structure, as described in [7, 8]. In summary, a small probe, dubbed
Probe In, and a larger probe, dubbed Probe Out, translate over the grid points, defining
two molecular surfaces with different accessibility. Biomolecular cavities are defined as
the non-overlapped regions between the molecular surfaces. On each detected cavity,
pyKVFinder may perform spatial, depth, hydropathy and constitutional characteriza-
tions. In this workflow, C routines undergo multithreaded parallelization to speed up
cavity detection and characterization, with the OpenMP API creating a user-defined
number of parallel threads, where grid chunks are distributed among these threads to
perform independent operations.

Python package

pyKVFinder can be imported as a package in the Python environment and users can
decide to run the full cavity detection and characterization workflow through the run_
workflow function or run pyKVFinder functions in a stepwise fashion. At the latter, users
can integrate pyKVFinder functions into third-party Python packages and benefit from
interactive IPython/Jupyter notebooks. By running pyKVFinder in Python environment,
users can visualize the detected cavities through the Python NGL Viewer widget [21].
Still, the full workflow was also coded as a command-line interface. Either way, users
have access to a full set of customizable parameters to detect and characterize biomo-
lecular cavities. A schematic diagram of cavity detection and characterization workflow
is described in Fig. 1.

In the cavity detection and characterization workflow, read_vdw function reads a cus-
tomizable van der Waals (vdW) radii file (.dat extension; default vdw.dat) into a nested
Python dictionary, which is first indexed by the three-letter residue code (e. g., ALA,
ARG, ASH, etc.), and then indexed by the atom name (e. g., C, N, O, CA, etc.) to access
its respective radius value. The vdW radii file defines the radius values for each atom by
residue and when not defined, uses a generic value based on the atom type. The built-
in file (vdw.dat) applies the vdW radii of the Amber ff99 force field [22]. Afterwards,
read_pdb or read_xyz function gets the vdW dictionary and reads a target PDB or XYZ
file (.pdb or.xyz extension), respectively. The atomic data is stored in an ndarray with
residue number, chain identifier, residue name, atom name, xyz coordinates and radius
per atom.

http://www.swig.org/

Page 4 of 13Guerra et al. BMC Bioinformatics (2021) 22:607

To perform the cavity detection on the whole structure, the 3D grid is defined based
on the target biomolecule coordinates and the user-defined parameters: grid spacing and
Probe Out diameter. Thus, the grid coordinates are extracted from the atomic data ndar-
ray, using get_vertices function that defines the grid origin and XYZ axis. The first ver-
tex (p1) is the minimum xyz coordinates of the atomic data. The second (p2), third (p3)
and fourth (p4) vertices represent the maximum coordinate along the X, Y and Z axes,
respectively. Given these four vertices, the original coordinate system is transformed in
the detect function, using translation and rotation, into a new coordinate system with P1
as its origin. Also, for internal calculations, the sum of the grid spacing and the Probe
Out size is padded in each direction of the 3D grid. With user-defined parameters and
atomic coordinates, the detect function creates and fills the 3D grids with Probe In and
Probe Out probes, and compares these grids to define the biomolecular cavities, which
are returned in an ndarray. In this ndarray (Fig. 2), each element corresponds to cavity
space (> 1), empty space (1), biomolecule space (0) or bulk space (− 1).

Instead of performing the cavity detection on the whole structure, the search space
can be set to a custom search box, called box adjustment mode. This mode is defined
based on a TOML-formatted configuration file (.toml extension; Additional file 1: Fig.
A1), which can explicitly define the vertices coordinates or pass a list of residues of the
target biomolecule to be used as reference instead of the whole structure. The box can
also be drawn using parKVFinder PyMOL plugin and its coordinates can be extracted
from parKVFinder parameters file. Thus, the get_vertices_from_file function loads a box
configuration file and atomic data from read_pdb or read_xyz function, which returns

Fig. 1  Diagram of cavity detection and characterization workflow using pyKVFinder package. The flowchart
illustrates function calls and their dependencies for performing cavity detection and characterization with
pyKVFinder package

Page 5 of 13Guerra et al. BMC Bioinformatics (2021) 22:607 	

the grid coordinates (p1, p2, p3 and p4) and selects the atoms inside the custom 3D grid
with their respective atomic data. Hence, these parameters are passed to detect function,
together with box_adjustment flag, to perform cavity detection on a custom 3D grid.

Either way, whole structure mode or box adjustment mode, another space segmen-
tation method, called ligand adjustment mode, can be applied to constrain the search
space around a target ligand, defined by a PDB or XYZ file (.pdb or.xyz extension). For
this mode, read_pdb or read_xyz function gets the vdW dictionary and reads a ligand
PDB or XYZ file and returns the ligand atomic coordinates with their respective radius
that must be passed to detect function to further restrict the search space within a radius
of the target ligand.

Cavity characterization

With the ndarray of detected cavities, pyKVFinder package may perform four charac-
terization procedures, i.e., spatial, constitutional, depth and hydropathy characteriza-
tions. The spatial characterization, using spatial function, defines the surface points in
an ndarray, and estimates the volume and area of the detected cavities, following the
methodology proposed in [8]. The constitutional characterization, using constitutional
function, defines the interface residues that surround the detected cavities, checking if
the atoms of the residues are within a radius, which is the sum of the Probe In size and
the atom radius. Alternatively, the constitutional function can ignore backbone contacts
by enabling ignore_backbone flag. This function stores the interface residues in a Python
dictionary. Using the interface residues, the calculate_frequencies function calculates
the occurrence of each residue and classes of residues per cavity. The classes of amino
acid residues [23] are aliphatic apolar (R1), aromatic (R2), polar uncharged (R3), neg-
atively charged (R4), positively charged (R5) and non-standard (RX) (Additional file 1:
Table A1).

The depth characterization identifies the degree of burial of the binding site. This char-
acterization applies depth function to identify the cavity-bulk boundary by applying a
spatial filter, which defines a boundary point as cavity points where at least one direct

Fig. 2  Representative view of detected cavities in the pyKVFinder data structure. Based on a 3D grid (left
figure), pyKVFinder detects cavities in biomolecules and returns an ndarray with dimensions (m, n, o) (right
figure). Each ndarray element corresponds to cavity space (> 1), empty space (1), biomolecule space (0) or
bulk space (-1). Cavity properties such as depth and hydropathy are also stored in the same data structure,
with ndarray elements corresponding to the property value

Page 6 of 13Guerra et al. BMC Bioinformatics (2021) 22:607

neighbor is a bulk point, marking it with the negative of the cavity integer (Additional
file 1: Fig. A2). Subsequently, the depth of each cavity point is heuristically estimated
by the shortest Euclidean distance between the cavity point and its respective boundary
points (Eq. 1). Each cavity point is distributed among the user-defined number of threads
to perform this chunk of distance calculations (Additional file 1: Fig. A2). With the depth
of all cavity points calculated and stored as an ndarray (Fig. 2), the maximum and aver-
age depths are calculated for each detected cavity and returned as Python dictionaries.

where D̂i is the depth of the cavity point i, d
(
pi, pj

)
 is the Euclidean distance between

points i and j, pi is the x, y, z coordinates of a cavity point i, pj is the x, y, z coordinates of
a cavity-bulk boundary point j.

The hydropathy characterization extracts the water attractiveness of the interface res-
idues surrounding the binding site. This characterization uses hydropathy function at
surface points detected in spatial characterization to map a target hydrophobicity scale
on them. Firstly, a customizable TOML-formatted hydrophobicity scale file (.toml exten-
sion) is loaded into a Python dictionary, which is indexed by the three-letter residue
code (e. g., ALA, ARG, ASH, etc.) to access the respective hydrophobicity value. With
the dictionary loaded, the function identifies the nearest interface residues for each sur-
face point and projects the residue’s hydrophobicity value onto them (Fig. 2). Alterna-
tively, backbone contacts may be ignored by enabling the ignore_backbone flag. Finally,
with the hydrophobicity mapped on the surface and returned as an ndarray, the average
hydropathy is calculated for each detected cavity and stored in a Python dictionary. The
hydrophobicity scale file defines the scale name and hydrophobicity value for each resi-
due and, when not defined, assigns zero to the missing residues (Additional file 1: Fig.
A3). The package contains six built-in hydrophobicity scales: Eisenberg and Weiss [24],
Hessa and Heijne [25], Kyte and Doolittle [26], Moon and Fleming [27], Wimley and
White [28] and Zhao and London [29]. Benefiting from the Python environment, users
can test different scales without having to perform the cavity detection step every time.
A pre-released version of hydropathy characterization has been successfully applied to
compare cavities of alphavirus-related proteins [30].

The cavity detection and characterization objects, from detect, spatial, constitutional,
calculate_frequencies, depth, hydropathy functions, can be stored into a pyKVFinderRe-
sults class that accumulates them in its attributes. As this data structure is filled, these
attributes can be exported to files through export, write and plot_frequencies methods.
The export method writes cavities together with their surface points to a PDB-formatted
file with depth values in the B-factor column, while surface points with hydropathy val-
ues in the B-factor column are written to another PDB-formatted file. The write method
saves file paths, volume, area, interface residues and their frequencies, maximum and
average depth, and average hydropathy in a TOML-formatted file. The plot_frequencies
method plots bar charts of frequencies per cavity in a PDF file. These three methods are
also wrapped in export_all method. Although we presented the full workflow, all func-
tions explained in this section can be applied independently in a step-by-step manner. In
this scenario, the export, write and plot_frequencies methods have their counterparts in

(1)D̂i = min
j

[
d
(
pi, pj

)]
= min

j

[√(
pix − pjx

)2
+

(
piy − pjv

)2
+

(
piz − pjz

)2
]
,

Page 7 of 13Guerra et al. BMC Bioinformatics (2021) 22:607 	

the export, write_results and plot_frequencies functions of pyKVFinder package, respec-
tively. Additionally, the read_cavity function reads a cavity file (.pdb extension), written
by pyKVFinder, parKVFinder or KVFinder, and a target PDB or XYZ file (.pdb or.xyz
extension), and returns an ndarray with each element corresponding to the cavity space
(> 1), biomolecule space (0), or bulk or empty space (− 1), similar to the output of the
detect function. In this way, it allows to recharacterize a previously detected cavity or
characterize a cavity with manually trimmed points.

Results and discussion
Usage example

To demonstrate the use of pyKVFinder and how it benefits from the Python eco-
system, we identified the substrate-binding pocket of the ADP-ribose phosphatase
(ADRP) domain of SARS-CoV-2 nsp3 protein in the apo form (PDB ID: 6WEN). Still
under investigation to determine its exact functions in coronavirus life cycle, the ADRP
domain recognizes ADP-ribose 1″ phosphate [31, 32] and seems to have an important
role in virulence and innate immunity regulation to infection [33–35]. In this regard,
recent efforts have been made to characterize ADP-ribose substrate-binding pocket and
evaluate this site as a putative antiviral drug target [36, 37].

Visualizing detected cavities with NGL Viewer in Jupyter notebook

pyKVFinder successfully detected the ADRP substrate-binding cavity and determined
traditional cavity properties such as volume, area and residues surrounding the ADP-
ribose cavity (Fig. 3a, upper panel). For instance, we used pyKVFinder calculate_frequen-
cies and plot_frequencies functions to determine the composition of the type of residues
surrounding the cavity and plotted this composition as a bar chart (Additional file 1: Fig.
A4). In pyKVFinder, this step is performed using matplotlib library [38], but users are
free to analyze data and present results on their favorite graphing library. As observed
in Fig. 3a, the ADP-ribose site forms a cleft sandwiched between ADRP α-helices and
the main contacts involve residues from coil regions, which could possibly explain the
pocket plasticity upon substrate binding [31, 32]. These results were visualized using
NGL Viewer on a Jupyter notebook; alternatively, users can use another molecular visu-
alization tool for notebooks or load results into the parKVFinder PyMOL Plugin [8].

Characterizing hydropathy and depth of cavities

We also inspected the ADRP substrate-binding cavity through other two points of view:
depth and hydropathy. Those physicochemical descriptions are usually essential for drug
development [36]. In apo form, despite being solvent-exposed, the cavity has some inter-
nal components (red color) that can reach a more central portion of the ADRP β-sheet
(Fig. 3a, middle panel). The hydropathy analysis shows that the cavity core is most
hydrophobic (yellow color), with some polar residues on the edges (blue color) that may
contribute to the design of more specific ligands. Since pyKVFinder stores the properties
to be colored in cavities in the B-factor column of a PDB-formatted file, users can easily
change the style and color scheme in most of molecular visualization programs.

Page 8 of 13Guerra et al. BMC Bioinformatics (2021) 22:607

Using NumPy operations to present conservation and matplotlib library to plot hydropathy

distribution of cavities

In addition to SARS-CoV-2, the ADRP domain is also present in other related coronavi-
ruses and has the macroD1 and macroD2 as homologous in humans. For this reason, we
used pyKVFinder to detect the ADRP substrate-binding site in aligned ADRP domains
from different species and compare their properties. Firstly, we applied arithmetic oper-
ations on the ndarrays of the detected cavities to determine the cavity conservation
among the species. As observed in Fig. 3b, the ADRP cavity has a core (red points) very
conserved in the analyzed species which is occupied by the diphosphate and ribose of
ADP and the second ribose bound to ADP in the ADRP substrate-bound form. In turn,
adenosine occupies a less conserved cavity region, which may indicate that the struc-
ture of this site in some species changes to accommodate ADP-ribose substrate. To com-
pare the cavity hydropathy across species, we plotted a hydropathy distribution from the
hydropathy ndarray using the matplotlib library [38] (Fig. 3c, left graph). The distribu-
tion clearly shows the hydrophobic characteristic of the pocket that is mostly shared
between ADRP substrate-binding pockets of coronaviruses. Interestingly, the human
macroD1 and macroD2 seem to shift the distribution to a less hydrophobic profile.

Fig. 3  Detection and characterization of ADRP substrate-binding cavity of SARS-CoV-2 and its comparison to
related coronaviruses and human macroD1 and macroD2 proteins. a Three different characterizations of the
apo ADRP substrate-binding cavity of SARS-CoV-2 (PDB ID: 6WEN) using pyKVFinder. The upper panel shows
the detected cavity represented as gray surface and residues surrounding it as red sticks. The cavity area and
volume are displayed. The middle panel presents the same cavity colored by depth, while the bottom panel
shows the cavity colored by hydropathy using Eisenberg and Weiss scale. b Conservation analysis of the
ADP-ribose binding site in ADRP domain of SARS-CoV-2 (PDB ID: 6WEN, chain A), SARS-CoV (PDB ID: 2ACF,
chain B), MERS-CoV (PDB ID: 5HIH, chain A), NL63 (PDB ID: 2VRI, chain A), HCoV-229E (PDB ID: 3EJG, chain
A), FCoV (PDB ID: 3ETI, chain B) and human macrodomain proteins macroD1 (PDB ID: 2X47, chain A) and
macroD2 (PDB ID: 6Y73, chain D) from human. These protein domains were selected using Dali and choosing
homologs in apo form. The structures were realigned using MUSTANG algorithm [39] from YASARA program
[40]. The figure presents cavity points that were detected in at least two structures and the points are colored
by conservation percentage. c Hydropathy profile of the same compared cavities collected from pyKVFinder
ndarrays. d Hierarchical clustering dendrogram of the frequency of residues surrounding the compared
cavities. The correlation metric was used to assess the similarity and the complete method was chosen as
linkage method. All the images and graphics were created inside a Jupyter notebook. To create images of
tridimensional structures, we used NGL Viewer tool and to plot graphics, we used matplotlib library

Page 9 of 13Guerra et al. BMC Bioinformatics (2021) 22:607 	

This finding should be better evaluated, as the differences between these homologous
domains that share the same substrate can contribute to the design of specific ligands for
viral ADRP domains.

Hierarchical clustering of cavity residues using SciPy package

Finally, since pyKVFinder uses native Python dictionaries to store the residues sur-
rounding the detected cavity, we can easily tabulate the residue frequency. With this
information, we performed a hierarchical clustering, an unsupervised machine learn-
ing algorithm, using the SciPy package [41], and represented clusters arrangement as a
dendrogram (Fig. 3c, right graph). The ADRP cavity of SARS-CoV-2 grouped with that
of SARS-CoV, demonstrating the high identity between these betacoronaviruses. Close
to them, we can observe another betacoronavirus, MERS-CoV. On the other hand, the
alphacoronaviruses NL63 and HCoV-229E and the feline FCoV are grouped together.
Further away from the coronaviruses’ domains are the two human macrodomain pro-
teins, macroD1 and D2. Despite the cavity of ADRP or macro D1/D2 sharing the same
substrate, ADP-ribose, these results show that the profile of the residues surrounding
these cavities follows evolutionary traces.

Benchmarking

In addition to identifying and characterizing the ADRP substrate-binding site of SARS-
CoV-2 and a set of homologous proteins, we simulated ADRP domain of SARS-CoV-2
(PDB ID: 6W02, chain B) without its ligand, ADP-ribose, for 600 ns, extracting a frame
at regular intervals of 1 ns (Additional file 1). Thus, we used pyKVFinder with its box
adjustment mode to detect and estimate the volume of the ADP-ribose binding site
throughout 600 frames of the ADRP domain’s trajectory. This analysis was repeated with
other well-known software: POVME [14], Biobb_vs [18], MSPocket [13], GHECOM
[11], fpocket [10] and parKVFinder [8]. Biobb_vs, as mentioned in the Background sec-
tion, is a Python package that allow scripting, while POVME, MSpocket, GHECOM,
fpocket, GHECOM and parKVFinder are command-line interfaces. A detailed descrip-
tion of software parameters and versions is in Additional file 1.

All these methods successfully detected the pocket of the ADRP substrate-binding
site, in which the shape and volume vary slightly during the molecular dynamics simula-
tion (Fig. 4). The shape of the detected cavities defined by pyKVFinder and parKVFinder
finely adjust to the original ligand in the binding site, as well as MSPocket (Fig. 4a)
Besides that, the volume calculated by pyKVFinder (346.8 ± 78.7 Å3) and parKVFinder
(346.5 ± 79.3 Å3) is closely related to the volume of ADP-ribose (351.1 Å3; molecular sur-
face volume estimated by YASARA program [40]), the ligand that originally occupied
the binding site in the crystallographic structure used in the molecular dynamics simula-
tions (Fig. 4b). Nevertheless, the differences in the shape and volume of detected cavi-
ties derive from the methodology employed (e.g., Voronoi tessellation, alpha spheres,
and grid-and-sphere), the cavity-bulk boundary definition, and the ability to segment
the space. For instance, pyKVFinder, parKVFinder and POVME can segment the search
space, which trims points outside this custom space, while the other methods only
explore the whole structure, which includes neighboring regions at the binding site.

Page 10 of 13Guerra et al. BMC Bioinformatics (2021) 22:607

Besides being able to accurately detect biomolecular cavities, current software must
also perform fast detection and characterizations. Thus, we also evaluated the elapsed
time to execute these benchmarking methods (Fig. 4c). pyKVFinder outperformed all
analyzed methods. Even when applying the newly available characterization, depth
and hydropathy, pyKVFinder’s elapsed time only increased 36%, still outperforming
other benchmarking methods. Further, compared to its counterpart, parKVFinder,
pyKVFinder was 3.3 times faster in detecting ADRP binding site. The main reason
for the performance gain is the additional possibility to parallelize routines, i. e., the
insertion of atoms in the 3D grid in detect function, based on ndarrays. Hence, expe-
rienced users requiring scripting routines are encouraged to use pyKVFinder due to
its improved performance, while newcomers should prioritize parKVFinder due to its
simplicity of installation and execution. Further, the scalability of pyKVFinder, upon
increasing number of threads, follows the same behavior presented by parKVFinder
[8].

Despite all methods characterizing volume, each method has its own set of charac-
terizations to be performed on the detected cavities. However, the cavities data struc-
ture is only accessible inside the Python ecosystem in pyKVFinder, which provides
ndarrays and Python dictionaries. The ndarrays stores cavity points, surface points,
hydropathy for each surface point and depth for each cavity point, while Python dic-
tionaries stores volume, area, average hydropathy, maximum depth and average depth,

Fig. 4  Performance evaluation of the benchmarking methods for detecting the ADRP substrate-binding site.
a The structures of the protein (green cartoon) at frame 30 (smallest RMSD compared to the crystallographic
structure) of the ADRP domain trajectory with the corresponding cavities detected (gray surfaces) by each
benchmarking method. b The total volume of the cavities detected in the ADRP substrate-binding site
along the 600 ns simulation. The total volume is averaged in a window of 20 frames. The red dashed line
indicates the molecular surface volume of the ADP-ribose molecule that originally occupied the ADRP
substrate-binding site in the crystallographic structure (PDB ID: 6W02, chain B). c Elapsed time to detect and
characterize ADRP substrate-binding site. The standard workflow of pyKVFinder, as in parKVFinder, detects
cavities and applies spatial and constitutional characterizations. The full workflow of pyKVFinder comprises
standard workflow with depth and hydropathy characterizations

Page 11 of 13Guerra et al. BMC Bioinformatics (2021) 22:607 	

and interface residues and their frequencies per detected cavity. Thus, users may
develop new characterizations and/or analysis pipelines with these data structures.

Future development

pyKVFinder will undergo continuous improvements and updates, according to its appli-
cations by the scientific community. In the future, pipelines will be implemented in
molecular dynamics and machine learning, along with new features that are valuable to
ligand-binding site characterization. Additionally, pyKVFinder aims to offload its rou-
tines to the GPU for performance enhancement in data-intensive applications.

Conclusion
pyKVFinder provides an efficient and integrable Python package for cavity detection
and characterization in biomolecular structures for data science and automated pipe-
lines. In addition to fast, accurate and efficient cavity detection and characterization,
pyKVFinder stores spatial and physicochemical properties in Python ndarrays, that ease
scripting and data analysis. Further, pyKVFinder performance was benchmarked against
well-known geometrical methods for cavity detection and characterization. Finally, we
have successfully shown an application of pyKVFinder integration with matplotlib, NGL
Viewer, SciPy and Jupyter notebook, that compared the ADRP substrate-binding site of
SARS-CoV-2 in homologous proteins.

Availability and requirements

Project name: pyKVFinder
Project home page: https://​github.​com/​LBC-​LNBio/​pyKVF​inder
Operating system(s): any supporting Python >  = 3.7 (tested on Linux and macOS)
Programming language: Python, C
Other requirements: swig >  = 4.0.1, toml >  = 0.10.2, numpy >  = 1.20.3, matplot-
lib >  = 3.3.3
License: GNU General Public License v3.0
Any restrictions to use by non-aca3demics: None.

Abbreviations
ADRP: ADP-ribose phosphatase; CoV: Coronavirus; MERS: Middle East Respiratory Syndrome; ndarrays: N-dimensional
arrays; PDB: Protein Data Bank; R1: Aliphatic apolar; R2: Aromatic; R3: Polar uncharged; R4: Negatively charged; R5:
Positively charged; RX: Non-standard; SARS: Severe Acute Respiratory Syndrome; SWIG: Simplified Wrapper and Interface
Generator; TOML: Tom’s Obvious, Minimal Language; vdW: Van der Waals.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​021-​04519-4.

Additional file 1. The Additional file 1 contains Table A1, Figures A1, A2, A3 and A4, and a detailed description
of the molecular dynamics simulation of ADRP domain of SARS-CoV-2 and the benchmarking procedure. Table A1
reports the classes of amino acid residues. Figure A1 shows examples of box configuration files. Figure A2 shows
the methodology of depth characterization. Figure A3 shows the methodology of hydropathy characterization.
Figure A4 shows a bar chart of residues frequencies.

https://github.com/LBC-LNBio/pyKVFinder
https://doi.org/10.1186/s12859-021-04519-4

Page 12 of 13Guerra et al. BMC Bioinformatics (2021) 22:607

Acknowledgements
We thank the Brazilian Biosciences National Laboratory (LNBio), part of the Brazilian Center for Research in Energy and
Materials (CNPEM) for accessibility to the Computational Biology Laboratory (LBC).

Authors’ contributions
JVSG, JGCP and PSLO conceptualize and design the code package structure. JVSG implemented the code. HVRF, LOB,
GEJ, and JGCP tested and performed validation checks. JVSG and HVRF wrote the manuscript. LOB, GEJ, JGCP and PSLO
reviewed the manuscript and provided critical revision. PSLO supervised coding steps and decisions. All authors read
and approved the final manuscript.

Funding
This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) [Grant Number
2018/00629-0], Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [Grant Number 350244/2020-
0], and Brazilian Center for Research in Energy and Materials (CNPEM). None of these funding bodies provided any
direct role nor influence in the design of the study and collection, analysis, and interpretation of data and in writing the
manuscript.

Availability of data and materials
pyKVFinder source code, documentation and tutorials are available in the Python Package Index (PyPI) repository,
https://​pypi.​org/​proje​ct/​pyKVF​inder, and the GitHub repository, https://​github.​com/​LBC-​LNBio/​pyKVF​inder. Documenta‑
tion and tutorials are available at pyKVFinder webpage, https://​lbc-​lnbio.​github.​io/​pyKVF​inder.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), R.
Giuseppe Máximo Scolfaro, 10000 ‑ Bosque das Palmeiras, Campinas, SP 13083‑100, Brazil. 2 Graduate Program in Pharma‑
ceutical Sciences, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil.

Received: 25 October 2021 Accepted: 7 December 2021

References
	1.	 Mura C, Draizen EJ, Bourne PE. Structural biology meets data science: does anything change? Curr Opin Struct Biol.

2018;52:102.
	2.	 Burley SK, Berman HM, Bhikadiya C, Bi C, Chen L, Di Constanzo L, et al. Protein Data Bank: the single global archive

for 3D macromolecular structure data. Nucleic Acids Res. 2019;47:D520–8.
	3.	 Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, et al. Highly accurate protein structure prediction for

the human proteome. Nature. 2021;596:590.
	4.	 Liang J, Woodward C, Edelsbrunner H. Anatomy of protein pockets and cavities: measurement of binding site

geometry and implications for ligand design. Protein Sci. 1998;7:1884–97. https://​doi.​org/​10.​1002/​pro.​55600​70905.
	5.	 Sotriffer C, Klebe G. Identification and mapping of small-molecule binding sites in proteins: computational tools for

structure-based drug design. Farm. 2002;57:243–51. https://​doi.​org/​10.​1016/​S0014-​827X(02)​01211-9.
	6.	 Henrich S, Salo-Ahen OMH, Huang B, Rippmann FF, Cruciani G, Wade RC. Computational approaches to identifying

and characterizing protein binding sites for ligand design. J Mol Recognit. 2009;23:209–19. https://​doi.​org/​10.​1002/​
jmr.​984.

	7.	 Oliveira SH, Ferraz FA, Honorato RV, Xavier-Neto J, Sobreira TJ, de Oliveira PS. KVFinder: steered identification of
protein cavities as a PyMOL plugin. BMC Bioinform. 2014;15:197. https://​doi.​org/​10.​1186/​1471-​2105-​15-​197.

	8.	 da Silva Guerra JV, Ribeiro Filho HV, Bortot LO, Honorato RV, de Carvalho Pereira JG, Lopes-de-Oliveira PS.
ParKVFinder: a thread-level parallel approach in biomolecular cavity detection. SoftwareX. 2020;12:100606.

	9.	 Simões TMC, Gomes AJP. CavVis—a field-of-view geometric algorithm for protein cavity detection. J Chem Inf
Model. 2019;59:786–96. https://​doi.​org/​10.​1021/​acs.​jcim.​8b005​72.

	10.	 Le Guilloux V, Schmidtke P, Tuffery P. Fpocket: an open source platform for ligand pocket detection. BMC Bioinform.
2009;10:168. https://​doi.​org/​10.​1186/​1471-​2105-​10-​168.

	11.	 Kawabata T. Detection of multiscale pockets on protein surfaces using mathematical morphology. Proteins.
2010;78:1195–211. https://​doi.​org/​10.​1002/​prot.​22639.

	12.	 Capra JA, Laskowski RA, Thornton JM, Singh M, Funkhouser TA. Predicting protein ligand binding sites by combining
evolutionary sequence conservation and 3D structure. PLoS Comput Biol. 2009. https://​doi.​org/​10.​1371/​journ​al.​
pcbi.​10005​85.

https://pypi.org/project/pyKVFinder
https://github.com/LBC-LNBio/pyKVFinder
https://lbc-lnbio.github.io/pyKVFinder
https://doi.org/10.1002/pro.5560070905
https://doi.org/10.1016/S0014-827X(02)01211-9
https://doi.org/10.1002/jmr.984
https://doi.org/10.1002/jmr.984
https://doi.org/10.1186/1471-2105-15-197
https://doi.org/10.1021/acs.jcim.8b00572
https://doi.org/10.1186/1471-2105-10-168
https://doi.org/10.1002/prot.22639
https://doi.org/10.1371/journal.pcbi.1000585
https://doi.org/10.1371/journal.pcbi.1000585

Page 13 of 13Guerra et al. BMC Bioinformatics (2021) 22:607 	

	13.	 Zhu H, Pisabarro MT. MSPocket: an orientation-independent algorithm for the detection of ligand binding pockets.
Bioinformatics. 2011;27:351–8. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btq672.

	14.	 Wagner JR, Sørensen J, Hensley N, Wong C, Zhu C, Perison T, et al. POVME 3.0: software for mapping binding pocket
flexibility. J Chem Theory Comput. 2017;13:4584–92.

	15.	 Raschka S, Patterson J, Nolet C. Machine learning in Python: main developments and technology trends in data
science, machine learning, and artificial intelligence. Information. 2020;11:193.

	16.	 Groom CR, Bruno IJ, Lightfoot MP, Ward SC. The Cambridge structural database. Acta Crystallogr Sect B Struct Sci
Cryst Eng Mater. 2016;72:171–9.

	17.	 Hendlich M, Rippmann F, Barnickel G. LIGSITE: Automatic and efficient detection of potential small molecule-bind‑
ing sites in proteins. J Mol Graph Model. 1997;15:359–63.

	18.	 Andrio P, Hospital A, Conejero J, Jordá L, Del Pino M, Codo L, et al. BioExcel Building Blocks, a software library for
interoperable biomolecular simulation workflows. Sci Data. 2019. https://​doi.​org/​10.​1038/​s41597-​019-​0177-4.

	19.	 Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, et al. Array programming with NumPy.
Nature. 2020;585:357–62.

	20.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J
Mach Learn Res. 2011;12:2825–30.

	21.	 Nguyen H, Case DA, Rose AS. NGLview—interactive molecular graphics for Jupyter notebooks. Bioinformatics.
2018;34:1241.

	22.	 Wang J, Cieplak P, Kollman PA. How well does a restrained electrostatic potential (RESP) model perform in calculat‑
ing conformational energies of organic and biological molecules? J Comput Chem. 2000;21:1049–74.

	23.	 Nelson DL, Cox MM. Lehninger principles of biochemistry, 4th edition. 2004.
	24.	 Eisenberg D, Weiss RM, Terwilliger TC. The hydrophobic moment detects periodicity in protein hydrophobicity. Proc

Natl Acad Sci. 1984;81:140–4.
	25.	 Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, Andersson H, et al. Recognition of transmembrane helices by the

endoplasmic reticulum translocon. Nature. 2005;433:377–81.
	26.	 Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol.

1982;157:105–32.
	27.	 Moon CP, Fleming KG. Side-chain hydrophobicity scale derived from transmembrane protein folding into lipid bilay‑

ers. Proc Natl Acad Sci. 2011;108:10174–7.
	28.	 Wimley WC, White SH. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat

Struct Mol Biol. 1996;3:842–8.
	29.	 Zhao G, London E. An amino acid “transmembrane tendency” scale that approaches the theoretical limit to accuracy

for prediction of transmembrane helices: relationship to biological hydrophobicity. Protein Sci. 2006;15:1987–2001.
	30.	 Ribeiro-Filho HV, Coimbra LD, Cassago A, Rocha RPF, da Silva Guerra JV, de Felicio R, et al. Cryo-EM structure of the

mature and infective Mayaro virus at 4.4 Å resolution reveals features of arthritogenic alphaviruses. Nat Commun.
2021. https://​doi.​org/​10.​1038/​s41467-​021-​23400-9.

	31.	 Michalska K, Kim Y, Jedrzejczak R, Maltseva NI, Stols L, Endres M, et al. Crystal structures of SARS-CoV-2 ADP-ribose
phosphatase: from the apo form to ligand complexes. IUCrJ. 2020;5:536.

	32.	 Frick DN, Virdi RS, Vuksanovic N, Dahal N, Silvaggi NR. Molecular basis for ADP-ribose binding to the Mac1 domain of
SARS-CoV-2 nsp3. Biochemistry. 2020;178:104793.

	33.	 Claverie J-M. A putative role of de-mono-ADP-Ribosylation of STAT1 by the SARS-CoV-2 Nsp3 protein in the cytokine
storm syndrome of COVID-19. Viruses. 2020;12:646.

	34.	 Fehr AR, Channappanavar R, Jankevicius G, Fett C, Zhao J, Athmer J, et al. The conserved coronavirus macrodomain
promotes virulence and suppresses the innate immune response during severe acute respiratory syndrome corona‑
virus infection. MBio. 2016. https://​doi.​org/​10.​1128/​mBio.​01721-​16.

	35.	 Eriksson KK, Cervantes-Barragán L, Ludewig B, Thiel V. Mouse hepatitis virus liver pathology is dependent on ADP-
Ribose-1″-Phosphatase, a viral function conserved in the alpha-like supergroup. J Virol. 2008;82:12325–34.

	36.	 Brosey CA, Houl JH, Katsonis P, Balapiti-Modarage LPF, Bommagani S, Arvai A, et al. Targeting SARS-CoV-2 Nsp3 mac‑
rodomain structure with insights from human poly(ADP-ribose) glycohydrolase (PARG) structures with inhibitors.
Prog Biophys Mol Biol. 2021. https://​doi.​org/​10.​1016/j.​pbiom​olbio.​2021.​02.​002.

	37.	 Robson B. The use of knowledge management tools in viroinformatics. Example study of a highly conserved
sequence motif in Nsp3 of SARS-CoV-2 as a therapeutic target. Comput Biol Med. 2020;125:103963.

	38.	 Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci Eng. 2007;9:90–5.
	39.	 Konagurthu AS, Whisstock JC, Stuckey PJ, Lesk AM. MUSTANG: a multiple structural alignment algorithm. Proteins

Struct Funct Bioinform. 2006;64:559–74.
	40.	 Krieger E, Vriend G. YASARA View—molecular graphics for all devices—from smartphones to workstations. Bioinfor‑

matics. 2014;30:2981–2.
	41.	 Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 10: fundamental algorithms

for ScientificComputing in Python. Nat Methods. 2020;17:261–72.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1093/bioinformatics/btq672
https://doi.org/10.1038/s41597-019-0177-4
https://doi.org/10.1038/s41467-021-23400-9
https://doi.org/10.1128/mBio.01721-16
https://doi.org/10.1016/j.pbiomolbio.2021.02.002

	pyKVFinder: an efficient and integrable Python package for biomolecular cavity detection and characterization in data science
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation
	Python package
	Cavity characterization

	Results and discussion
	Usage example
	Visualizing detected cavities with NGL Viewer in Jupyter notebook
	Characterizing hydropathy and depth of cavities
	Using NumPy operations to present conservation and matplotlib library to plot hydropathy distribution of cavities
	Hierarchical clustering of cavity residues using SciPy package
	Benchmarking
	Future development

	Conclusion
	Availability and requirements
	Acknowledgements
	References

