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Background
At present, we are going through the era of data science and the computational and 
structural biology fields have hugely benefited from the growing availability of biostruc-
tural data, as pointed out by [1]: “Structural biology meets data science”. Advances in 
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ADRP substrate-binding site of SARS-CoV-2 and a set of homologous proteins with 
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NGL Viewer, SciPy and Jupyter notebook.
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for detecting and characterizing biomolecular cavities in data science applications and 
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design applications.
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X-ray crystallography and electron microscopy techniques have expanded the determi-
nation of novel structures [2]. In the meantime, advances in computational resources 
have driven the use of in silico methods to simulate the dynamics of biomolecules and 
carried out the implementation of artificial intelligence to model biomolecular struc-
tures [3]. Together, all of this structural data provides fertile ground for data interpreta-
tion through data science or automated analysis frameworks, but data-intensive analysis 
asks for efficient and integrable scripting routines with an easily manipulated data 
structure.

In this scenario, we developed pyKVFinder, an open-source python package for cav-
ity detection and characterization abstracted into multidimensional arrays. In proteins 
or other macromolecules, solvent-exposed clefts or buried cavities play a key role in 
ligand binding, which can ultimately regulate biological function of the macromolecule 
[4]. For this reason, the identification and characterization of ligand-binding sites are the 
basis of rational structure-based drug discovery and design [5, 6]. pyKVFinder adopts 
the original geometrical grid-and-sphere-based detection method as implemented in 
KVFinder [7], which has been improved in the latest parallel version, parKVFinder [8]. 
Detected cavities in parKVFinder, as in many other well-known programs, such as Cav-
Vis [9], fpocket [10], GHECOM [11], ConCavity [12], MSpocket [13] and POVME 3.0 
[14], are human-readable and easily displayed in molecular visualization programs, but 
are not properly structured to be directly scripted into automated pipelines or data sci-
ence frameworks. Programming languages are constantly evolving in the data science 
field, with Python being one of the most popular in the community [15]. However, only 
a few initiatives have been launched to make cavity detection programs easier to inte-
grate into data science protocols. For instance, Cambridge Crystallographic Data Centre 
has licensed commercial software suites that use a Python API to integrate its structural 
database with workflows and third-party applications [16], and one of its API modules 
is aimed at detecting ligand-binding cavities using the LIGSITE algorithm [17]. As an 
open-source initiative, Biobb_vs is a Python package designed to detect and analyze cav-
ities in automated workflows. Biobb_vs is part of BioExcel Building Blocks [18] and uses 
fpocket to detect cavities in virtual screening pipelines. In this case, despite the inter-
operability achieved, the workflows depend on handling data files generated by fpocket.

To fulfill this need, pyKVFinder is wrapped into Python and, using Python’s well-
established data structure (e. g., NumPy array), benefits from the language ecosystem 
interoperability. pyKVFinder can be integrated with third-party scientific packages and 
libraries for mathematical calculations, statistical analysis, and tridimensional visualiza-
tion. Moreover, users can explore the functionality of pyKVFinder step-by-step using 
interactive interfaces, such as IPython/Jupyter notebooks. As mentioned above, one of 
pyKVFinder’s main contributions in data science workflows is to translate the detected 
cavities from tridimensional coordinates of cavity points to NumPy arrays, a data struc-
ture that allows for a wide diversity of scientific computation and efficient storage and 
access to N-dimensional arrays (ndarrays), also called tensors [19]. Ndarrays also pro-
vide efficient ways of handling data for mathematical operations and are the popular 
choice of input data type for machine learning Python libraries such as scikit-learn [20].

Besides conventional cavity properties such as volume and area, which are stored as 
Python dictionaries, pyKVFinder computes cavity depth and hydropathy.  Similar to 
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cavity points, these spatial and physicochemical properties are stored as Python ndarrays 
and can be visualized using Python molecular visualization widgets. Thus, pyKVFinder 
provides a versatile way to detect and characterize biomolecular cavities and integrate 
this information into data science or automated workflows.

Implementation
Python-C parallel KVFinder (pyKVFinder) applies a Simplified Wrapper and Interface 
Generator (SWIG; http://​www.​swig.​org/) to extend grid operations written in C to 
Python, a high-level programming language. pyKVFinder can be easily installed with the 
pip package management system. In pyKVFinder, the target biomolecule is inserted into 
a regular 3D grid, which is stored as an ndarray, considering the van der Waals radii 
of the atoms. To detect cavities, pyKVFinder uses a dual-probe algorithm that scans 
the biomolecular structure, as described in [7, 8]. In summary, a small probe, dubbed 
Probe In, and a larger probe, dubbed Probe Out, translate over the grid points, defining 
two molecular surfaces with different accessibility. Biomolecular cavities are defined as 
the non-overlapped regions between the molecular surfaces. On each detected cavity, 
pyKVFinder may perform spatial, depth, hydropathy and constitutional characteriza-
tions. In this workflow, C routines undergo multithreaded parallelization to speed up 
cavity detection and characterization, with the OpenMP API creating a user-defined 
number of parallel threads, where grid chunks are distributed among these threads to 
perform independent operations.

Python package

pyKVFinder can be imported as a package in the Python environment and users can 
decide to run the full cavity detection and characterization workflow through the run_
workflow function or run pyKVFinder functions in a stepwise fashion. At the latter, users 
can integrate pyKVFinder functions into third-party Python packages and benefit from 
interactive IPython/Jupyter notebooks. By running pyKVFinder in Python environment, 
users can visualize the detected cavities through the Python NGL Viewer widget [21]. 
Still, the full workflow was also coded as a command-line interface. Either way, users 
have access to a full set of customizable parameters to detect and characterize biomo-
lecular cavities. A schematic diagram of cavity detection and characterization workflow 
is described in Fig. 1.

In the cavity detection and characterization workflow, read_vdw function reads a cus-
tomizable van der Waals (vdW) radii file (.dat extension; default vdw.dat) into a nested 
Python dictionary, which is first indexed by the three-letter residue code (e. g., ALA, 
ARG, ASH, etc.), and then indexed by the atom name (e. g., C, N, O, CA, etc.) to access 
its respective radius value. The vdW radii file defines the radius values for each atom by 
residue and when not defined, uses a generic value based on the atom type. The built-
in file (vdw.dat) applies the vdW radii of the Amber ff99 force field [22]. Afterwards, 
read_pdb or read_xyz function gets the vdW dictionary and reads a target PDB or XYZ 
file (.pdb or.xyz extension), respectively. The atomic data is stored in an ndarray with 
residue number, chain identifier, residue name, atom name, xyz coordinates and radius 
per atom.

http://www.swig.org/
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To perform the cavity detection on the whole structure, the 3D grid is defined based 
on the target biomolecule coordinates and the user-defined parameters: grid spacing and 
Probe Out diameter. Thus, the grid coordinates are extracted from the atomic data ndar-
ray, using get_vertices function that defines the grid origin and XYZ axis. The first ver-
tex (p1) is the minimum xyz coordinates of the atomic data. The second (p2), third (p3) 
and fourth (p4) vertices represent the maximum coordinate along the X, Y and Z axes, 
respectively. Given these four vertices, the original coordinate system is transformed in 
the detect function, using translation and rotation, into a new coordinate system with P1 
as its origin. Also, for internal calculations, the sum of the grid spacing and the Probe 
Out size is padded in each direction of the 3D grid. With user-defined parameters and 
atomic coordinates, the detect function creates and fills the 3D grids with Probe In and 
Probe Out probes, and compares these grids to define the biomolecular cavities, which 
are returned in an ndarray. In this ndarray (Fig. 2), each element corresponds to cavity 
space (> 1), empty space (1), biomolecule space (0) or bulk space (− 1).

Instead of performing the cavity detection on the whole structure, the search space 
can be set to a custom search box, called box adjustment mode. This mode is defined 
based on a TOML-formatted configuration file (.toml extension; Additional file 1: Fig. 
A1), which can explicitly define the vertices coordinates or pass a list of residues of the 
target biomolecule to be used as reference instead of the whole structure. The box can 
also be drawn using parKVFinder PyMOL plugin and its coordinates can be extracted 
from parKVFinder parameters file. Thus, the get_vertices_from_file function loads a box 
configuration file and atomic data from read_pdb or read_xyz function, which returns 

Fig. 1  Diagram of cavity detection and characterization workflow using pyKVFinder package. The flowchart 
illustrates function calls and their dependencies for performing cavity detection and characterization with 
pyKVFinder package
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the grid coordinates (p1, p2, p3 and p4) and selects the atoms inside the custom 3D grid 
with their respective atomic data. Hence, these parameters are passed to detect function, 
together with box_adjustment flag, to perform cavity detection on a custom 3D grid.

Either way, whole structure mode or box adjustment mode, another space segmen-
tation method, called ligand adjustment mode, can be applied to constrain the search 
space around a target ligand, defined by a PDB or XYZ file (.pdb or.xyz extension). For 
this mode, read_pdb or read_xyz function gets the vdW dictionary and reads a ligand 
PDB or XYZ file and returns the ligand atomic coordinates with their respective radius 
that must be passed to detect function to further restrict the search space within a radius 
of the target ligand.

Cavity characterization

With the ndarray of detected cavities, pyKVFinder package may perform four charac-
terization procedures, i.e., spatial, constitutional, depth and hydropathy characteriza-
tions. The spatial characterization, using spatial function, defines the surface points in 
an ndarray, and estimates the volume and area of the detected cavities, following the 
methodology proposed in [8]. The constitutional characterization, using constitutional 
function, defines the interface residues that surround the detected cavities, checking if 
the atoms of the residues are within a radius, which is the sum of the Probe In size and 
the atom radius. Alternatively, the constitutional function can ignore backbone contacts 
by enabling ignore_backbone flag. This function stores the interface residues in a Python 
dictionary. Using the interface residues, the calculate_frequencies function calculates 
the occurrence of each residue and classes of residues per cavity. The classes of amino 
acid residues [23] are aliphatic apolar (R1), aromatic (R2), polar uncharged (R3), neg-
atively charged (R4), positively charged (R5) and non-standard (RX) (Additional file 1: 
Table A1).

The depth characterization identifies the degree of burial of the binding site. This char-
acterization applies depth function to identify the cavity-bulk boundary by applying a 
spatial filter, which defines a boundary point as cavity points where at least one direct 

Fig. 2  Representative view of detected cavities in the pyKVFinder data structure. Based on a 3D grid (left 
figure), pyKVFinder detects cavities in biomolecules and returns an ndarray with dimensions (m, n, o) (right 
figure). Each ndarray element corresponds to cavity space (> 1), empty space (1), biomolecule space (0) or 
bulk space (-1). Cavity properties such as depth and hydropathy are also stored in the same data structure, 
with ndarray elements corresponding to the property value
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neighbor is a bulk point, marking it with the negative of the cavity integer (Additional 
file  1: Fig. A2). Subsequently, the depth of each cavity point is heuristically estimated 
by the shortest Euclidean distance between the cavity point and its respective boundary 
points (Eq. 1). Each cavity point is distributed among the user-defined number of threads 
to perform this chunk of distance calculations (Additional file 1: Fig. A2). With the depth 
of all cavity points calculated and stored as an ndarray (Fig. 2), the maximum and aver-
age depths are calculated for each detected cavity and returned as Python dictionaries.

where D̂i is the depth of the cavity point i, d
(
pi, pj

)
 is the Euclidean distance between 

points i and j, pi is the x, y, z coordinates of a cavity point i, pj is the x, y, z coordinates of 
a cavity-bulk boundary point j.

The hydropathy characterization extracts the water attractiveness of the interface res-
idues surrounding the binding site. This characterization uses hydropathy function at 
surface points detected in spatial characterization to map a target hydrophobicity scale 
on them. Firstly, a customizable TOML-formatted hydrophobicity scale file (.toml exten-
sion) is loaded into a Python dictionary, which is indexed by the three-letter residue 
code (e. g., ALA, ARG, ASH, etc.) to access the respective hydrophobicity value. With 
the dictionary loaded, the function identifies the nearest interface residues for each sur-
face point and projects the residue’s hydrophobicity value onto them (Fig. 2). Alterna-
tively, backbone contacts may be ignored by enabling the ignore_backbone flag. Finally, 
with the hydrophobicity mapped on the surface and returned as an ndarray, the average 
hydropathy is calculated for each detected cavity and stored in a Python dictionary. The 
hydrophobicity scale file defines the scale name and hydrophobicity value for each resi-
due and, when not defined, assigns zero to the missing residues (Additional file 1: Fig. 
A3). The package contains six built-in hydrophobicity scales: Eisenberg and Weiss [24], 
Hessa and Heijne [25], Kyte and Doolittle [26], Moon and Fleming [27], Wimley and 
White [28] and Zhao and London [29]. Benefiting from the Python environment, users 
can test different scales without having to perform the cavity detection step every time. 
A pre-released version of hydropathy characterization has been successfully applied to 
compare cavities of alphavirus-related proteins [30].

The cavity detection and characterization objects, from detect, spatial, constitutional, 
calculate_frequencies, depth, hydropathy functions, can be stored into a pyKVFinderRe-
sults class that accumulates them in its attributes. As this data structure is filled, these 
attributes can be exported to files through export, write and plot_frequencies methods. 
The export method writes cavities together with their surface points to a PDB-formatted 
file with depth values in the B-factor column, while surface points with hydropathy val-
ues in the B-factor column are written to another PDB-formatted file. The write method 
saves file paths, volume, area, interface residues and their frequencies, maximum and 
average depth, and average hydropathy in a TOML-formatted file. The plot_frequencies 
method plots bar charts of frequencies per cavity in a PDF file. These three methods are 
also wrapped in export_all method. Although we presented the full workflow, all func-
tions explained in this section can be applied independently in a step-by-step manner. In 
this scenario, the export, write and plot_frequencies methods have their counterparts in 

(1)D̂i = min
j

[
d
(
pi, pj

)]
= min

j

[√(
pix − pjx

)2
+

(
piy − pjv

)2
+

(
piz − pjz

)2
]
,
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the export, write_results and plot_frequencies functions of pyKVFinder package, respec-
tively. Additionally, the read_cavity function reads a cavity file (.pdb extension), written 
by pyKVFinder, parKVFinder or KVFinder, and a target PDB or XYZ file (.pdb or.xyz 
extension), and returns an ndarray with each element corresponding to the cavity space 
(> 1), biomolecule space (0), or bulk or empty space (− 1), similar to the output of the 
detect function. In this way, it allows to recharacterize a previously detected cavity or 
characterize a cavity with manually trimmed points.

Results and discussion
Usage example

To demonstrate the use of pyKVFinder and how it benefits from the Python eco-
system, we identified the substrate-binding pocket of the ADP-ribose phosphatase 
(ADRP) domain of SARS-CoV-2 nsp3 protein in the apo form (PDB ID: 6WEN). Still 
under investigation to determine its exact functions in coronavirus life cycle, the ADRP 
domain recognizes ADP-ribose 1″ phosphate [31, 32] and seems to have an important 
role in virulence and innate immunity regulation to infection [33–35]. In this regard, 
recent efforts have been made to characterize ADP-ribose substrate-binding pocket and 
evaluate this site as a putative antiviral drug target [36, 37].

Visualizing detected cavities with NGL Viewer in Jupyter notebook

pyKVFinder successfully detected the ADRP substrate-binding cavity and determined 
traditional cavity properties such as volume, area and residues surrounding the ADP-
ribose cavity (Fig. 3a, upper panel). For instance, we used pyKVFinder calculate_frequen-
cies and plot_frequencies functions to determine the composition of the type of residues 
surrounding the cavity and plotted this composition as a bar chart (Additional file 1: Fig. 
A4). In pyKVFinder, this step is performed using matplotlib library [38], but users are 
free to analyze data and present results on their favorite graphing library. As observed 
in Fig. 3a, the ADP-ribose site forms a cleft sandwiched between ADRP α-helices and 
the main contacts involve residues from coil regions, which could possibly explain the 
pocket plasticity upon substrate binding [31, 32]. These results were visualized using 
NGL Viewer on a Jupyter notebook; alternatively, users can use another molecular visu-
alization tool for notebooks or load results into the parKVFinder PyMOL Plugin [8].

Characterizing hydropathy and depth of cavities

We also inspected the ADRP substrate-binding cavity through other two points of view: 
depth and hydropathy. Those physicochemical descriptions are usually essential for drug 
development [36]. In apo form, despite being solvent-exposed, the cavity has some inter-
nal components (red color) that can reach a more central portion of the ADRP β-sheet 
(Fig.  3a, middle panel). The hydropathy analysis shows that the cavity core is most 
hydrophobic (yellow color), with some polar residues on the edges (blue color) that may 
contribute to the design of more specific ligands. Since pyKVFinder stores the properties 
to be colored in cavities in the B-factor column of a PDB-formatted file, users can easily 
change the style and color scheme in most of molecular visualization programs.
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Using NumPy operations to present conservation and matplotlib library to plot hydropathy 

distribution of cavities

In addition to SARS-CoV-2, the ADRP domain is also present in other related coronavi-
ruses and has the macroD1 and macroD2 as homologous in humans. For this reason, we 
used pyKVFinder to detect the ADRP substrate-binding site in aligned ADRP domains 
from different species and compare their properties. Firstly, we applied arithmetic oper-
ations on the ndarrays of the detected cavities to determine the cavity conservation 
among the species. As observed in Fig. 3b, the ADRP cavity has a core (red points) very 
conserved in the analyzed species which is occupied by the diphosphate and ribose of 
ADP and the second ribose bound to ADP in the ADRP substrate-bound form. In turn, 
adenosine occupies a less conserved cavity region, which may indicate that the struc-
ture of this site in some species changes to accommodate ADP-ribose substrate. To com-
pare the cavity hydropathy across species, we plotted a hydropathy distribution from the 
hydropathy ndarray using the matplotlib library [38] (Fig. 3c, left graph). The distribu-
tion clearly shows the hydrophobic characteristic of the pocket that is mostly shared 
between ADRP substrate-binding pockets of coronaviruses. Interestingly, the human 
macroD1 and macroD2 seem to shift the distribution to a less hydrophobic profile. 

Fig. 3  Detection and characterization of ADRP substrate-binding cavity of SARS-CoV-2 and its comparison to 
related coronaviruses and human macroD1 and macroD2 proteins. a Three different characterizations of the 
apo ADRP substrate-binding cavity of SARS-CoV-2 (PDB ID: 6WEN) using pyKVFinder. The upper panel shows 
the detected cavity represented as gray surface and residues surrounding it as red sticks. The cavity area and 
volume are displayed. The middle panel presents the same cavity colored by depth, while the bottom panel 
shows the cavity colored by hydropathy using Eisenberg and Weiss scale. b Conservation analysis of the 
ADP-ribose binding site in ADRP domain of SARS-CoV-2 (PDB ID: 6WEN, chain A), SARS-CoV (PDB ID: 2ACF, 
chain B), MERS-CoV (PDB ID: 5HIH, chain A), NL63 (PDB ID: 2VRI, chain A), HCoV-229E (PDB ID: 3EJG, chain 
A), FCoV (PDB ID: 3ETI, chain B) and human macrodomain proteins macroD1 (PDB ID: 2X47, chain A) and 
macroD2 (PDB ID: 6Y73, chain D) from human. These protein domains were selected using Dali and choosing 
homologs in apo form. The structures were realigned using MUSTANG algorithm [39] from YASARA program 
[40]. The figure presents cavity points that were detected in at least two structures and the points are colored 
by conservation percentage. c Hydropathy profile of the same compared cavities collected from pyKVFinder 
ndarrays. d Hierarchical clustering dendrogram of the frequency of residues surrounding the compared 
cavities. The correlation metric was used to assess the similarity and the complete method was chosen as 
linkage method. All the images and graphics were created inside a Jupyter notebook. To create images of 
tridimensional structures, we used NGL Viewer tool and to plot graphics, we used matplotlib library
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This finding should be better evaluated, as the differences between these homologous 
domains that share the same substrate can contribute to the design of specific ligands for 
viral ADRP domains.

Hierarchical clustering of cavity residues using SciPy package

Finally, since pyKVFinder uses native Python dictionaries to store the residues sur-
rounding the detected cavity, we can easily tabulate the residue frequency. With this 
information, we performed a hierarchical clustering, an unsupervised machine learn-
ing algorithm, using the SciPy package [41], and represented clusters arrangement as a 
dendrogram (Fig. 3c, right graph). The ADRP cavity of SARS-CoV-2 grouped with that 
of SARS-CoV, demonstrating the high identity between these betacoronaviruses. Close 
to them, we can observe another betacoronavirus, MERS-CoV. On the other hand, the 
alphacoronaviruses NL63 and HCoV-229E and the feline FCoV are grouped together. 
Further away from the coronaviruses’ domains are the two human macrodomain pro-
teins, macroD1 and D2. Despite the cavity of ADRP or macro D1/D2 sharing the same 
substrate, ADP-ribose, these results show that the profile of the residues surrounding 
these cavities follows evolutionary traces.

Benchmarking

In addition to identifying and characterizing the ADRP substrate-binding site of SARS-
CoV-2 and a set of homologous proteins, we simulated ADRP domain of SARS-CoV-2 
(PDB ID: 6W02, chain B) without its ligand, ADP-ribose, for 600 ns, extracting a frame 
at regular intervals of 1 ns (Additional file 1). Thus, we used pyKVFinder with its box 
adjustment mode to detect and estimate the volume of the ADP-ribose binding site 
throughout 600 frames of the ADRP domain’s trajectory. This analysis was repeated with 
other well-known software: POVME [14], Biobb_vs [18], MSPocket [13], GHECOM 
[11], fpocket [10] and parKVFinder [8]. Biobb_vs, as mentioned in the Background sec-
tion, is a Python package that allow scripting, while POVME, MSpocket, GHECOM, 
fpocket, GHECOM and parKVFinder are command-line interfaces. A detailed descrip-
tion of software parameters and versions is in Additional file 1.

All these methods successfully detected the pocket of the ADRP substrate-binding 
site, in which the shape and volume vary slightly during the molecular dynamics simula-
tion (Fig. 4). The shape of the detected cavities defined by pyKVFinder and parKVFinder 
finely adjust to the original ligand in the binding site, as well as MSPocket (Fig.  4a) 
Besides that, the volume calculated by pyKVFinder (346.8 ± 78.7 Å3) and parKVFinder 
(346.5 ± 79.3 Å3) is closely related to the volume of ADP-ribose (351.1 Å3; molecular sur-
face volume estimated by YASARA program [40]), the ligand that originally occupied 
the binding site in the crystallographic structure used in the molecular dynamics simula-
tions (Fig. 4b). Nevertheless, the differences in the shape and volume of detected cavi-
ties derive from the methodology employed (e.g., Voronoi tessellation, alpha spheres, 
and grid-and-sphere), the cavity-bulk boundary definition, and the ability to segment 
the space. For instance, pyKVFinder, parKVFinder and POVME can segment the search 
space, which trims points outside this custom space, while the other methods only 
explore the whole structure, which includes neighboring regions at the binding site.
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Besides being able to accurately detect biomolecular cavities, current software must 
also perform fast detection and characterizations. Thus, we also evaluated the elapsed 
time to execute these benchmarking methods (Fig. 4c). pyKVFinder outperformed all 
analyzed methods. Even when applying the newly available characterization, depth 
and hydropathy, pyKVFinder’s elapsed time only increased 36%, still outperforming 
other benchmarking methods. Further, compared to its counterpart, parKVFinder, 
pyKVFinder was 3.3 times faster in detecting ADRP binding site. The main reason 
for the performance gain is the additional possibility to parallelize routines, i. e., the 
insertion of atoms in the 3D grid in detect function, based on ndarrays. Hence, expe-
rienced users requiring scripting routines are encouraged to use pyKVFinder due to 
its improved performance, while newcomers should prioritize parKVFinder due to its 
simplicity of installation and execution. Further, the scalability of pyKVFinder, upon 
increasing number of threads, follows the same behavior presented by parKVFinder 
[8].

Despite all methods characterizing volume, each method has its own set of charac-
terizations to be performed on the detected cavities. However, the cavities data struc-
ture is only accessible inside the Python ecosystem in pyKVFinder, which provides 
ndarrays and Python dictionaries. The ndarrays stores cavity points, surface points, 
hydropathy for each surface point and depth for each cavity point, while Python dic-
tionaries stores volume, area, average hydropathy, maximum depth and average depth, 

Fig. 4  Performance evaluation of the benchmarking methods for detecting the ADRP substrate-binding site. 
a The structures of the protein (green cartoon) at frame 30 (smallest RMSD compared to the crystallographic 
structure) of the ADRP domain trajectory with the corresponding cavities detected (gray surfaces) by each 
benchmarking method. b The total volume of the cavities detected in the ADRP substrate-binding site 
along the 600 ns simulation. The total volume is averaged in a window of 20 frames. The red dashed line 
indicates the molecular surface volume of the ADP-ribose molecule that originally occupied the ADRP 
substrate-binding site in the crystallographic structure (PDB ID: 6W02, chain B). c Elapsed time to detect and 
characterize ADRP substrate-binding site. The standard workflow of pyKVFinder, as in parKVFinder, detects 
cavities and applies spatial and constitutional characterizations. The full workflow of pyKVFinder comprises 
standard workflow with depth and hydropathy characterizations
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and interface residues and their frequencies per detected cavity. Thus, users may 
develop new characterizations and/or analysis pipelines with these data structures.

Future development

pyKVFinder will undergo continuous improvements and updates, according to its appli-
cations by the scientific community. In the future, pipelines will be implemented in 
molecular dynamics and machine learning, along with new features that are valuable to 
ligand-binding site characterization. Additionally, pyKVFinder aims to offload its rou-
tines to the GPU for performance enhancement in data-intensive applications.

Conclusion
pyKVFinder provides an efficient and integrable Python package for cavity detection 
and characterization in biomolecular structures for data science and automated pipe-
lines. In addition to fast, accurate and efficient cavity detection and characterization, 
pyKVFinder stores spatial and physicochemical properties in Python ndarrays, that ease 
scripting and data analysis. Further, pyKVFinder performance was benchmarked against 
well-known geometrical methods for cavity detection and characterization. Finally, we 
have successfully shown an application of pyKVFinder integration with matplotlib, NGL 
Viewer, SciPy and Jupyter notebook, that compared the ADRP substrate-binding site of 
SARS-CoV-2 in homologous proteins.

Availability and requirements

Project name: pyKVFinder
Project home page: https://​github.​com/​LBC-​LNBio/​pyKVF​inder
Operating system(s): any supporting Python >  = 3.7 (tested on Linux and macOS)
Programming language: Python, C
Other requirements: swig >  = 4.0.1, toml >  = 0.10.2, numpy >  = 1.20.3, matplot-
lib >  = 3.3.3
License: GNU General Public License v3.0
Any restrictions to use by non-aca3demics: None.

Abbreviations
ADRP: ADP-ribose phosphatase; CoV: Coronavirus; MERS: Middle East Respiratory Syndrome; ndarrays: N-dimensional 
arrays; PDB: Protein Data Bank; R1: Aliphatic apolar; R2: Aromatic; R3: Polar uncharged; R4: Negatively charged; R5: 
Positively charged; RX: Non-standard; SARS: Severe Acute Respiratory Syndrome; SWIG: Simplified Wrapper and Interface 
Generator; TOML: Tom’s Obvious, Minimal Language; vdW: Van der Waals.
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