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Abstract 

Background:  Clinical notes are documents that contain detailed information about 
the health status of patients. Medical codes generally accompany them. However, the 
manual diagnosis is costly and error-prone. Moreover, large datasets in clinical diag-
nosis are susceptible to noise labels because of erroneous manual annotation. There-
fore, machine learning has been utilized to perform automatic diagnoses. Previous 
state-of-the-art (SOTA) models used convolutional neural networks to build document 
representations for predicting medical codes. However, the clinical notes are usually 
long-tailed. Moreover, most models fail to deal with the noise during code allocation. 
Therefore, denoising mechanism and long-tailed classification are the keys to auto-
mated coding at scale.

Results:  In this paper, a new joint learning model is proposed to extend our attention 
model for predicting medical codes from clinical notes. On the MIMIC-III-50 dataset, 
our model outperforms all the baselines and SOTA models in all quantitative metrics. 
On the MIMIC-III-full dataset, our model outperforms in the macro-F1, micro-F1, macro-
AUC, and precision at eight compared to the most advanced models. In addition, after 
introducing the denoising mechanism, the convergence speed of the model becomes 
faster, and the loss of the model is reduced overall.

Conclusions:  The innovations of our model are threefold: firstly, the code-specific 
representation can be identified by adopted the self-attention mechanism and the 
label attention mechanism. Secondly, the performance of the long-tailed distributions 
can be boosted by introducing the joint learning mechanism. Thirdly, the denoising 
mechanism is suitable for reducing the noise effects in medical code prediction. Finally, 
we evaluate the effectiveness of our model on the widely-used MIMIC-III datasets and 
achieve new SOTA results.

Keywords:  Automatic diagnosis, Attention mechanism, Denoising model, Joint 
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Introduction
Clinical text coding has come to the foreground in the medical field, aiming to solve the 
limitations of manual work. The coding system takes electronic health records (EHR) as 
input and outputs the prediction results of related diseases. As an essential part of EHR, 
clinical records contain lengthy medical history, personal details, current symptoms, and 
laboratory test results [1]. To avoid the repetition and ambiguity caused by the clinical 
texts, the World Health Organization recommends using the International Classification 
of Diseases (ICD) for the medical coding task.

ICD is a medical disease classification and diagnosis system. The diagnostic codes are 
typically accompanied by some metadata that comes from the ICD. In addition, the ICD 
provides an alphanumeric encoding of diagnoses and treatments, as shown in Table 1.

The ICD coding refers to the process of assigning codes representing diagnoses and 
procedures. Most hospitals rely on manual coding by human coders to assign standard 
diagnosis codes to the discharge summaries for billing purposes. Using the ICD coding 
system, medical staff can quickly make clinical diagnoses of patients.

Hence, the ICD coding is aimed to assign the most probable diagnostic codes to the 
patients based on the clinical records. Traditionally, clinical diagnosis is made by well-
trained clinical coders. However, due to the growing clinical records, manual coding has 
become increasingly time-wasting and error-prone. For example, in the United States, 
approximately 20% of patients are misdiagnosed at the primary healthcare level. Moreo-
ver, one-third of the misdiagnosis will cause serious harm to the patients sooner or later 
[2].

Therefore, the ICD coding task is still highly challenging. In the clinical dataset 
MIMIC-III [3], there is a long-tailed distribution phenomenon. More than half of the 
ICD codes have never appeared. In addition, ICD coding is easily affected by noise, 
which leads to poor prediction effects.

Specifically, there are misclassified records during code allocation, called noise sam-
ples. Recent studies [4] have shown that some neural networks may overfit noise labels 
and not generalize well. The samples may be noisy for multiple reasons: the ambiguity of 
the description, human errors, and inexperience of the annotator. While learning noise 
samples have been extensively studied in computer vision [5], the corresponding pro-
gress in ICD coding has been relatively limited.

Figure 1 shows that ICD coding is affected by noise samples. As shown by the red 
lines, the patient’s clinical records erroneously interacted with the tubercle bacilli. 
As a result, the patient’s ICD codes were incorrectly predicted as 010.96, 010.91, and 

Table 1  Examples of ICD-9 codes (011-016)

ICD code Description

011 Tuberculosis

012 respiratory tuberculosis

013 Tuberculosis of the meninges and central nervous system

014 Bowel and intestinal membrane gland tuberculosis

015 Bone and joint tuberculosis

016 Reproductive urinary system tuberculosis
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010.93, which reduced the accuracy of code prediction. Specifically, several types of 
errors occur frequently [2]. Firstly, the differences between disease subtypes of the 
ICD codes are so subtle that it is common for coders to choose incorrect subtypes. 
Secondly, doctors often use abbreviations and synonyms, creating ambiguity and 
imprecision when coders match ICD codes to these descriptions [6]. Thirdly, there 
is a many-to-one relationship between the clinical texts and the ICD code in many 
cases. However, inexperienced coders may code for each disease separately. Moreo-
ver, the cost of coding errors and the financial investment to improve coding quality 
are estimated at $25 billion per year [7] in the United States. Therefore, how to utilize 
a denoising mechanism is particularly important.

In addition, the phenomenon of long-tail distribution is also a problem that ICD 
coding needs to solve. Specifically, a few labels have more instances, while most labels 
have few instances. The unbalanced number of instances brings challenges to label 
classification. As shown in Fig. 2, there is a long-tailed distribution in MIMIC-III. A 
few medical codes occur more than 1000 times; around 4000 codes arise between 1 
and 10 times. Even more than 50% of medical codes have never happened. Therefore, 
it leads to the long-tailed distribution in the ICD coding classification [8].

Fig. 1  Example of noise interference

LLaabbeell FFrreeqquueennccyy

over 1000 �mes Less than 10 �mes Never Appear
Fig. 2  The distribution of ICD codes on MIMIC-III
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Besides, electronic medical records are extremely rich in content with lengthy texts, 
but only part of the vital information is needed in the ICD coding process. Therefore, it 
is tough to find the critical data in complex EHR.

Over the past few years, some efforts have been dedicated to dealing with long-tail dis-
tribution problems. The existing methods for long-tail classification can be divided into 
two categories:

1) Class distribution rebalancing: Methods include under-sampling of head classes and 
over-sampling of tail classes [9]. Unfortunately, the rebalancing approach interferes with 
model performance because overemphasis on tail amplifies the impact of tail data noise 
[10]. In addition, the under-sampling approach makes the information learned by the 
model too single.

2) Another processing idea is the few-shot learning strategy: Few-shot learning [11] 
and long-tail classification have similar characteristics because some labels contain many 
instances, while others have few instances. Few-shot learning usually trains classifiers on 
labels with rich samples and then migrates to classes with sparse samples to improve 
classification performance. This approach ignores the differences between instances and 
leads to excessive optimization of tail classes. These methods have been applied in bio-
medical text mining. However, they still have large development space in handling the 
association between labels and texts.

In our work, we are not simply balancing data but jointly learning labels and texts to 
construct specific text representations for rare labels. Furthermore, the ICD coding work 
has also aroused research interest in academia and industry. Many machine learning and 
deep learning methods have been tried to solve these problems.

The supervised machine learning method trains neural networks to learn feature com-
binations from clinical notes in recent years. Some works also formalize multi-label clas-
sification into a ranking problem, using the ranking method to rank the categories of 
documents and select the corresponding labels [12].

Deep learning technology has shown substantial advantages over traditional machine 
learning methods and has been widely used for code allocation [13]. Most researchers 
model this task as a multi-label text classification problem based on EHR’s free text. 
When solving multi-label classification problems, deep learning usually divides the 
problem into two parts. One is the neural document encoder, which represents docu-
ments as a continuous semantic vector [14]. The other is the prediction layer, which 
matches medical text space with disease code space. For example, Shi et  al. [15] pro-
posed a character-perceived Long-Short Term Memory (LSTM) network that generated 
written diagnosis descriptions and representations of diagnosis codes.

Moreover, some researchers incorporated external knowledge into the model. For 
example, Knowledge Source Integration (KSI) calculated the matching score between 
the clinical note and each knowledge document for this task. Baumel et al. [16] proposed 
a hierarchical Gate Recurrent Unit (GRU) with a label-dependent attention layer to alle-
viate lengthy records problems. Wang et al. [17] proposed a label-word joint embedding 
model and applied the cosine similarity to assign the codes.

Recently, most deep learning models see automatic diagnosis as a sequence learning 
problem, including the use of convolutional neural networks [18] to capture complex 
semantic information. On this basis, medical ontology is further introduced as auxiliary 
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knowledge. For example, Bai et al. [19] incorporate Wikipedia into the model to enhance 
its predictive ability. Besides, the patient’s medical history and demographic information 
can strengthen the prediction of future admissions.

Our contributions

•	 We propose a dual attention model for ICD coding. In our model, the clinical texts 
related to the medical code can be identified using the self-attention and label atten-
tion mechanisms. Furthermore, the interpretability of the medical code prediction 
can be improved.

•	 We design a joint learning mechanism to effectively integrate the attention matrixes 
in the dual attention model to deal with long-tail distribution. In addition, we also 
introduce a denoising mechanism to suppress the disturbance of noise samples and 
accelerate the speed of model convergence.

•	 We evaluate our model on the MIMIC-III dataset. Experimental results show that 
the model obtains the new SOTA performance across evaluation metrics.

Methods
This section briefly introduces the proposed Joint Learning Attention Network (JLAN), 
as shown in Fig. 3.

JLAN is made up of three parts. The first part is to capture the semantic information 
of the dataset using a residual neural network and bidirectional long short-term mem-
ory (Bi-LSTM) network. The second part extracts appropriate information from the 
label attention and self-attention mechanism, called joint learning. The third part intro-
duces a denoising mechanism to reduce the noise in the training samples and help the 
model converge faster. Finally, medical code prediction results have been significantly 
improved.

Specifically, we use the self-attention mechanism for clinical texts to identify the code-
related components from each document. At the same time, we introduce the label 
attention mechanism to make ICD codes attend to clinical document representation. 
We design the joint learning strategy to output the comprehensive document represen-
tation to adapt the two parts.

Fig. 3  Schematic overview of JLAN
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In addition, we consider the noise problem of clinical diagnosis and capture the noise 
through an auxiliary noise model over the classifier model. We first assign a probability 
score to each training sample. Then, we use this score to guide the learning of the noise 
model selectively. Our function constrains the noise sample within the noise model and 
drives the classifier to learn from the clean training samples.

Problem definition

Let T = {(xi, yi)}
N
i=1 denote the clinical texts, which contain N documents with related 

medical codes Yi = {yi ∈ {0, 1}C} . Where C is the number of all labels. Every word can 
be encoded to a low-dimension space and represented as a n-dimension vector via the 
word2vector technique [20]. Let xi = {w1, . . . . . .wn} denote the i_th clinical record, wn is 
the n_th word vector in the clinical record.

For the ICD coding task, each code contains text information. Therefore, the code can 
be represented as an embedding vector. The set of codes can be encoded by a trainable 
matrix M . Our model trains the classifier to assign the most relevant codes to the newly 
arriving record by learning the input document and their associated codes.

Input representation

Word embedding has been widely used in neural networks to capture the basic semantic 
information of words effectively. Generally, clinical notes are written by medical profes-
sionals. Thus, we use a distributed representation to obtain a word vector closer to the 
meaning of the target word.

Our model uses a word list c = {c1, c2, . . . . . . , cn} as input, n denotes the length of the 
sequence. Let E means the word embedding matrix, which is pretrained via word2vec 
[20] from the dataset. Hence, the input can be replaced by a matrix E = {e1, e2, . . . . . . en} , 
en is the word vector.

Residual convolutional network

To solve the degradation problem of the deep neural network, we introduce the resid-
ual neural network into the model. Specifically, the residual neural network can make 
models converge faster and help us adopt a deeper design for the feedforward neural 
network. We input the word embedding matrix into the residual block [21]. Thus, the 
residual block can be formalized as:

where E,Y  indicates the input and output of this layer, the F(Ei, {Wi}) indicates the 
residual mappings. A residual block consists of two parts. The first part goes through the 
convolution network and activation function, and the second part uses shortcut connec-
tions to add the input of this layer to the output of the first part. Finally, the added result 
is fed to the output layer through the activation function to complete the processing of 
residual blocks.

(1)Yi = F(Ei, {Wi})+ h(Ei)

(2)Ei+1 = ReLU(Yi)
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Bidirectional LSTM layer

To capture each word’s forward and backward contextual information in each clinical 
text, we adopt the Bi-LSTM model [22] to learn the word embedding of each clini-
cal record. In addition, Bi-LSTM can keep long dependent information and overcome 
gradient vanishing problems. Therefore, it is fit to capture the long-term dependency 
feature. At time step d , the hidden state can be updated with the help of input and the 
(d − 1)_th step output, we compute the vectors as:

The dimensionality of the hidden state is set to k, resulting in the size of Bi-LSTM 
vectors hd at 2k. Therefore, the whole document can be represented as a matrix 
H = [h1, h2, . . . , hn] ∈ R2k×n.

Dual attention network

The difficulty of the long-tail problem is that most labels have rare instances. There-
fore, classifying labels in a limited number of instances has become an urgent prob-
lem to be solved. The attention mechanism can give more weight to a small part of 
crucial information when processing extensive data. This mechanism is naturally suit-
able for dealing with long-tail problems. Moreover, the number of cases between dif-
ferent diseases varies greatly. Therefore, how to comprehensively characterize data is 
a challenging task. To this end, we have designed a dual attention mechanism, which 
can effectively link different feature information and adaptively integrate disease-
related text information.

In this subsection, we introduce a dual attention network for medical code and doc-
ument representation learning. This network composes of the label attention mecha-
nism and the self-attention mechanism. We introduce these two parts in detail in the 
following two sub-sections.

The dual attention network aims to identify the components related to the medical 
code in each clinical text. Intuitively, it can simultaneously take the clinical text and 
medical codes into account and expand the receptive field of the model. Therefore, 
this strategy is suitable for clinical code classification.

For example, regarding the original text, “This is an 81-year-old woman with a his-
tory of emphysema, her primary care doctor thought she had shortness of breath 
for three days and thought it was a COPD attack.” It is divided into two categories: 
Emphysema and COPD. The content of "emphysema" is more related to the patient’s 
medical history than directly related to symptoms, and “COPD” (chronic obstructive 
pulmonary disease) should be related to the patient’s symptoms. Next, we introduce 
the two components of the dual attention network.

(3)
−→
hd = LSTM

(−−→
hd−1,wd

)

(4)
←−
hd = LSTM

(←−−
hd−1,wd

)

(5)hd =
−→
hd ⊕

←−
hd
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Self‑attention mechanism

As mentioned above, a multi-label clinical text can be marked by more than one medical 
code, and each clinical document should have the most relevant context to its corre-
sponding medical code. In other words, each record may contain multiple components, 
which contribute differently to each medical code.

To capture the different components of each text, we adopt a self-attention mechanism 
[23], which has been successfully used in various text mining tasks [24]. The clinical text 
attention score ( TS ∈ Rl×n ) can be calculated by.

where W1 ∈ Rd×2k and W2 ∈ Rl×d are the self-attention parameters that need training. 
The d is a hyperparameter that we can set. Each row Ts

j  (an n-dim row vector where n is 
the total number of words) represents the contribution of clinical records to the jth label. 
We can get the linear combination of contexts. Finally, the clinical text representation of 
the medical code M(S) ∈ Rl×2k is calculated as follows.

Label attention mechanism

The self-attention mechanism can be regarded as the attention based on the clinical text 
because it focuses on the document content.

As we all know, medical codes have specific semantics in ICD coding. To utilize the 
semantic information of the codes, we preprocess the codes’ descriptions and represent 
them as a trainable matrix C ∈ Rl×k in the same k-dim space with the documents.

Once we have the word embedding from Bi-LSTM and the code embedding in C , we 
can determine the semantic relationship between each pair of words and codes. We cal-
culate the dot product between hd and Cj as follows.

where B(l) ∈ Rl×n indicates the forward and backward sides relation between words and 
codes. Like the previous self-attention mechanism, the medical code representation can 
be constructed by linearly combining the context words of the code, as shown below.

Finally, the document can be re-represented along with the code by M(l) ∈ Rl×2k.

Joint learning mechanism

Using these two pieces of information has become a vital issue when we get the label 
attention matrix L and the self-attention matrix S. In this section, a joint learning strat-
egy is proposed to extract critical information from the attention matrix.

Joint learning can integrate multiple sub-models into one model. Specifically, after 
the label attention and self-attention matrix are determined, joint learning can train 

(6)TS = softmax(W1tanh(W2H))

(7)Ms
j = Ts

j
HT

(8)B(l) = CH

(9)M(l) = B(l)HT
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the attention modules and the rest of the model together by introducing hyperpa-
rameters. In this way, we build specific document representations for both high-fre-
quency and low-frequency labels.

The label attention matrix focuses on the semantic connection between medical 
code and clinical text. In contrast, the self-attention matrix focuses on the content 
of clinical medical records. We introduce the joint learning mechanism to fully use 
these two parts, as shown in Fig. 4, which can extract appropriate information from 
these two parts.

Specifically, we multiply the self-attention matrix and the label attention matrix 
with W3andW4 , and feed the results to the sigmoid activation function. After that, 
we get two weight vectors α and β to represent the importance of different attention 
matrices. These two weight vectors can be obtained by inputting the fully connected 
layer on S and L.

W3,W4 ∈ Rk are the parameters to be trained. αi and βi represent the importance 
of different attention matrices to construct the final attention matrix representation 
for the i_th label text. Therefore, we apply the following constraints to the two weight 
vectors.

(10)Sigmoid(x) =
1

1+ e−x

(11)α = Sigmoid(SW3), S ∈ Rl×k

(12)β = Sigmoid(LW4), L ∈ Rl×k

(13)0 < αi + βi ≤ 1

Fig. 4  The scheme of the joint learning mechanism
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After that, we multiply the weight vector with the label attention and self-attention 
matrix. Finally, we splice the label attention matrix and the self-attention matrix after 
the above processing along the i_th label to obtain the attention matrix.

Denoising mechanism

In this part, we consider the noise problem in medical code allocation. Specifically, ICD 
code assignment is usually a manual process that takes a long time per patient. Due to 
inexperienced coders, differences between coders, and incorrect grouping codes, it is 
also prone to errors. In addition, clinical diagnosis and treatment records are often long 
texts prone to misspelling or typos, leading to wrong code predictions and affect model 
performance[25].

Since noise negatively influences the classification results, we consider introducing the 
denoising mechanism and designing an auxiliary noise model on the classifier. Our tar-
get is to identify and prune the noisy samples to improve the quality of classifier training 
[26].

We leverage the finding that learning on clean labels is more accessible than noise 
labels [27]. Furthermore, we combine the binary cross entropy loss function [28] and 
design it as a truncation loss function. Specifically, truncation loss discards large loss 
samples with dynamic thresholds in each iteration. Our training goal is to minimize the 
loss between the prediction ỹ and the target y:

where ε denotes the pre-defined threshold and BCloss represents the binary cross entropy 
loss.

The truncation loss removes the noise samples whose binary cross entropy loss is 
larger than ε . Although this truncation loss is easy to explain and implement, the fixed 
threshold may not suit the entire training process. Because the noisy feedback typically 
has large loss values during the early epochs[29], the training loss value decrease as the 
training iterations increase. To adapt to the overall trend of training loss, we can replace 
the fixed threshold with a dynamic threshold function DT , which changes the threshold 
during the training process.

where Dmax is the upper bound, and γ is a parameter to adjust the speed to achieve the 
maximum drop rate.

Thus, the training strategy constrains the noise and drives the classifier to learn from 
the clean training samples. This method can use the dynamic threshold function to trun-
cate the loss value of the high-loss interaction to zero and discard the high-loss noise 
influence.

Output layer

In this part, we feed the denoised information V into the classifier. Once we have 
a comprehensive representation of clinical texts and medical codes, we can build a 
multi-label text classifier through a multilayer perceptron with two fully connected 

(14)Tloss

(
y, ỹ

)
=

{
0,BCloss(y, ỹ) > ε ∪ (ỹ = 1)

BCloss,Otherwise,

(15)DT = min (γT ,Dmax),
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layers. Then we use the sum-pooling operation to obtain the score ŷ  for the ICD 
codes. Mathematically speaking, the predicted probability ỹ of each code can be esti-
mated in the following way:

Finally, the sigmoid function is used to convert the score vector into a probability 
vector.

Results
In this section, we divide the results into two parts. In the first part, we introduce the 
dataset used in the experiments, the evaluation metrics, the setting of hyper-param-
eters and discussion, and the comparison between the JLAN and baseline models. In 
the second part, we conduct detailed ablation experiments for each component of the 
JLAN model, including attention mechanism, joint learning mechanism, and denois-
ing mechanism.

Datasets

In this paper, we conduct experiments on a real dataset: MIMIC-III ("Medical Informa-
tion Mart for Intensive Care") [3], which is widely used in automatic clinical diagnosis. 
In addition, as shown in Table 2, we divide the dataset into the training set, validation 
set, and test set.

The dataset contains clinical data of adult patients admitted to the intensive care unit 
of Beth Israel Deaconess Medical Center in Boston, Massachusetts, between 2001 and 
2012 to validate our method. The ICD-9 code annotated by professionals in the dataset 
is used as a label. We focus on discharge summary and learn the preprocessing and data 
separation method from Li [8].

We use the discharge summaries as the model’s input for experiments. The MIMIC-III 
full dataset includes 8921 unique codes, 47,719, 1631, and 3372 discharge summaries 
used for training, validation, and testing.

The MIMIC-III top-50 setting also includes 8067, 1574, and 1730 discharge summaries 
used for training, validation, and testing, respectively.

(16)ŷ = pooling(V ), ŷi =

n∑

j=1

Vij ,V ∈ Rn×k

(17)ỹ = sigmoid
(
ŷ
)

Table 2  Statistics of the datasets

Dataset Vocab Train Valid Test

MIMIC-III-50 59,168 8067 1574 1730

MIMIC-III 140,795 47,724 1632 3372
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Preprocessing

Datasets are tokenized and converted to lowercase. Tokens that do not contain alpha-
betic characters are deleted, and tokens that appear in fewer than two training docu-
ments are replaced with a ’UNK’ token. The documents are truncated to a maximum 
length of 2500 tokens.

Evaluation metrics

For comprehensive comparison with previous ICD coding works, we measure the results 
of the JLAN model on a variety of metrics, including macro- and micro-averaged F1 and 
AUC (the area under the ROC curve), precision at k(P@k ∈ {5, 8, 15}) . As detailed in 
Manning et al. [30], "micro-averaged" pooled each pair of (clinical text, medical code) 
sample decisions and then calculated the validity indicators of the pooled data. At the 
same time, the "macro-average" calculated the simple average of all codes. For example, 
the macro-averaged, micro-averaged precision and F1 are defined in Eqs. 18–21.

Experiment setting and hyper‑parameter tuning

Our model has many hyperparameters, so it is difficult to search for the optimal value 
for all hyper-parameters. Therefore, some hyper-parameters are selected based on expe-
rience or previous work [18], and some hyperparameters are determined through exper-
imental tests.

For the JLAN, the embedding size is 256, the learning rate is 0.001, the truncation loss 
is 0.15, and the residual block number is 1. The parameters corresponding to the weights 
are d = 200 for W1 and W2, k = 256 for W3 and W4.

(18)Micro− P =

∑I
i=1TPi∑I

i=1TPi + FPi

(19)Macro− P =
1

I

I∑

i=1

TPi

TPi + FPi

(20)Micro− F =
2× (Micro− P)× (Micro− R)

Micro− P +Micro− R

(21)Macro− F =
2× (Macrp− P)× (Macro− R)

Macro− P +Macro− R

Table 3  Performance comparison of using different T-loss in JLAN

config MIMIC-III-full MIMIC-III-50

Micro-F1 Macro-F1 Micro-F1 Macro-F1

T-loss=0.05 0.542 0.061 0.623 0.571

T-loss=0.1 0.557 0.068 0.626 0.574

T-loss=0.15 0.556 0.068 0.627 0.573

T-loss=0.2 0.547 0.064 0.625 0.573
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The whole model is trained via Adam [31]. The parameters of all baselines are either 
adopted from their original papers or determined by experiments.

The following experiments were conducted to explore a better configuration of the 
truncation loss rate (T-loss) and the residual block number P of the residual convolu-
tional layer. First, we tried different parameters for the model using MIMIC-III-full and 
MIMIC-III-50 datasets. The experimental results are shown in Table 3. For each setting, 
we evaluated five runs by randomly initializing model parameters. The results shown in 
the table are the average of the five runs. In addition, we empirically pre-define the in-
channel and out-channel sizes of the remaining blocks.

As shown in Table  3, during the initial increase in truncation loss, performance 
improves in both the MIMIC-III-full and the MIMIC-III-50 settings. When the trun-
cation loss increases to 0.1–0.15, the performance reaches the peak. However, as the 
truncation loss continues to increase, the model performance begins to decline. After 
exhaustive comparisons, we finally set T-loss to 0.15.

In addition, as shown in Table 4, the performance deteriorates as the number of resid-
ual blocks increases. The model performs best when the residual block number is 1. 
Therefore, we apply the optimal configuration of the residual block and the truncation 
loss to JLAN. Experimental results show that the performance of the combined model is 
further improved. Therefore, we retained this configuration in other experiments.

Baseline models

•	 CNN: One-dimensional convolutional neural network [32] was adopted by Mullen-
bach et al. for ICD coding tasks on MIMIC datasets.

•	 LR: Logistic Regression built a binary one-to-many classifier by training all the labels 
in the dataset and explored the ICD coding task on the MIMIC dataset [18].

•	 CAML: CNN with a label-wise attention mechanism was proposed by Mullenbach 
[18]. This model performs well on the MIMIC-III dataset, which contains the CNN 
layer and attention layer to process clinical text and medical code, respectively.

•	 DR-CAML: Description Regularized CAML is an extension of the CAML model, 
incorporating the text description of each medical code to regularize the model.

•	 MSATT-KG: The model consists of densely connected convolutional neural net-
works that produce variable n-gram characteristics and multi-scale feature attention. 
In this model [33], a graph convolutional neural network [34] was also used to cap-
ture hierarchical relationships between medical texts and codes.

Table 4  Performance comparison of using different residual blocks in JLAN

Config MIMIC-III-full MIMIC-III-50

Micro-F1 Macro-F1 Micro-F1 Macro-F1

P = 1 0.543 0.062 0.637 0.585

P = 2 0.541 0.059 0.597 0.558

P = 3 0.540 0.059 0.582 0.524
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•	 Bi-GRU: Bi-directional Gated Recurrent Unit [35] was used for multi-label classifica-
tion. The document representation is set as the last concatenated hidden state h(t) to 
finish the coding task.

•	 LEAM: The model is proposed for the text classification task by projecting labels and 
words in the same embedding space and using the cosine similarity to predict the 
label [17].

•	 MultiResCNN: The Multi-Filter Residual Convolutional Neural Network was pro-
posed by Li [8] for ICD coding. This model achieved SOTA results on the MIMIC-
III dataset, utilizing multi-filter convolutional neural networks and residual networks 
for automatic diagnosis. In addition, it integrates label attention to enrich the seman-
tic knowledge of the model. Therefore, this model does an excellent job of coding.

Table 5  The performance of the JLAN model and baseline models on the MIMIC-III-50 test set

Model AUC​ F1 P@5 R@5
Macro Micro Macro Micro

CNN 87.6 90.7 57.6 62.5 62.0 –

BiGRU​ 82.8 86.8 48.4 54.9 59.1 –

LEAM 88.1 91.2 54.0 61.9 61.2 –

CAML 87.5 90.9 53.2 61.4 60.9 –

DR–CAML 88.4 91.6 57.6 63.3 61.8 –

MSATT-KG 91.4 93.6 63.8 68.4 64.4 -

MultiResCNN 89.9 92.8 60.6 67.0 64.1 62.1

JLAN 92.6 94.1 66.5 69.7 66.8 63.8

Fig. 5  Comparison of JLAN and baseline model
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Comparison with baseline models

MIMIC‑III‑50

Table 5 and Fig. 5 shows experimental results on the MIMIC-III-50 dataset. JLAN out-
performs all the baseline models across all evaluation metrics. Compared with the SOTA 
model, our model improves the macro-F1, micro-F1, macro-AUC, micro-AUC, P@5 by 
4.2%, 1.9%, 1.3%, 0.5%, 4.2%, respectively.

Compared with MIMIC-III-full experiments, joint learning performs better on small 
sample learning, which helps us transfer this training method to other tasks.

MIMIC‑III‑full

On the MIMIC-III-full dataset, Table  6 shows the evaluation results of all quantita-
tive indicators. Specifically, using the attention mechanism (CAML and MutiResCNN) 
produces better performance than both traditional machine learning (LR) and deep 
learning models (CNN and BiGRU). Our model achieves better results in the macro-
AUC, macro-F1, micro-F1, precision@5, and precision@8 than MSATT-KG and Mul-
tiResCNN, producing a slightly lower micro-AUC and P@15 than that of MSATT-KG 
and MultiResCNN. Specifically, our model improved the macro-F1, micro-F1, macro-
AUC, P@8 by 7.8%, 2.5%, 0.88%, 0.95%, respectively.

Since the macro metrics focus on evaluating rare-label allocation performance, the 
JLAN model is better in dealing with long-tail distribution and is more suitable for deal-
ing with this kind of problem.

Ablation study

In this section, we evaluate the role of each component in the JLAN model. We set the 
following three groups of experiments to test the contribution of attention mechanism, 
joint learning strategy, and denoising mechanism to the model.

Effect of the attention mechanism

Figure 6 lists the prediction results of the MIMIC-III dataset in the form of AUC, F1, 
Accuracy, P@5, P@8, and Recall@5. L, S, and J denote the label attention, self-attention, 
and joint learning, respectively. As we can see, the model that uses the label attention or 
self-attention only performed the worst. In contrast, the model that used the above part 

Table 6  The performance of JLAN and the baseline models on the MIMIC-III-full test set

Model AUC​ F1 P@15 P@8
Macro Micro Macro Micro

LR 56.1 93.7 1.1 27.2 – 54.2

CNN 80.6 96.9 4.2 41.9 – 58.1

BiGRU​ 82.2 97.1 3.8 41.7 58.5

CAML 89.5 98.6 8.8 53.9 – 70.9

DR-CAML 89.7 98.5 8.6 52.9 – 69.0

MSATT-KG 91.0 99.2 9.0 55.3 – 72.8

MultiResCNN 91.0 98.6 8.5 55.2 58.4 73.4

JLAN 91.8 98.8 9.7 56.7 57.9 74.1
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can do better. Specifically, with the addition of model components, the model’s perfor-
mance improves, proving the model’s effectiveness in this paper.

As for the document representation of medical codes, self-attention prefers to look 
for the patient’s clinical records, but it ignores the information of the medical codes. On 
the other, label attention utilizes the advantages of the medical codes to determine the 
semantic relationship between the clinical texts and the medical codes. However, the 
medical codes do not easily distinguish the differences (e.g., combining systolic heart 
failure and diastolic heart failure), so it is reasonable to consider both records and codes. 
Therefore, we propose a joint learning mechanism. In addition, the adaptive extraction 
of appropriate information from these two points of concern facilitates the ICD coding 
task. To further verify the effectiveness of joint learning, we evaluate the joint learning 
mechanism separately in the next section.

Effect of the Joint learning

To test the importance of joint learning in the training process, we test the model’s per-
formance with and without joint learning on MIMIC-III top-50. Specifically, we inter-
cept the model’s performance over the first 50 rounds, use F1, AUC, and P@5 metrics to 
measure it.

For joint learning, it is difficult to compare it fairly with another model. Therefore, we 
design a new model that does not use joint learning. We still introduce the self-attention 
and label attention parts to this model and add them together, rather than training their 
weights.

As Fig. 7 shows, the model using joint learning performs better overall. Specifically, we 
analyze that if joint learning is not used, helpful information cannot be selected adap-
tively even if the self-attention matrix and label attention matrix are generated. On the 
contrary, after introducing joint learning, the model can train the correlation coefficients 
for the two matrices respectively and integrate the information of the two matrices. The 

Fig. 6  Result of the ablation experiment. ’L’, ’S’ and ’J’ denote label attention, self-attention and joint learning, 
respectively
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experimental results suggest the joint learning can effectively improve the performance 
of medical code prediction.

Effect of the denoising mechanism

This part analyzes how the denoising mechanism affects the model’s performance. We 
choose two groups of experiments whether the denoising mechanism is used as a com-
parative experiment.

As Fig. 8 shows, the denoising model performs better most of the time and has less loss 
during training. Furthermore, the loss of the denoising model decreases faster, which is 
conducive to the rapid convergence of the model. By analyzing the above experimental 

Fig. 7  Results of the joint learning experiment. The blue and orange rectangles represent training with and 
without the joint learning mechanism, respectively
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results, we believe that by introducing the denoising mechanism, the model can quickly 
learn from clean samples at the early stage of training, shorten the training cycle, and 
thus have less loss and faster convergence. The results also prove the effectiveness of the 
denoising mechanism.

As the model iteration reaches our default value, the classifier no longer drops the 
samples but learns further from the remaining samples. This approach can ensure the 
integrity of dataset information and prevent the problem of over-fitting the model.

Discussion
There is a growing demand to interpret model predictions in ways that humans can 
understand for predictive applications such as medical diagnosis. Although auto-
mated models are set up to reduce human error, observing which parts of labels and 
text contribute to the prediction improves the reliability and transparency of the 
model. In this section, we mainly discuss two things. Firstly, we visualize the self-
attention and label attention mechanism of the model. Secondly, we discuss the limi-
tations of this work.

First, we elect part of the clinical records of one patient, whom we call patient-A. 
Considering the privacy issues, we remove personal information. Second, we visualize 
the clinical records of patient-A using Word-Cloud; the size of the words represents 
the frequency of the phrase in the text, the shade of the color represents the attention 
weight.

As shown in Fig. 9, the self-attention mechanism pays attention to some represent-
ative words, such as "pulmonary, heart, chronic." From this, we may speculate that 
patient-A suffers from heart and lung diseases, verified by the information highlighted 
in the figure. In order to verify this conjecture, we also visualized the description of 
the ICD code assigned to patient-A, which is part of label attention processing.

Fig. 9  Visualization of self-attention mechanism on patient-A
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We can observe from Fig. 10 that patient-A suffers from chronic obstructive pulmo-
nary disease, hypertensive heart disease, and other diseases, which confirms the pre-
vious speculation to a certain extent. Therefore, the clinical records can be matched 
with the medical codes by extracting critical information. The attention mechanism 
can assign greater weight to vital information. Through this weight allocation strat-
egy, the JLAN model can do better in the long tail problem.

In addition, a patient may have multiple diseases, which means that the patient has 
several different ICD codes. Therefore, the JLAN model can highlight different essential 
information for different disease codes of the patient, which also provides interpretabil-
ity for the model.

Limitations

In this paper, improved performance mainly comes from three aspects: attention mech-
anism, joint learning strategy, and denoising mechanism. Transformer-based archi-
tectures have become the most advanced technology in almost all Natural Language 
Processing fields due to their ability to handle long-distance dependencies. In the future, 
we will explore how to introduce bidirectional encoder representations from trans-
formers (BERT) [36] into ICD coding tasks. It is well known that BERT [37] specifies a 
maximum input length and requires many computational resources. Therefore, we plan 
to introduce sliding windows to segment clinical texts to solve the limitation of input 
length or introduce a self-distillation mechanism [38] to BERT.

Due to the limitation of computing resources, we do not use a larger dataset in this 
study. We plan to introduce larger-scale database resources and multi-modal datasets, 
such as "MedPix" and "Musculoskeletal Radiographs (MURA)," in the future. We will 

Fig. 10  Visualization of label attention mechanism on patient-A
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further explore ICD coding work on large-scale datasets. All in all, these are subject to 
further research and experiments in the future.

Conclusions
In this paper, we proposed a joint learning attention network for ICD coding. We intro-
duced the denoising mechanism to assist the classifier in reducing noise sample impacts 
during training. The experimental results on the MIMIC-III dataset showed that our 
model achieved the most advanced performance in various evaluation metrics. In addi-
tion, the ablation experiments proved that the denoising training strategy could effec-
tively reduce the interference of noise and help the model converge quickly. The joint 
learning mechanism also improved the performances for long-tailed distribution, result-
ing in higher macro-averaged metrics. Our model can deal with ICD coding and be 
extended to be a baseline for other text classification tasks.
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