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Background
The goal of causal discovery is to infer the cause-effect relationships between an out-
come variable and a number of explanatory variables, called features, which pinpoint the 
mechanism through which changes in the features result in changes in the outcome [1]. 
Causal discovery is used in various fields to discover the causes of complex outcomes, 
from economics to medicine [2–5]. In the life sciences, genomics, transcriptomics, pro-
teomics and metabolomics data, often referred to as omics data, have experienced an 
explosive growth rate over the past decade, making them great candidates for causal dis-
covery [6].
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For instance, anthracycline cardiotoxicity is a multi-factorial Adverse Drug Reaction 
(ADR), whose main mechanisms are believed to be the inhibition of Topoisomerase 2 β 
and the reaction of reactive oxygen species [7]. This means that the rs2229774 mutation 
in the RARG​ gene, which influences Topoisomerase 2β , would cause toxicity in some, 
but not all of the anthracycline patients [8]. Current causal analysis methods may lack 
the statistical power for detecting rs2229774 mutation as a cause for the ADR when 
looking at the whole population. This causal variant would be dismissed by a current 
causal analysis methods on the whole population. This is because rs2229774 is absent in 
those cases where the ADR is caused by the reactive oxygen species mechanism, as there 
would be patients without this variant in the RARG​ in which anthracycline cardiotoxic-
ity would nevertheless occur.

Randomized controlled trials, where participants are randomly assigned to a case 
group that undergoes a treatment and a control group that does not, are considered 
the state-of-the-art approach for testing causality [9]. However, due to costs and ethical 
restrictions, randomized controlled trials are impractical to conduct in many scenarios.

The increasing availability of observational data has motivated the development of 
data mining methods for causal discovery from observational data in the past three dec-
ades, and the structure learning approach has been the center of these developments 
[10]. The goal of structure learning is to produce a graph whose edges represent causal 
relationships between the variable nodes [11]. The common constraint-based structure 
learning methods achieve this by employing a series of statistical tests to evaluate the 
conditional independences between the variables to incrementally construct the graphi-
cal structure.

One of the major developments in structure learning is the PC-algorithm [1], which is 
designed to efficiently discover the causal structure in the absence of unobserved con-
founders. FCI [12], RFCI [13] and their subsequent modifications [14–16] were able to 
find causal relations in the presence of unobserved confounders by performing addi-
tional conditional dependency tests, to improve the speed of the algorithm by compro-
mising on the dependency assumptions, and to eliminate the dependency on the order 
of tests by preparing the model for possible orientation rule effects. Another direction 
of research has been to investigate local causal discovery methods [17], which focus on 
the Markov blanket to find only those features that are the direct causes of the outcome. 
However, the computational complexity of structure learning remains exponential in the 
number of variables [17], which make it infeasible for omics datasets with hundreds of 
thousands of variables [18].

In recent years, a new direction of research in the data mining community for causal 
discovery from observational data has emerged. The new methods consist of a filtering 
algorithm for discovering candidate features from the set of all features, coupled with 
a Quasi-Experimental Design (QED) or a similar statistical hypothesis testing process 
for evaluating the validity of those candidate causes. This paradigm for causal discovery 
promises to scale to larger datasets because the filtering algorithm drastically reduces 
the number of hypotheses to be tested by QED.

In [19], candidate features are selected through an association rule mining algorithm 
and tested in a series of retrospective cohort studies to evaluate the causality of the can-
didates. In HUME [20], a network of co-occurrence between features and outcomes was 
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used to determine the most likely candidate feature-outcome combinations and their 
potential confounders, and the causality of the candidates was evaluated by a matched 
pairs QED.

All of the aforementioned methods have the tendency to discover the causes that 
would try to explain all positive cases in the outcome. However, this gives low sig-
nificance to causes that occur only in a particular subpopulation of the positive cases 
(Fig. 1).

To perform causal discovery in such scenarios, this paper introduces the problem of 
stratified causal discovery (SCD), the simultaneous discovery of sub-populations and 
their corresponding causal mechanisms. We show that if the outcome is modified to 
represent the outcome strata instead of the original outcome, the less prevalent causal 
mechanisms are more likely to be captured. Here, an outcome stratum is a subset of 
cases with a positive outcome that share a causal mechanism.

We present Aristotle, the first method for solving SCD. Aristotle is a multi-phase algo-
rithm that tackles the above challenges by using a novel divide-and-conquer scheme that 
utilizes biclustering for finding the promising strata and candidate causes and QED to 
identify the stratum-specific causes. Aristotle is capable of analyzing high dimensional 
omics data and allows the incorporation of prior domain knowledge about potential 
confounders and the grouping of biological features.

Our extensive experiments on synthetic and real datasets demonstrate that Aristotle 
effectively discovers potentially causal features and strata and clearly outperforms the 
compared state-of-the-art methods.

Rest of the paper is organized as follows. In “Problem definition” section we formally 
introduce the stratified causal discovery problem and describe the inputs, the outputs, 
and the assumptions. In “Methods” section we provide an overview of Aristotle, a justifi-
cation for its design, and a detailed explanation of each of its phases. Finally, in “Results” 
section  we present our experiments on synthetic and real data and discuss our findings.

Fig. 1  Diagram representing four variables (columns) across different sample (rows). A standard cause 
(blue) is highly associated with the original outcome (yellow), and can be identified by most measures of 
association. However, a stratum cause (green) that only affects the outcome in a particular type of samples 
( 1A ), could be missed from simple association with the outcome, and requires comparison against its 
corresponding outcome stratum (red) to be identified confidently
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Problem definition
The goal of the SCD problem is to identify the causal features involved in different 
mechanisms associated with an outcome, such as an ADR. The outcome is assumed 
to have one of two possible values: positive (e.g. an ADR observed) and negative (e.g. 
no ADR observed). We are interested in the mechanisms corresponding to the posi-
tive outcome. Each distinct mechanism is captured by a different hidden stratum of 
samples, and for every stratum, we want to find the features that potentially cause the 
positive outcome. Hence, SCD is defined as the problem of identifying strata of sam-
ples with positive outcome such that for each stratum, there exist a group of features 
at statistically significant association with membership in the stratum, after control-
ling the effect of confounders. Here, we follow the strict notion of causality, which 
expects that the outcome is positive almost always when and only when the feature 
group is positive. There are two types of confounders that need to be controlled to 
avoid endogeneity: (1) natural confounders which are the variables that are known to 
have association with the outcome, and may include a wide variety of variables such 
as demographic and clinical attributes, and (2) omics confounders which are features 
that have a statistically significant association with the outcome. Formally, the inputs 
are as follows:

•	 An outcome vector R ∈ {−1,+1}n , where ri = +1 if sample i has the positive out-
come and ri = −1 otherwise.

•	 A matrix of omics profiles G ∈ {0, 1}p×n , where g.i = {g1i, ..., gpi} indicates the fea-
ture values for sample i. If sample i has feature j present, this is denoted by gji = 1 , 
and gji = 0 otherwise. G can contain a large collection of omics data such as muta-
tions, gene expression, and copy number variations [21].

•	 A matrix of confounder profiles Z ∈ {0, 1}m×n , where z.i = {z1i, ..., zmi} indicates 
the state of the confounders for sample i.

•	 Prior knowledge about the relationships between the features (e.g., pathways as 
functional groups of genomic features). As described later in “Group Features 
Based on Background Knowledge” section, this knowledge is used to group related 
features to resolve the high-dimensionality issue by dividing the large problem 
into smaller pieces. This input is only needed for high-dimensional inputs with 
hundreds of thousands features.

The outputs are:

•	 A (disjoint) grouping {P1, ...,PK } of the sample population P such that ∪kPk = P . 
Equivalently, this is the assignment of each sample to one of K strata. Each stra-
tum contains a subset of the population with similar outcome (for almost all k and 
all a, b ∈ Pk , ra = rb).

•	 For each stratum with positive outcome, a set of features that are potentially caus-
ing the outcome in the stratum. A causal relationship of the feature j to the out-
come r for strata Pk given confounders Z means that, after correcting for the effect 
of Z, there is significant evidence suggesting that for the samples in Pk , the value 
of the feature j is responsible for determining the outcome r.
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Values of features and outcome are assumed to be discrete for three reasons: (1) dis-
crete data can be modeled through Multinomial distribution, which reduces the com-
plexity in training and evaluation of the models, (2) discrete omics data have been shown 
to improve the prediction accuracy and generality of the trained model [22, 23], (3) most 
of the currently available high dimensional omics data are discrete in nature [24]. For 
effective discretization of continuous data (gene expression for example) for the strata 
analysis, we suggest the method used in [25].

It should also be noted that unlike the classical causal discovery methods where the 
causes are considered based on their adjusted association with the positive outcome, in 
SCD the causes are considered based only on the outcomes corresponding to the par-
ticular stratum. Figure 2 illustrates these two types of causes.

There are two main challenges in solving the SCD problem. The first challenge is the 
small number of samples combined with a very large number of features, which is typi-
cal of most omics datasets. This problem is exacerbated in SCD because stratification 
(1) further thins out the number of samples for each hypothesis, and (2) multiplies the 
number of possible causes by the number of strata. This in turn increases the amount of 
penalty of the multiple hypothesis testing of the causal analysis and makes it less likely to 
find the right cause, especially if the number of samples is small. The second challenge is 
to identify the hidden strata that reflect the underlying causal mechanisms; these are not 
known a priori, and, if poorly chosen, may negatively impact the validity of the results.

Methods
The overall design of ARISTOTLE is based on a novel divide-and-conquer scheme that 
breaks the set of features into groups and aggregates the significant sample and feature 
patterns. To do this, ARISTOTLE utilizes supervised biclustering to identifying the 
promising strata and features, and matching QED to evaluate the causality of features 
with respect to an identified stratum.

ARISTOTLE’s solution to SCD’s first challenge is to select a shortlist of candidate 
causes from the set of features, based on their association with the effect, which is 

Fig. 2  A sample dataset illustrating stratum-specific and general causal features
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the causal strata in SCD. However, the true strata are unknown, which brings us to 
SCD’s second challenge of simultaneously stratify the samples and identify the can-
didate causes. This can be solved using a biclustering that jointly groups features and 
samples based on their association, which could also be used to score and filter the 
features.

However, due to the high dimensionality, it is infeasible to perform the computa-
tionally complex biclustering on all features simultaneously. Hence, for high-dimen-
sional omics data, ARISTOTLE has to divide the features into groups, perform the 
biclustering to find the candidate features and strata locally, i.e. separately within each 
group, and then merge the results to form a data matrix with fewer but more rel-
evant features. After the features are reduced to candidate features, biclustering can 
be reused, this time addressing the second challenge. Grouping of the features can be 
performed randomly, if no prior grouping knowledge is available, or skipped if the 
problem is not very high-dimensional, in which case all features are set in one group. 
Finally, Aristotle needs to evaluate the causality of the association between each of 
the candidate features and each of the positive strata. QED is used for causal infer-
ence which is one of the best approaches for causal inference from observational data 
of small sample size created by the first challenge.

In short, Aristotle consists of the following five steps, which are illustrated in Fig. 3: 

1.	 Group features of the input data into D groups Gd , 1 ≤ d ≤ D , based on background 
knowledge;

Fig. 3  Overview of Aristotle. The data are shown by rectangular blocks and the methods are shown by ovals. 
P, R, G, and Z are defined in “Problem definition” section G1 to GD are the subsets of G corresponding to feature 
groups produced in the Feature Grouping phase (see “Group Features Based on Background Knowledge” 
section). W1 to WD are the feature weights produced by biclustering for each feature group. C1 to CD are the 
sets of the top weighted features in each of the feature groups that the feature selection method (indicated 
by FS in the diagram) chooses from groups G1 to GD given the weights W1 to WD , respectively.P1 to PK are 
the sample strata produced by biclustering. Quasi-experimental design (indicated by QED in the diagram) 
evaluates the candidate features in the set C = ∪D

d=1
Cd for causality with respect to their corresponding 

sample strata and confounders Z. The outputs of QED are tuples that indicate the causal pairs of feature and 
stratum
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2.	 Assign weights Wd to the features of each group Gd;
3.	 Filter the set of features of each group Gd given their corresponding weights Wd , 

resulting in a set of locally selected features Cd;
4.	 Stratify the samples based on the set of candidate features C = ∪D

d=1
Cd and the out-

come R, resulting in K strata Pk , 1 ≤ k ≤ K ;
5.	 Evaluate the causality of the candidate features C with regard to the outcome in each 

stratum Pk.

Further details of each step are provided in the following sections.

Group features based on background knowledge

This phase groups features into D possibly overlapping subsets Gd ( 1 ≤ d ≤ D ), such that 
∪D
d=1

Gd ⊆ G . Each group should be small enough to be handled efficiently by biclus-
tering, and at the same time, there should be a meaningful relationship between the 
features that are in the same group, so that the results of the downstream analysis are 
relevant.

Because biological pathways are the functional units inside the cell, their use to pro-
duce distinct views from omics data is commonplace [26, 27]. Therefore, in our experi-
ments, we choose to form feature groups that correspond to Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways [28] to reflect the real-world implications of the 
functional effects of pathways. The features that did not correspond to any pathway are 
discarded.

Assign weights to features

In this phase, for each feature group, Aristotle needs to bicluster features and estimate 
strata-based feature weights. For this task ARISTOTLE uses SUBSTRA [25], a state-of-
the-art probabilistic supervised biclustering method. SUBSTRA takes the omics profiles 
of a set of samples along with the outcomes, and produces three inter-related outputs: 
(1) sample strata, (2) feature clusters, and (3) feature weights. SUBSTRA learns these 
outputs through an iterative approach that simultaneously optimizes two objectives: 
biclustering quality and predictive performance.

We chose SUBSTRA for three reasons. First, SUBSTRA assumes similar outcomes 
for samples in each stratum. This is important for consistency with the notion of stra-
tum-specific causality in the SCD problem (“Problem definition” section). Second, SUB-
STRA learns feature weights according to their relevance to the outcome, and uses these 
weights when computing the strata. Accordingly, the feature weights, the strata, and the 
outcome depend on each other in SUBSTRA, so the produced strata are related to the 
significant features which are involved in different mechanisms of the outcome. Third, 
the feature weights produced by SUBSTRA indicate the amount of dependency between 
the features and the outcome, and can be used for filtering out irrelevant features and 
narrowing down the set of candidate causal features. This feature filtering helps reduce 
the number of effective hypotheses and avoid the multiple-hypothesis testing penalties, 
which is the first challenge in SCD. It should be noted that this is only possible because 
the patterns that cannot reach statistical significance, or are not tested against the 



Page 8 of 18Mansouri et al. BMC Bioinformatics           (2022) 23:42 

outcome, do not need to be taken into account while correcting for multiple hypothesis 
testing [29, 30]. This assumption is tested in practice in the result section.

Filter features of each feature group

In this phase, we identify the most promising features based on the weights they 
received after the Feature Weighting phase. Since SUBSTRA produces weights rela-
tive only to the other features in each group, the weights from two different feature 
groups are not comparable to each other. Accordingly, we apply a Feature Selec-
tion algorithm independently to each group. For this task, we use an outlier detec-
tion algorithm, which selects features with weights outlying from the distribution of 
weights in the group.

Specifically, we use the scaled median absolute deviation (MAD) [31] as the bound-
ary above which the weights are considered outliers. There are two reasons for choos-
ing MAD. First, MAD is based on a parsimonious and well-studied equation which 
requires only one parameter, and adds a minimum level of complexity to the process. 
Second, MAD is extremely robust to heavy-tail distributions, as we observe for SUB-
STRA’s weights. The MAD for the feature weights of a group d can be computed using 
the formula:

where Wd is the vector of weights of features for feature group d, M(·) is the median of its 
input argument, and erf  is the Gaussian error function. We can decide whether a weight 
w in group d is an outlier, if w −M(Wd) > L×MADd . The parameter L behaves simi-
larly to the number of standard deviations, and determines how extreme a weight should 
be to be considered an outlier. In standard practice, the value of L is usually selected as 
an integer between 2 and 5. With the outlier features from each group in hand, we can 
aggregate them to form the set of candidate features for causal analysis.

Sample stratification

To perform the stratified causal analysis, we need to know the sample strata. To com-
pute the sample strata, we only use the selected important features from the Feature 
Filtering phase, which are expected to be more relevant to the outcome than the other 
features. Ideally, we want the strata to be related to the outcome by capturing differ-
ent patterns that define the subsets of the two outcome classes. Therefore, once again, 
we use SUBSTRA for this task, which forms strata with homogeneous outcomes, such 
that the patterns of up-weighted features are different between the strata as well as 
the positive and negative outcomes.

Quasi‑experimental design

After the strata and candidate features are identified, our objective is to evaluate 
whether there is sufficient evidence for a causal relation between the features and the 
samples of a particular stratum. As input, our QED takes the sample strata P1 to PK  
produced in the Sample Stratification phase, the candidate features C produced in the 

(1)MADd =
M(|Wd −M(Wd)|)√

2 · erf−1(1/2)
,
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Feature Filtering phase, and the confounders Z. The output of QED is a list of tuples, 
where each tuple includes a causal feature and its corresponding stratum, i.e. the 
stratum that has a positive outcome due (in part) to having this feature. Each feature 
can be associated to more than one strata, and each stratum can have more than one 
causal feature. We achieve this goal using matched pairs QED.

Matched pairs design is used for hypotheses in which the potential causes, known as 
the treatment, has two possible outcomes, as is the case for the candidate features in our 
problem. In a matched pairs design, the samples are grouped into pairs. In each pair, one 
sample has received the treatment feature and the other sample has not, but they are 
as similar as possible with respect to the confounders. Confounders must include both 
the natural confounders given in input, as well as the other candidates which were sta-
tistically significant in the initial Feature Filtering step [20, 32]. In our pairing approach, 
we assume two types of constraints. First, we make sure that the confounders Z have 
identical values for the two elements of each pair. Second, we use Manhattan distance 
of the other candidate features from C to form pairs with elements that are as similar as 
possible to each other. For efficient pairing, Aristotle employs the Hungarian matching 
algorithm [33] based on the Manhattan distance.

In the next step we use McNemar’s test to check whether the value of the outcome 
within the pairs is statistically associated with the value of the treatment feature. With 
this procedure, a large number of hypotheses would be tested for each SCD problem. 
This increases the chance of some of these hypotheses being incorrectly accepted by 
chance, which is known as data dredging. To avoid data dredging, a multiple hypoth-
esis testing procedure needs to be used to adjust the significance level [34]. A standard 
approach for dealing with multiple hypothesis testing is using the False Discovery Rate 
(FDR). The FDR is defined as the expected proportion of significant findings that are 
false positives. Like most methods for controlling the FDR, Aristotle requires the num-
ber of true null hypotheses [35]. In Aristotle, due to elimination of some of the potential 
hypothesis during the Feature Filtering, the equivalent number of hypothesis is hard to 
identify and lies in the wide range from the number of candidates to the total number 
of features. Therefore, a method for estimating the number of true null hypotheses is 
used in Aristotle. A well-known procedure for the estimation of the number of true null 
hypotheses is the adaptive Benjamini-Hochberg [36]. Adaptive Benjamini-Hochberg 
works based on the graphical interpretation of the q − q plot of p-values, which results 
in a simple stepwise procedure for estimating the number of true null hypotheses.

In summary, in the QED step: (1) for each candidate, samples are paired based on their 
differences with respect to the candidate feature, confounders, and other features in C 
using the Hungarian algorithm, (2) the p-value of the hypothesis corresponding to our 
matched pairs design is calculated using McNemar’s test with Yates’ correction, and (3) 
the p-values of candidate features are analyzed using the adaptive Benjamini-Hochberg 
method and a subset of them are reported as the causal features.
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Results
Experiments on synthetic data

To properly evaluate the performance of Aristotle under different conditions and with 
known ground truth, we created synthetic datasets. Our goal was to reproduce the 
biclustering of SNP annotation score [37–39] and gene expression [40] in different eth-
nic groups and cell types. To reflect the biological reality and the criteria discussed in 
the problem definition, the generation of our synthetic data is based on the following 
assumptions:

•	 Features form clusters and the members of those clusters have similar values across 
all samples. The sizes of feature clusters follow a Binomial distribution. Some of the 
feature clusters are causal, meaning that all of the features in those clusters are causal 
features. The remaining clusters are non-causal, meaning that none of their members 
is causal.

•	 Each feature cluster is present in a subset of samples, i.e. the features of the cluster 
have a value of 1 for those samples but 0 for the others. Each cluster simulates a 
haplotype [41], a set of Single Nucleotide Polymorphisms (SNP), i.e. mutations of a 
single position in the genome, that tend to be inherited together.

•	 The members of causal feature clusters have value 1 only for a subset of patients with 
the positive outcome (a stratum corresponding to a causal mechanism). There is a 
one-to-one relationship between the causal feature clusters and the strata of patients 
with positive outcome.

•	 On top of the feature clusters, there is another layer of grouping of features which 
represents the pathways. These pathways are mixtures of different feature clusters; 
however, they tend to contain features from a small number of different feature clus-
ters, i.e. they have small entropies. To achieve this, we use a process based on the 
concept of ”rich gets richer”, i.e. a feature j is assigned to a pathway X with a prob-
ability proportional to the fraction of the current features in X that belong to the 
cluster containing j. This idea was introduced in the Barabasi-Albert algorithm [42], 
originally designed for network simulation.

•	 Both features and outcome variables contain noise. Noise is added to the features 
and outcomes by flipping a randomly selected portion of the entries.

Table 1  Parameters of synthetic data generation and their values

The default values are underlined

Parameter Value

Number of features 100,000

Number of feature clusters 2500

Number of pathways 100

Feature noise 0.05

Fraction of positive samples 0.2

Number of causal feature clusters 2, 3, 4, 5

Outcome noise 0, 0.05, 0.1, 0.2

Number of positive samples 75, 100, 125, 150
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The parameters of synthetic data generation are shown in Table 1. All parameters are set 
to be in the same order of magnitude as our ADR data and the typical values of omics 
datasets [37, 43, 44], which also matches with the marginal distributions in [45]. We 
evaluate the effect of the last three parameters in this table, which we expected to have 
the biggest impact on Aristotle’s performance. The effect of varying each parameter is 
investigated by fixing the other two at their default values shown in Table 1. It should be 
noted that similar omics data-generation processes in the literature could not be used 
[45], because they could not produce the biclustering joint distribution reflected in the 
annotation scores [37].

Baseline methods

Two other baseline methods are included for benchmarking purposes. First, we use the 
Really Fast Causal Inference (RFCI) algorithm [13] to compare the accuracy of Aristotle 
in causal discovery. This method is designed for learning causal relationships between 
random variables. It infers conditional independence between all pairs of variables 
assuming arbitrary number of latent (i.e. unmeasured) and selection (i.e. unmeasured 
variables determining the inclusion of the effect of measured variables) variables, which 
makes the detection of causal relationships difficult. RFCI improves the computational 
complexity of FCI [1] by reducing the number of conditional independence tests and 
conditioning on a smaller number of variables. However, RFCI is still computationally 
intensive. Therefore, we employed the same divide and conquer approach as in Aristotle. 
More precisely, RFCI is applied to each pathway separately and then applied again to the 
union of causal features selected for different pathways by RFCI. This produces the final 
set of features predicted to be causal for the outcome variable.

Second, to compare Aristotle’s stratification quality, a supervised fuzzy clustering 
method introduced in [46] is used as benchmark. Similar to SUBSTRA, this method 
incorporates supervision into the clustering and produces classification scores for fea-
tures. Their algorithm uses the class label of each point to identify the optimal set of 
clusters that describe the data, and the obtained clusters are then used to build a fuzzy 
classifier based on relevant features identified using Fisher-interclass separability 
method [47]. We used all of the features as input for this algorithm as one would natu-
rally do (i.e. no divide and conquer approach).

Results of experiments

The results are shown in Fig. 4. First, we test whether the strata found by Aristotle match 
the true strata of the data. We measure this using the Rand index [48], a well-known 
method for measuring the performance of a clustering algorithm based on an external 
gold standard. These results show that the Rand index of Aristotle’s strata with respect to 
the true strata is consistently above 0.5 and reaches a value of about 0.8 in most cases. As 
expected, the Rand index decreases with increasing noise, but does so slowly. Somewhat 
unexpectedly, Aristotle tends to be more successful in scenarios with a larger number 
of strata. This is due to the fact that Aristotle tends to decompose the true strata into 
subsets due to the effect of non-causal features, resulting in smaller Rand index for cases 
with fewer strata. The Rand index varies little with respect to the number of samples. 
Compared to the supervised fuzzy clustering method, Aristotle achieves a consistently 



Page 12 of 18Mansouri et al. BMC Bioinformatics           (2022) 23:42 

and substantially larger Rand index in all experimental settings. Even though both meth-
ods use supervision, this indicates a better incorporation of the supervision information 
in Aristotle through feature weighting.

Second, we evaluate how well Aristotle performs in finding the causal features. We 
observe that the recall of causal features decreases significantly with increasing percent-
age of noise and with increasing number of causal feature clusters (see Fig. 4). This may 
be due to the reduction in size of the positive strata, which results in a weaker signal 
for each causal feature and consequently lower statistical power. For the same reason, 
increasing the number of positive samples improves the recall. Aristotle consistently 
outperforms RFCI, which demonstrates the advantages of stratified causal discov-
ery over the classical methods that discover causes in the whole population. The gap 
between the two methods decreases with increasing outcome noise, and both methods 
perform equally poorly (recall ≈ 0.2 ) for 20% outcome noise. However, the difference 
between Aristotle and RFCI becomes more pronounced for higher number of positive 
samples. This is because RFCI substituting the FCI’s possible separation sets with adja-
cency sets (to speed up the independency checks) compromises the completeness of the 
causal graph, hinders it from achieving higher accuracies.

As for the sensitivity of Aristotle’s precision to different dataset parameters, accord-
ing to Fig. 4, its precision remains at a high level, around 95%, and is always better than 
RFCI in all the experimental settings we tested. This is consistent with the premise of 
an FDR of 5%. Although RFCI achieves a similar precision for smaller numbers of strata 
and levels of noise, the advantage of Aristotle increases for the harder problems with 

Fig. 4  Results for the experiments with the synthetic data
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more strata and higher noise levels. To conclude, our experimental results on synthetic 
data show that Aristotle consistently outperforms RFCI for causal feature discovery.

Lastly, we evaluate Aristotle’s success in identifying causal features among the filtered 
features. To test this, we compare the performance of Aristotle under the default param-
eters with two alternative QED settings applied to the filtered features: (1) regular QED 
without considering the strata, i.e. all positive samples as one group, (2) QED using the 
ground-truth positive strata as the positive outcome. Aristotle achieves a precision of 
0.9306 and a recall of 0.6262. The QED with setting (1) has a precision of 0.95 and a 
recall of 0.29. The greatly reduced recall is due to the alternative QED’s failure to detect 
the stratum-specific causal features. This is due to the concentration of the occurrence of 
causal feature in a small subset of positive samples constituting a stratum. When match-
ing in the regular QED, this small difference fails to separate the positive strata and 
matching positive samples reduces the support for the hypothesis. This further supports 
our claim that stratification of the samples can find the potential causes which would 
have been otherwise missed. The reason for the higher precision of the regular QED is 
that it results in larger p-values in general and, therefore, is more conservative. The QED 
with setting (2) has a precision of 1 and a recall of 0.69. This indicates that Aristotle has a 
very similar performance to the alternative method based on the ground-truth. We note 
that recall is more important than precision in the causal discovery setting, because the 
computational predictions are often later examined experimentally in order to rule out 
any false discoveries. However, missing an important true causal feature may be more 
detrimental from a scientific point of view.

Experiments on real‑world data

We used a dataset about Anthracycline Cardiotoxicity, an Adverse Drug Reaction (ADR) 
to a class of drugs known as Anthracyclines. More than half of childhood cancer treat-
ment protocols include an Anthracycline. However, the usefulness of Anthracyclines is 
limited by asymptomatic cardiac dysfunction and heart failure [49].

As discussed earlier in the introduction, Anthracycline Cardiotoxicity is now believed 
to be a multi-factorial ADR with multiple underlying mechanisms including the inhibi-
tion of Topoisomerase 2 β and the action of Reactive oxidation species [7, 50]. Accord-
ingly, discovering the genetic risk markers of pediatric Anthracycline Cardiotoxicity is a 
SCD problem.

The particular dataset that we used is provided by the Canadian Pharmacogenomics 
Network for Drug Safety (http://cpnds.ubc.ca/) and consists of the records of 434 child-
hood cancer patients treated with Anthracyclines, 90 of which show cardiotoxicity [51]. 
The input consisted of germline SNP profiles. A series of data preparation steps were 
carried out on the input. We created four binary features for each SNP locus (position on 
the genome), representing the four possible values that a SNP can take based on pater-
nal and maternal alleles in combination. This resulted in 2.4 million binary features. The 
set of confounders that could have impacted the outcome of Anthracycline Cardiotoxic-
ity in the patient consisted of age, gender, dosage, cardio-protectant, cardiac irradiation, 
Vincristine, and Blastine. The age and the dosage were continuous values that we turned 
into two binary variables based on their quantiles, resulting in a total of 9 counfounders. 
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For the outcome variable (the presence of an ADR), the patient’s descriptive reaction 
records were reduced to a binary variable based on the Canadian Pharmacogenomics 
protocols and indicated whether the patient showed an Anthracycline Cardiotoxicity 
( +1 ) or not ( −1).

In the Feature Grouping phase, we mapped the SNPs to genes using the tool intro-
duced in [52]. Then, based on the genes’ membership in the 323 pathways, the SNPs 
were associated with pathways to form the 323 final groups. The SNPs that did not cor-
respond to any gene belonging to one of the pathways were discarded.

We evaluate the results of Aristotle for the ADR dataset from three different stand-
points: (1) by a statistical analysis of distribution of the p-values of the discoveries, 
(2) by comparing the overlap between our discoveries and the known causes, which 
were deduced from independent medical records and the literature, and (3) by pro-
viding biological interpretation for corresponding genes and pathways of the discov-
ered SNPs.

Figure 5 shows the logarithmic q–q plot of the distribution of p-values of the candidate 
SNPs computed by Aristotle for the Anthracycline Cardiotoxicity dataset, where SNPs 
are sorted in ascending order of p-values. The straight lines indicate what would happen 
under the null hypothesis for different numbers of hypothesis [35]. Interestingly, adap-
tive estimation of the number of true null hypotheses (the purple line) results in almost 
the same number of hypothesis as the number of candidate features after filtering (the 
yellow line), and the corresponding lines align. This indicates that the number of the fea-
tures passing the filtering of Aristotle is a reasonable estimate of the number of true null 
hypothesis. The order of magnitude of Aristotle’s p-values is similar to those reported in 
the guideline [53] and HUME [20] and the distribution of the p-values significantly devi-
ates away from the straight line, i.e. null distribution). This indicates that our discoveries 
are comparable to those reported by Hume and Guideline.

Fig. 5  q-q plot of p-values of SNPs. The blue curve is the p-values of candidates, calculated by McNemar’s 
test. The three linear curves show the significance level adjusted by the 0.05 false discovery rate, each based 
on different assumptions about the number of true null hypotheses. The yellow line assumes that the 
number of hypotheses is equal to the total number of SNPs in input data, which gives the most conservative 
possible adjustment. The orange curve assumes that the number of hypotheses is equal to the number of 
candidates produced by Feature Filtering and used for the statistical test, which gives the least conservative 
adjustment. The purple line estimates the number of hypothesis according to [36], a method for the 
estimation of the effective number of hypotheses, which is almost perfectly aligned to the less conservative 
approach
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The Guideline of Genetic Variants in Anthracycline-induced Cardiotoxicity [53] is 
used to provide the known causal SNPs for Anthracycline Cardiotoxicity. The guide-
line reviewed Anthracycline Cardiotoxicity genes reported in the literature using the 
Canadian Pharmacogenomics dataset as well as independent reproducibility analyses, 
and categorized those into strong, significant, and notable level of evidence of associ-
ation. However, this does not mean that the only possibly true relations are guideline 
relations. We investigate the overlap of the causal SNPs detected by Aristotle with the 
SNPs discussed in the guideline and HUME [20].

28 SNPs passed the statistical test at the FDR significance level of 5% and were selected 
by Aristotle as the causal features. The list of the predicted causal SNPs together with 
their corresponding genes and pathways is provided in Additional file 1: Table S1. Two 
of the guideline’s three strong SNPs, namely rs2229774 and rs17863783, passed the 
test with p-values of 5.4E-05 and 8.9E-05 respectively. Rs2229774 was also detected by 
HUME and its validity is carefully studied in [53]. But more importantly, rs17863783 was 
not detected by HUME. This shows the advantage of Aristotle in finding those factors 
that are causal for one archetype of cases, but would be missed if all cases are counted 
the same. Looking more closely, rs17863783 has only a very strong association with 
Anthracycline Cardiotoxicity for one of the strata, but does not have enough prevalence 
in the other strata to be detected by existing causal analysis methods.

The guideline’s third strong SNP, rs7853758, was missed due to not being included in 
any of the pathways. However, if it had been tested under the current QED, it would have 
resulted in a p-value of 0.03, which seems significant in isolation, but would probably not 
have survived multiple hypothesis testing. However, it should be noted that because the 
feature groups and consequently the final results are susceptible to change by inclusion 
of new pathways and significant SNPs, such posterior evaluations are not valid.

Furthermore, three of the guideline’s fourteen significant SNPs passed the test, namely 
rs17583889, rs10426377 and rs4673, with p-values of 1.0E-05, 5.4E-05 and 1.0E-04 
respectively. Of the remaining eleven significant SNPs, three had fewer cases than the 
minimum prevalence threshold, four did not correspond to any of the pathways, two did 
not pass the filtering process, and the two remaining ones did not have sufficiently low 
p-value to pass the multiple hypothesis testing.

It should be noted that not reporting all of the significant guideline SNPs is not neces-
sarily an undesired outcome. First, as mentioned earlier, significant relations are not the 
ground truth, and some were even considered insignificant by the guideline and HUME. 
Second, and more interestingly, there can be associations that are considered significant 
for the overall population, but lack a sufficient statistical power or association when the 
hypothesis is focused on specific stratum [54].

Moreover, from a biological standpoint, a significant number of SNPs discovered by 
Aristotle share the same corresponding genes and pathways. This not only provides evi-
dence for the functional involvement of those genes and pathways in Anthracycline Car-
diotoxicity, but also provides further evidence for the validity of Aristotle’s results.

12 of the 28 discovered SNPs share a gene with at least one other SNP. Five of these 
SNPs, namely rs795887, rs6436364, rs6756107, rs6722420, and rs10755042, are all from 
the ACSL3 gene, which is involved in two of the pathways, 1212-Fatty Acid Metabolism 
and 4146-Peroxisome. Similarly, rs496179 and rs885622 are both from the DPYD gene, 
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involved in pathway 410-Beta-Alanine Metabolism. SNPs rs17863783 and rs10426377, 
which are a strong and a significant SNP from the guideline, respectively, are both from 
the SLC28A3 gene in pathway 140-Steroid Hormone Biosynthesis.

The association among SNPs is also present at the pathway level. SNPs rs26848 
and rs26849, both in the PGP gene, share three pathways with rs545253 in the 
MTND4P31 gene. Similarly, SNPs rs16972837 and rs659517, both from gene RYR3, 
and SNP rs607483, are involved in the same pathways 4371-Apelin Signaling Pathway, 
4713-Circadian Entrainment and 5010-Alzheimer’s Disease. Moreover, the two RYR3 
SNPs share pathway 4020-Calcium Signaling Pathway with rs11869821. Another 
example is the SNPS in the UGT2B7 gene, rs7662632 and rs4356975, which have the 
same pathways 40-Pentose & Glucuronate Interconversions, 53-Ascorbate & Aldarate 
Metabolism and 830-Retinol Metabolism, as the guideline’s strong SNP, rs17863783. 
Interestingly, rs11869821, rs2271235, rs11936348 and rs611954 are each from a dif-
ferent gene, but are from the same pathway. A detailed list of genes and pathways of 
passing SNPs is available in Additional file 1: Table S1.

Conclusions
This work introduced the problem of stratified causal discovery and provided a 
method called Aristotle for solving that problem. Aristotle is applicable for high 
dimensional datasets, such as omics. It uses background knowledge for decomposing 
the large feature space into smaller subspaces that are easier to handle. It uses a state-
of-the-art stratification method called SUBSTRA for computing feature weights, 
which are used for feature selection based on outlier detection. Aristotle also detects 
the hidden strata using SUBSTRA and employs a quasi-experimental design with an 
adaptive multiple-hypothesis testing for discovering stratum-specific causal features. 
The main novelty of Aristotle is in its divide and conquer strategy of biclustering and 
scoring features multiple times in order to ensure that the features and strata used in 
causal inference are of highest quality.

The method is evaluated using both synthetic and real data. Based on the experi-
ments with synthetic data, in addition to finding the causal features detectable by the 
conventional causal discovery approach, Aristotle discovered strata-specific causal 
features. For the case of Anthracycline Cardiotoxicity, Aristotle successfully captured 
most of the known significant causal features in addition to making new predictions.

A possible limitation of Aristotle is that it consists of five main phases. This might 
result in the propagation of error from one phase to the consequent phases. There-
fore, a direction for future work would be to reduce the number of phases by pro-
viding a method that finds the causal features and the corresponding strata in an 
integrated phase.
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