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Abstract 

Background:  The gene-specific sweep is a selection process where an advantageous 
mutation along with the nearby neutral sites in a gene region increases the frequency 
in the population. It has been demonstrated to play important roles in ecological 
differentiation or phenotypic divergence in microbial populations. Therefore, identify‑
ing gene-specific sweeps in microorganisms will not only provide insights into the 
evolutionary mechanisms, but also unravel potential genetic markers associated with 
biological phenotypes. However, current methods were mainly developed for detect‑
ing selective sweeps in eukaryotic data of sparse genotypes and are not readily appli‑
cable to prokaryotic data. Furthermore, some challenges have not been sufficiently 
addressed by the methods, such as the low spatial resolution of sweep regions and 
lack of consideration of the spatial distribution of mutations.

Results:  We proposed a novel gene-centric and spatial-aware approach for identify‑
ing gene-specific sweeps in prokaryotes and implemented it in a python tool Sweep‑
Cluster. Our method searches for gene regions with a high level of spatial clustering of 
pre-selected polymorphisms in genotype datasets assuming a null distribution model 
of neutral selection. The pre-selection of polymorphisms is based on their genetic 
signatures, such as elevated population subdivision, excessive linkage disequilibrium, 
or significant phenotype association. Performance evaluation using simulation data 
showed that the sensitivity and specificity of the clustering algorithm in SweepCluster 
is above 90%. The application of SweepCluster in two real datasets from the bacteria 
Streptococcus pyogenes and Streptococcus suis showed that the impact of pre-selection 
was dramatic and significantly reduced the uninformative signals. We validated our 
method using the genotype data from Vibrio cyclitrophicus, the only available dataset 
of gene-specific sweeps in bacteria, and obtained a concordance rate of 78%. We 
noted that the concordance rate could be underestimated due to distinct reference 
genomes and clustering strategies. The application to the human genotype datasets 
showed that SweepCluster is also applicable to eukaryotic data and is able to recover 
80% of a catalog of known sweep regions.

Conclusion:  SweepCluster is applicable to a broad category of datasets. It will be valu‑
able for detecting gene-specific sweeps in diverse genotypic data and provide novel 
insights on adaptive evolution.
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Background
A selective sweep is a process where a beneficial allelic change sweeps through the popu-
lation and becomes fixed in a specific population, and the nearby sites in linkage dis-
equilibrium will hitchhike together and also become fixed [1, 2]. Those sweep regions 
containing beneficial alleles could possibly be introduced by recombination and rise to 
high frequency rapidly in the population under positive selection. If the increase in fre-
quency is recent or fast relative to other recombination events, the mutation profile in 
the sweep regions across the population will be maintained without being interrupted. 
Finally, the process will imprint genetic signatures in the population genomes, leading to 
lowered within-population genetic diversity, increased between-population differentia-
tion, and/or high linkage disequilibrium [3–5]. When such selective sweeps only occur 
at specific gene regions under selection without affecting the genome-wide diversity, 
they are described as gene-specific sweep [6].

Recently, the gene-specific sweep has been demonstrated to play important roles 
in adaptive evolution in microbial populations, such as ecological differentiation in 
Prochlorococcus [7] and Synechococcus [8], speciation in marine bacterium Vibrio 
cyclitrophicus (V. cyclitrophicus) [3, 9], and phenotypic divergence in human adapted 
pathogen Streptococcus pyogenes (S. pyogenes) [10]. The observation of the gene-specific 
sweeps in those scenarios in both environmental organisms and host pathogens suggests 
that the gene-specific sweep may represent one of the general mechanisms underlying 
adaptive evolution of microorganisms. Therefore, identifying the gene-specific sweep on 
the genome-wide scale will not only provide insights into the evolutionary mechanisms 
shaping the genetic diversity, but also help to unravel potential genetic markers associ-
ated with ecological adaptation or phenotypic differentiation.

An array of methods have been proposed to identify the gene-specific sweeps and are 
generally fall into three categories based on the genetic signatures being captured, i.e., (1) 
composite likelihood ratio (CLR) tests of the marginal likelihood of the allele frequency 
spectrum under a model with selective sweeps in comparison with that under a model 
of selective neutrality [11–13] (Kim and Stephan-2002, Nielsen-2005, Huber-2016); (2) 
comparison of the distribution of population subdivision or linkage disequilibrium in a 
region under positive selection with that of a neutral background [14, 15] (Akey-2002, 
Kim-Nielsen-2004); (3) haplotype-based approaches for detecting elevated haplotype 
homozygosity in a locus around the selected site in comparison with that under a neu-
tral model [16–20] (Sabeti-2002, Voight-2006, Ferrer-Admetlla-2014, Harris-2018, Har-
ris-2020). Those methods have demonstrated the power for detecting genetic signatures 
of selective sweep in numerous cases.

However, those methods were mainly developed for detecting selective sweeps in 
eukaryotic data and are not readily applicable to prokaryotic data, such as the haplo-
type-based approaches [21]. In addition, some challenges have not yet been sufficiently 
addressed by the currently available methods. For example, the gene-centric concept of 
the gene-specific sweep has not been taken into account leading to a low spatial resolu-
tion of sweep regions; the spatial distribution properties of the mutated sites within the 
sweep regions have not been fully considered.
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In this study, we propose a new gene-centric approach specifically for identifying the 
gene-specific sweeps in prokaryotes, which search for regions with a higher level of spa-
tial clustering of single nucleotide polymorphisms (SNPs) assuming a null distribution 
model of SNPs under neutral selection. The clustering applies to the SNP subsets of spe-
cific interests, which can be selected based on the genetic signatures of sweep regions, 
such as elevated population subdivision, reduced within-population diversity, excessive 
linkage disequilibrium, or significant phenotype association. Our approach is the first 
such type specifically for identifying gene-specific sweeps in prokaryotes and differs 
from the previous methods for eukaryotes in that: (1) it applies the gene-centric concept 
by considering the gene-specific location of SNPs; (2) it takes advantages of the spatial 
distribution properties of SNPs in the sweep region; (3) the clustering is performed on 
pre-selected target SNPs with specific genetic properties, thus minimizing the influences 
from uninformative SNPs. We offer it as an open-source tool “SweepCluster” and it is 
freely accessible at github: https://​github.​com/​BaoCo​deLab/​Sweep​Clust​er.

Methods
Pre‑selection of SNPs

The pre-selection of SNPs could be based on elevated population differentiation Fst, 
extended linkage disequilibrium LD, or phenotypic association. However, the determi-
nation could also depend on the data property and study purposes. For instance, if the 
positive selection acting on disease markers is of interest, the screening of SNPs with 
significant association with disease phenotypes using robust genome-wide association 
analysis is preferred. In the real and simulated datasets in this study, we selected the 
SNPs associated with phenotypic divergence or population differentiation.

Overview of the clustering approach

The SNP clustering algorithm employs a gene-centric concept to mimic the biological 
process of introducing gene-specific sweeps. In the gene-specific sweep model, non-
synonymous SNPs (the SNPs causing amino acid alterations) or upstream regulatory 
SNPs (the SNPs in the regulatory regions) are more likely to be under positive selection 
than synonymous SNPs (the SNPs without causing amino acid alterations) or inter-genic 
SNPs, and the selected non-synonymous SNPs along with the nearby synonymous/inter-
genic SNPs are introduced simultaneously in a single event. For a recent sweep event, 
the selected SNPs and the hitchhiking SNPs are tightly clustered in specific gene regions 
without severely ruined by other recombination events. Based on the gene-specific 
sweep model, our clustering strategy is illustrated in Fig. 1 and described previously [10]. 
Briefly, a non-synonymous or upstream regulatory SNP is randomly chosen in a spe-
cific gene/operon and serves as an anchor for an initial cluster. The initial cluster is then 
extended progressively by scanning and merging the neighboring SNPs or clusters. If the 
total span is shorter than the specified sweep length, then the surrounding SNPs or clus-
ters are merged. Otherwise, the initial cluster is extended by merging the neighboring 
SNPs or clusters which minimize the normalized root-mean-square of inter-SNP dis-
tances (NRMSD):

https://github.com/BaoCodeLab/SweepCluster
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 where di is the ith inter-SNP distance, n is the total number of the SNPs in the target 
cluster and l is the maximum spanning range of the SNPs in the target cluster. The merg-
ing process will iterate until no neighboring SNP or cluster satisfies the merging criteria. 
The majority of CPU time is spent on making decision and merging procedures with the 
time complexity of O(n + nb · k), where nb is the number of boundary SNPs and k is the 
number of initial cluster. In the meantime, the required memory is on the scale of O(N) 
due to its one-dimensional property.

Following merging, all clusters are re-examined and split if any inter-SNP distance 
within the cluster is longer than a given distance threshold. The distance threshold 
can be determined based on the genome-wide average inter-SNP distance. Under the 
null neutral model, the SNPs are independently and randomly distributed across the 
genome, and the significance of a cluster with m distinct SNPs spanning a length of l can 
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Fig. 1  Outline of the clustering procedures of SweepCluster. A non-synonymous or upstream regulatory 
SNP is randomly chosen in each gene/operon and serves as an anchoring SNP for an initial cluster. The 
initial cluster is then extended by scanning and merging the neighboring SNPs or clusters. If the total span 
is shorter than the specified sweep length, then the surrounding SNPs or clusters are merged. Otherwise, 
the initial cluster is extended by merging the neighboring SNPs or clusters such that the normalized 
root-mean-square of inter-SNP distances (NRMSD) is minimized. All clusters after merging are re-examined 
and split if any inter-SNP distance within the cluster is longer than a given inter-SNP distance threshold 
(max_dist)
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be evaluated as the accumulative probability of observing m SNPs in a cluster spanning a 
distance ≤ the observed length l and the probability density function can be represented 
as the gamma distribution [22]:

 Here, the rate parameter β is equal to the average mutation rate μ across the genome: 
μ = n/s, where n is the total number of SNPs in the genome and s is the length of the 
genome.

Evaluation of the performance of the clustering method

We evaluated the performance of the clustering using four metrics, i.e., CPU time, mem-
ory usage, accuracy and sensitivity based on simulation datasets. The evaluation of CPU 
time and memory usage was performed using real datasets with varying data size. The 
assessment of accuracy and sensitivity was conducted based on simulation datasets (see 
below). The accuracy is defined as the proportion of correctly assigned SNPs among the 
total SNPs. The sensitivity is defined as the proportion of detected clusters containing 
at least 90% of the SNPs correctly assigned. The mapping between detected clusters and 
expected clusters was determined based on reciprocal maximum overlapping between 
the two sets of clusters. The specificity is defined as the proportion of SNPs assigned 
outside of clusters among the SNPs expected to be outside of clusters.

Simulation datasets

Due to the lacking of a reference dataset with well-defined SNP clustering profiles, we 
created simulation datasets for assessing the accuracy, sensitivity, and specificity of the 
clustering algorithm. The simulation datasets were generated based on the gene region 
annotation of the bacterial strain S. pyogenes AP53, which was annotated and studied by 
us previously [23]. The purpose is to take the advantage of the natural gene regions in the 
genome for producing well-defined artificially SNP clusters under gene-specific sweeps. 
The SNPs were first generated independently and randomly on the genome based on the 
Poisson process of a given mutation rate (the average mutation rate of S. pyogenes). The 
SNPs were then processed to form expected clusters by taking the following procedures 
to satisfy the pre-defined parameter conditions of sweep length (sweep_lg) and maxi-
mum inter-SNP distance (max_dist): (1) roughly a half of the SNPs in each gene region 
were assigned non-synonymous such that each gene region contain non-synonymous 
SNPs. The purpose is to make the cluster detection by DBSCAN and SweepCluster inde-
pendent on the biological functions of SNPs, such that their comparison is robust to 
biological factors given that the design of SweepCluster favors gene regions containing 
non-synonymous SNPs. (2) removing the SNPs in the gene regions longer than sweep_
lg + 50 to create SNP clusters satisfying a specific condition of the parameter sweep_lg; 
(3) if the spanning length of the neighboring genes is longer than sweep_lg + 50 and the 
inter-genic distance is smaller than max_dist, then remove the downstream gene to cre-
ate a larger inter-genic distance to create SNP clusters satisfying a specific condition of 
the threshold of max_dist.

(2)p(m,β) = ∫ g(x,m,β = µ)dx =
l
∫
0

βm

Ŵ(m)
xm−1e−βxdx
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Real dataset of S. pyogenes genotypes

We used the real genomic datasets from two bacterial species S. pyogenes and S. suis 
to assess the effects of the procedure of SNP pre-selection. The reason to choose the 
two species is that they are known to have a high level of genomic variability and a high 
density of genotypes, which facilitate the manifestation of influences of SNP pre-selec-
tion [24, 25]. S. pyogenes is a common human pathogenic bacterium causing diverse 
disease phenotypes, such as pharyngitis, skin infection, necrotizing fasciitis, and acute 
rheumatic fever. Previous studies have shown that the alleles in the gene regions of S. 
pyogenes exhibit phenotype-dependent changes, thus providing an excellent dataset for 
selecting SNPs associated with phenotype differentiation [10, 26].

The genomic sequences of S. pyogenes were downloaded from NCBI Genbank database 
(ftp://​ftp.​ncbi.​nlm.​nih.​gov). A total of 46 genomes were chosen for this study with bal-
anced distribution of phenotypes based on the known phenotypic information [10]. The 
core genome is defined as the regions encoded by all studied genomes and was deter-
mined by aligning the shredded genomes against the reference strain AP53 (CP013672). 
Finally, the core genome contains 69,171 segregating sites mutated in at least one of the 
genomes and were concatenated for downstream analysis. Both the whole set of SNPs at 
all segregating loci and a subset of selected SNPs associated with the phenotype of acute 
rheumatic fever were used for inferring sweep regions using SweepCluster. The SNPs 
associated with the disease phenotype were identified using the Chi-squared test. The 
parameters used for SweepCluster are “-sweep_lg 1781 -max_dist 1100 -min_num 2” 
and the clustering significance was evaluated using the function “Pval” with the param-
eter of mutation rate “-rate 0.0362”. The linkage disequilibrium analysis of the SNPs was 
performed using Haploview [27].

Real dataset of Streptococcus suis (S. suis) genotypes

S. suis is a swine pathogen that colonizes pigs asymptomatically but can also causes 
severe clinical diseases in pigs such as respiratory infection, septicemia, and meningitis. 
S. suis can be classified to 29 distinct serotypes forming complex population structures 
[28]. Previous phylogenetic study showed that many serotypes exist in multiple subpop-
ulations and each subpopulation may contain multiple serotypes [25]. The complexity 
has been associated with extensive genetic recombination and genomic shuffling among 
and between populations. Therefore, it will be interesting to investigate the occurrence 
of selective sweeps among subpopulations in the highly recombining genome of S. suis.

A total of 1,197 genomic sequences of S. suis strains were downloaded from the NCBI 
Genbank database (ftp://​ftp.​ncbi.​nlm.​nih.​gov). We removed the redundancy among the 
genomes to reduce the data size by grouping them based on the submission institutions 
and selecting the most distant genomes within each group based on the phylogenetic 
structures built by SplitsTree [29] (Additional file 9: Figuure S1A). The selected genomes 
were further filtered based on their phylogenetic distance. The final dataset comprises 
209 non-redundant genomes (Additional file 9: Figure S1B) and gives rise to a total of 
236,860 segregating mutation sites with BM407 as the reference (FM252033). The core 
genome was identified using the same procedures as that for S. pyogenes. The inference 
of sweep regions using SweepCluster was performed respectively for all segregating 

ftp://ftp.ncbi.nlm.nih.gov
ftp://ftp.ncbi.nlm.nih.gov
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SNPs and for those associated with differentiation of two subpopulations (branch-1 and 
branch-2 in Additional file 9: Figure S1C). The SNPs associated with population differen-
tiation was identified using the Chi-squared test. The parameters used for SweepCluster 
and significance evaluation are “-sweep_lg 2000 -max_dist 2000 -min_num 2 and “-rate 
0.1077”, respectively. Here, “sweep_lg” is for sweep length, “max_dist” for maximum 
inter-SNP distance, “min_mum” for minimum number of SNPs in a cluster, and “rate” 
for average mutation rate across the genome.

Real dataset of V. cyclitrophicus genotypes

V. cyclitrophicus is a gram-negative bacterium inhabiting seawater. Previous studies 
reported ecological differentiation of the V. cyclitrophicus population associated with 
gene-specific sweeps [9]. The authors sequenced 20 strains of V. cyclitrophicus, which are 
divided into two phenotypic groups (S strains and L strains) according to their ecological 
partition. They showed that the partition is associated with the ecoSNPs, i.e., the dimor-
phic nucleotide positions with one allele present in all S strains and the other allele in 
all L strains. The authors then classified the ecoSNPs into 11 clusters and demonstrated 
the evidences of gene-specific sweeps in causing the ecoSNPs. This is the only available 
study of SNP clusters under gene-specific sweeps in bacteria. We used this dataset for 
benchmarking of our clustering method.

We downloaded the genomic sequences of the 20 strains from NCBI Genbank data-
base (ftp://​ftp.​ncbi.​nlm.​nih.​gov) and aligned them to a reference strain with complete 
genome assembly (ECSMB14105) to derive the segregating SNPs of 139,066 and the 
phylogenetic structure (Additional file 10: Figure S2). The ecoSNPs were obtained using 
the same definition as that in the reference [9]. The ecoSNPs were then subject to clus-
ter detection using SweepCluster with the parameters “-sweep_lg 8000 -max_dist 5000 
-min_num 2” and “-rate 0.000111”.

Empirical datasets of human genotypes

We employed the genotype datasets from the human 1000 Genomes project [30] to eval-
uate the ability of SweepCluster of identifying selective sweeps in eukaryotic data. We 
chose the 1000 Genomes datasets because they have been extensively used in previous 
studies of selective sweeps and a handful of gene loci have been well-characterized to be 
under selective sweep in specific subpopulations. We extracted the genotype data from 
three subpopulations, i.e., EUR (Europeans), AFR (Africans) and EAS (East Asians), and 
selected the mutation sites associated with pairwise population differentiation Fst. The 
calculation of Fst was based on Hudson’s estimator in the transformed formula [31]:

 where n1/n2 is the subpopulation size and p1/p2 is the minor allele frequency for the two 
paired populations. Distinct subsets of SNPs were selected using a series of Fst thresh-
olds (0.7, 0.65, 0.60, 0.55, 0.50, 0.45, 0.43, and 0.4) for inferring sweep regions to evaluate 
the robustness of SweepCluster in eukaryotic data. The parameters used for Sweep-
Cluster are: “-sweep_lg 200,000 –max_dist 40,000 –min_num 2”. The sweep regions and 
SNPs were annotated based on the genome build hg19 using ANNOVAR [32].

(3)Fst =
(p1 − p2)

2 − p1(1− p1)/(n1 − 1)− p2(1− p2)/(n2 − 1)

p1(1− p2)+ p2(1− p1)

ftp://ftp.ncbi.nlm.nih.gov
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Optimization of the parameters

We carried out the parameter simulation of sweep lengths by calculating the number 
of sweep regions inferred by SweepCluster for varying values of sweep lengths in the 
range 300–10,000 bp. The relationship between the number of sweep regions versus 
sweep length was approximated using non-linear fitting implemented in generalized 
additive models in the R package “mgcv”. The optimal estimation of the sweep length 
is calculated based on the maximum curvature in the fitting curves with the curvature 
calculated with the following formula:

 where f ′(x) and f ′′(x) are the first-order and second-order derivative of the fitting 
curves, respectively. We have provided in the package a shell script “sweep_lg_simula-
tion.sh” for automatic optimization of the sweep length for any particular genotype data-
set. The parallel acceleration was implemented in the script for fine-grained parameter 
searching.

Results
Overview of SweepCluster

The package SweepCluster performs four major functions. (1) Density: calculates the 
SNP density using a window-scanning method in a specific genomic region or in the 
genome-wide scale; (2) Cluster: executes the core functionality of the package, i.e., 
gene-centric SNP clustering; (3) Pval: estimates the statistical significance of each 
SNP cluster based on a null gamma distribution of SNPs; (4) a driver script “sweep_
lg_simulation.sh” for parameter optimization.

Computing performance

The computing performance of SweepCluster was evaluated using multiple real data-
sets with varying number of SNPs (designated as n). The memory usage of Sweep-
Cluster increases linearly with n consistent with the expected memory usage scale 
O(n). The used memory is fairly low even for the maximum datasets of 200,000 SNPs 
at about 260 megabytes (MB) (Fig. 2A). The CPU time consumption of SweepCluster 
is on the scale O(n2) at the initial stage and then becomes nearly linear O(n) when 
n > 140,000 (Fig. 2B). It is in compliance with the expected time complexity O(n + nb 
· k), whereby the CPU time is governed by optimizing the boundary SNPs when n 
is small, but governed by clustering the inner SNPs when n is large with the ratio of 
boundary SNPs rapidly declining. Considering the linear increment of memory usage 
and CPU time, and the downsized genotype datasets upon pre-selection, we antici-
pate that the computing resources will not be limiting factors for larger datasets. In 
the meanwhile, it should also be noted that the computing performance also depends 
on the applied parameters (such as the sweep length) and the genotype data proper-
ties (such as the proportion of the boundary SNPs).

(4)c =

∣

∣

∣

∣

∣
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Performance of accuracy and sensitivity

We evaluated the performance of the clustering algorithm in SweepCluster in terms of 
accuracy, sensitivity and specificity using artificially generated simulation datasets. Due 
to the lacking of such clustering method for prokaryotes, we compared the performance 
of SweepCluster with that of DBSCAN, a general-purpose density-based spatial clus-
tering algorithm without considering any trait information of the data [33]. DBSCAN 
has been commonly used in diverse scenarios for spatial clustering, and a variety of 
extensions have also been proposed to address specific challenges. For instances, the 
hierarchical clustering by HDBSCAN and OPTICS appropriate for variable density dis-
tributions [34, 35]; GDBSCAN with the ability to automatically predict optimal param-
eters [36]; Fuzzy DBSCAN for dealing with datasets with partially overlapping borders 
[37]; MR-DBSCAN and DENCAST with distributed implementation for handling large-
scale and high-dimensional datasets [38, 39]. In the current study, we chose DBSCAN 
for comparison due to its implementation in Python and efficiency matching with our 
dataset size.

The simulation datasets were created with the SNP distributions satisfying spe-
cific combinations of sweep lengths (sweep_lg) and maximum inter-SNP distances 
(max_dist). The clusters in the simulation datasets were made such that the clustering 
results are insensitive to the biological composition of the clusters (such as the synony-
mous and non-synonymous SNPs, see the Methods & Materials) and that the compari-
son with the general-purpose DBSCAN is meaningful. The comparison showed that 
the performance of both algorithms as a function of maximum inter-SNP distances is 
highly similar, and quickly approaches optimum when the maximum inter-SNP distance 
increases to roughly 200 bp, close to the average inter-SNP distance in the simulation 
datasets (Fig. 3A, C). Interestingly, the performance of SweepCluster and DBSCAN as 

Fig. 2  Memory usage (A) and CPU time (B) of SweepCluster for varying numbers of SNPs. The datasets for 
evaluation were obtained by subsetting the genotype dataset of S. suis 
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a function of sweep lengths differs (Fig. 3B, D). DBSCAN is not influenced significantly 
by the sweep length and performs nearly equally well for a broad range of sweep lengths. 
However, the performance of SweepCluster is dependent on the sweep length. It gradu-
ally improves with increasing sweep lengths and achieves optimal results at around 
800–1000 bp, coincident with the average gene length of our simulation datasets. The 
dependence of the performance of SweepCluster on the sweep length is a manifesta-
tion of the gene-aware concept of the design of the clustering method in SweepCluster. 
When the parameter sweep_lg approaches the true value, the clustering results become 
close to the true clustering profile.

Efficacy of SNP pre‑selection in real datasets of S. pyogenes and S. suis

We test the efficacy of the procedure of SNP pre-selection prior to clustering by employ-
ing real datasets from two bacterial species, S. pyogenes and S. suis of dense genotypes.

For the datasets of S. pyogenes, a total of 69,171 core SNPs were obtained across 46 
representative strains and selection of SNPs based on phenotypic association with the 
disease acute rheumatic fever reduced the number of SNPs to 1,631 (Additional file 1: 
Table S1, S2 and S3). SweepCluster was subsequently applied to the two SNP datasets 
and identified 215 and 131 significant clusters (p value ≤ 0.05), respectively (Additional 
file  11: Figure S3, Additional file  1: Table  S4 and S5). The relevance of the identified 
clusters to gene-specific sweeps is confirmed by the significant difference of population 

Fig. 3  The accuracy, sensitivity and specificity of the clustering algorithm in SweepCluster in comparison 
with DBSCAN. The accuracy, sensitivity, and specificity were calculated for a series of values of sweep 
lengths or maximum inter-SNP distances using SweepCluster. Only accuracy and sensitivity were calculated 
using DBSCAN due to the fact that DBSCAN classified all SNPs into clusters leaving no out-of-cluster SNPs. 
The accuracy and sensitivity were calculated for a series of values of eps (the maximum distance between 
two samples) and min_samples (the minimum number of samples in a neighbhorhood) using DBSCAN. 
Other parameters for DBSCAN were set as default, including metric (default = ”euclidean”), algorithm 
(default = ”auto”), leaf_size (default = 30), and n_jobs (default = -1)
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differentiation Fst between the SNPs within the clusters and those outside clusters (p 
value < 2.0 × 10–16) (Additional file 11: Figure S3C). We then used linkage disequilibrium 
(LD) between SNPs within the clusters as a proxy to examine the effect of pre-selection. 
A snapshot of the comparison of the LD patterns before and after pre-selection is shown 
in Fig. 4A, B. The average LD within clusters was significantly increased after performing 
SNP pre-selection (p value < 2.2 × 10–16), indicating the significant effect of pre-selection 
on diminishing the spurious signals in inferring sweep regions (Fig. 4C).

We carried out similar analysis for the genomic data of S. suis as that for S. pyogene. 
A total of 236,860 core SNPs were obtained across 209 non-redundant strains of S. suis 
and 349 clusters were identified using SweepCluster (p value ≤ 0.05) (Additional file 12: 
Figure S4A, Additional file 2: Table S6, S7 and S8). Without pre-selection of SNPs, we 
found that the clusters are densely distributed on the genome, implying that many of the 
clusters may contain false positive signals of selective sweep. Therefore, we selected the 

Fig. 4  Comparison of the LD patterns for the SNPs before and after pre-selection for the genotype 
datasets of S. pyogenes (A–C) and S. suis (D–F). A, D The LD pattern of SNPs in the most significant cluster 
for all segregating SNPs from S. pyogenes and S. suis, respectively. B, E The LD pattern of the selected SNPs 
with phenotypic association in S. pyogenes and population differentiation in S. suis. C, F Distribution of the 
average level of inter-SNP LD in the clusters for all segregating SNPs and the selected subset of SNPs from S. 
pyogenes and S. suis, respectively. The LD pattern in (A) involves 1,014 SNPs located in the genomic region 
1,273,267–1,286,739 of S. pyogenes AP53. The pattern in (B) involves the same set of SNPs as those used in 
Fig. 5E of Ref.10 and includes 1631 SNPs associated with acute rheumatic fever. The LD pattern in (D) involves 
1787 SNPs located in the genomic region 2,012,889–2,018,654 of S. suis BM407. The pattern in (E) includes 
2,205 SNPs associated with population differentiation of S. suis. The LD patterns were generated by Haploview 
based on the pair-wise measure of the linkage disequilibrium D’ and log likelihood of odds ratio LOD. The 
different LD levels are indicated in color with red for the strongest LD (D’ = 1 and LOD > 2), pink for the 
intermediate LD (D’ < 1 and LOD > 2) in pink, white for the weak LD (D’ < 1 and LOD < 2) in white, and purple 
for uninformative (D’ = 1 and LOD < 2). The average inter-SNP LD (measured as correlation coefficient r2) was 
significantly increased for SNPs subject to pre-selection. The between-group difference was evaluated using 
Wilcoxon rank-sum test
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SNPs associated with differentiation of two subpopulations using the Chi-squared test 
(Additional file 9: Figure S1C). A total of 2,205 SNPs satisfies the significance threshold 
(p-value ≤ 0.05) and were subject to cluster detection using SweepCluster (Additional 
file 2: Table S9). A total of 111 clusters were identified with significance (p-value ≤ 0.05) 
(Additional file 12: Figure S4B and Additional file 2: Table S10). Similarly, the relevance 
of the identified clusters to gene-specific sweeps is confirmed by the difference of popu-
lation differentiation Fst between the SNPs within the clusters and those outside clusters 
(p-value < 2.0 × 10–16) (Additional file 12: Figure S4C). We examined the effect of SNP 
pre-selection by calculating the average inter-SNP LD within the clusters (Fig. 4D–F). 
The results reveal a higher level of average LD in the clusters from the selected SNPs 
than that from the whole set of SNPs (p-value < 4.0 × 10–7), reiterating the efficiency of 
our strategy for identification of signals of sweep regions.

Influence of SNP pre‑selection methods on SNP clustering

In order to examine the influence of different pre-selection methods on SNP clustering, 
we further used population differentiation Fst for SNP pre-selection for the S. pyogenes 
dataset and compared the clustering results with that from pre-selected SNPs using phe-
notypic association above. Finally, we obtained 2,729 selected SNPs with significant pop-
ulation differentiation (Fst ≥ 0.6), covering a large proportion of the SNPs (1,277 SNPs, 
78.3%) selected using phenotypic association (Additional file 13: Figure S5A). We then 
performed clustering with SweepCluster for the 1,277 overlapped SNPs and 2,729 SNPs, 
generating 114 and 158 significant clusters, respectively (Additional file 13: Figure S5C 
and S5D). The two set of clusters cover 77% and 89% of the 131 clusters (with at least 
90% common SNPs) detected from the SNPs with phenotypic association. It indicates 
that SNP clustering results are robust to the methods of pre-selection.

Application in empirical datasets of V. cyclitrophicus

We benchmark our method using the dataset in the Ref. [9], the only currently available 
study of SNP clusters under gene-specific sweep in bacteria. We processed the genomic 
data from the 20 strains of V. cyclitrophicus (13 L strains and 7 S strains) to obtain ecoS-
NPs associated with ecological differentiation between the L and S population (Addi-
tional file  3: Table  S11 and S12). Cluster detection is subsequently performed to the 
ecoSNPs using SweepCluster and 11 significant clusters were identified (Fig. 5, Table 1 
and Additional file 3: Table S13). We validated our results by comparing with all eleven 
but two clusters reported in the Ref. [9]. We excluded cluster2 annotated as “Conserved 
protein” of which the equivalent gene in our reference cannot be precisely located, and 
cluster4 which contains flexible genes without falling into the core genome. Among the 
remaining nine clusters, seven were recovered by our method corresponding to a con-
cordance rate of 78%. It is noted that cluster5 was not recovered because it does not 
contain non-synonymous or upstream regulatory mutations, reflecting different cluster-
ing strategies of the two studies. It is noticeable that we also identified with high signifi-
cance two novel clusters cluster12 and cluster13 containing 6 and 36 SNPs, respectively 
(Table 1 and Additional file 3: Table S13).

In summary, the cluster comparison shows that the differences in the identified clus-
ters between our results and those in the Ref. [9] are mainly due to distinct clustering 
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methods and reference genomes used in the two studies. The current study used the 
strain of V. cyclitrophicus ECSMB14105, the only strain of this bacterium with complete 
genome assembly, while the study of [9] took an alternative but closely related species V. 
splendidus (12B01) as the reference. Therefore, the concordance rate between the two 
studies should have been underestimated.

Application in empirical human genotype datasets

Though SweepCluster is specifically developed for prokaryotic data of dense genotypes, 
it will be helpful to test whether it is also applicable to eukaryotic data. We examined 
three well-characterized gene regions (LCT, EDAR, and PCDH15) under selective sweep 
in pairwise populations of EUR, AFR, and EAS from the human 1000 Genomes Pro-
ject genotype datasets [30]. We at first performed SNP pre-selection based on the popu-
lation differentiation Fst at a series of cutoff values, and then applied SweepCluster to 
each dataset of selected SNPs to search for gene regions under potential selective sweep 

Fig. 5  SNP clusters with signatures of selective sweep identified by SweepCluster for ecoSNPs of V. 
cyclitrophicus. The clusters are represented as colored bars with the bar height indicating the number of 
ecoSNPs in the clusters. Previously reported clusters in Ref. [9] recovered by SweepCluster are indicated in 
black numbering from 1 to 11 and those new clusters identified by SweepCluster indicated in red from 12 to 
13

Table 1  List of gene clusters identified by SweepCluster for ecoSNPs in V. cyclitrophicus 

Chr ClusterID 
in Ref

First SNP Last SNP Cluster size Cluster length p value Gene loci range

chr1 1 2,999,463 3,017,933 50 18,471  < 10–8 FAZ90_RS13520-FAZ90_
RS13590

chr1 3 3,022,425 3,038,568 53 16,144  < 10–8 FAZ90_RS13690-FAZ90_
RS13840chr1 3 3,044,230 3,045,684 63 1455  < 10–8

chr1 3 3,052,101 3,059,345 158 7245  < 10–8

chr2 12 307,956 307,979 6 24  < 10–8 FAZ90_RS16555

chr2 11 353,294 354,071 27 778  < 10–8 FAZ90_RS16800

chr2 10 533,257 533,284 6 28  < 10–8 FAZ90_RS17530

chr2 8 744,397 745,417 35 1021  < 10–8 FAZ90_RS18465-FAZ90_
RS18470

chr2 13 1,514,577 1,525,409 36 10,833  < 10–8 FAZ90_RS21880-FAZ90_
RS21930

chr2 7 1,642,124 1,642,167 2 44 1.2 × 10–5 FAZ90_RS22415

chr2 6 1,685,459 1,686,320 103 862  < 10–8 FAZ90_RS22615
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(Additional file 4–7). At the threshold of Fst = 0.4, all three gene loci were recovered as 
significant regions under selective sweep (Fig. 6). The LCT gene, encoding lactase, was 
previously shown to be associated with lactase persistence in European populations and 
the region around it has been acknowledged as the target for strong selective sweep [19, 
20, 40]. In our cluster detection, the LCT locus along with the flanking gene regions 
(R3HDM1, UBXN4, and MCM6) forms a cluster of 57 variants spanning 235.6 kb with 
significance (p-value = 5.7 × 10–6), consistent with the strong positive selection. The 
gene EDAR is involved in ectodermal development and the missense mutation V370A 
showed evidences for association with hair thickness in East Asians [41, 42]. The region 
around EDAR has been identified to be the locus undergoing strong selective sweep [19, 
42, 43]. We localized the EDAR-centered region (GCC2, LIMS1 and EDAR) of 132 vari-
ants (including V370A) spanning 145.8  kb with significance (p-value < 10–8), implying 
strong selection signals. The gene PCDH15 encodes protocadherin and previous studies 
showed evidences of positive selection in East Asian populations [43, 44]. We recovered 
the PCDH15 locus as a highly significant sweep region consisting of more than 300 vari-
ants spanning 369.5 kb (p-value < 10–8), indicating a strong signature of selective sweep.

Our results show that the size and significance of the sweep regions depend on the 
SNP selection threshold of Fst, but the detection efficiency is robust for a wide range of 
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Fst. The signals of selective sweep emerge in all three gene regions at the threshold of 
Fst = 0.4, and persist until Fst ≥ 0.7. Above this threshold, the sweep signals in all three 
genes disappear. It is because a low number of mutations remain at the high level of 
Fst and are sparsely distributed across the chromosome, making spatial clustering of the 
mutations inaccessible.

In order to assess the overall performance of SweepCluster on detecting sweep regions 
for eukaryotic genotype data, we collected a catalog of 20 representative gene loci 
known to be under selective sweep or previously identified to be under positive selection 
by multiple studies [17, 19, 20, 40, 43], and examined whether they can be recovered by 
SweepCluster (Additional file 8). Notably, 16 of them (80%) were recovered by Sweep-
Cluster and 14 (70%) reach high statistical significance (p-value < 0.006). The high rate 
of recovery reiterates the efficiency and robustness of SweepCluster in detecting sweep 
regions of eukaryotic data.

Optimization of parameters

The performance evaluation based on simulation data showed that the performance of 
the clustering algorithm in SweepCluster is closely related with the sweep length. There-
fore, proper estimation of sweep lengths is critical for confident inference of selective 
sweep regions. Unfortunately, in many cases, it is not straightforward to derive the value 
of sweep lengths from genotype data. Therefore, we provided in the package a simulation 
script “sweep_lg_simulation.sh” to search for the optimal estimation of the sweep length 
for a specific genotype dataset. It is particularly suitable for prokaryotic data because the 
prokaryotes use gene conversion as the main vehicle for introducing selective sweeps 
and the sweeps are generally uniform in size [21].

We did the simulation by calculating the number of sweep regions inferred by Sweep-
Cluster at a series of values of sweep lengths and then fitting a non-linear model for 
the relationship between the number of sweep regions and sweep lengths. The optimal 
estimation of sweep lengths is determined by the point of maximum curvature in the 
fitting model. Here we present the simulation results for the three real datasets of S. pyo-
genes, S. suis, and V. cyclitrophicus, respectively (Fig. 7). It is shown that all three datasets 
have the maximum curvatures at the sweep length of ~ 2000 bp (1638 bp for S. pyogenes, 
1500 bp for S. suis, and 2157/1989 bp for the two chromosomes of V. cyclitrophicus). It is 
consistent with our previous estimation of 1,789 bp for S. pyogenes using the alternative 
tool ClonalFrame [10, 45].

Discussion
We have proposed a gene-centric spatial clustering approach to identify gene-spe-
cific sweeps in bacterial polymorphism data. It targets for the mutation sites com-
plying with specific genetic properties of selective sweeps and captures the regions 
with unusual clustering patterns of those mutations differing from that of a neutral 
expectation. Based on the known genetic properties of gene-specific sweeps, the tar-
get mutations are first obtained by selecting those with elevated population differ-
entiation, reduced within-population diversity, heightened linkage disequilibrium, or 
significant phenotype association. The selected subsets of mutations are then subject 
to clustering. Therefore, our approach for inferring sweep regions employs two layer 
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of information, i.e., genetic signatures and spatial distribution patterns of mutations 
under gene-specific sweeps in comparison with current methods focusing only on 
one layer of information in the genotype data [11–14, 16, 19, 20].

The purpose of the procedure of selecting target mutations of particular genetic 
signatures prior to clustering is to remove the spurious or uninformative signals and 
perform spatial clustering only for the mutations related with selective sweep. The 
impact of mutation selection was dramatic in our two example datasets from the bac-
teria S. pyogenes and S. suis. The level of linkage disequilibrium between SNPs, as a 
signature of selective is significantly increased by selecting those mutations associ-
ated with disease phenotypes or population differentiation. The ultimate datasets 
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upon prior selection are more sensitive to the statistical test under the neutral model 
of spatial distribution of mutations, making it more efficient to identify gene regions 
under selective sweeps. Using the only available dataset of gene-specific sweeps in 
bacteria [9], we validated our method yielding a concordance rate of 78% for the 
detected clusters even with distinct clustering strategies and reference genomes in the 
two studies.

Our approach is specifically designed for prokaryotic data of dense genotypes such 
that the mutations of particular genetic properties can be exhaustively obtained and the 
distribution of those mutations can be statistically distinguished from the null model. 
However, the tests  showed that our method also performs well for eukaryotic data of 
sparse genotypes. We recovered the well-characterized gene regions (LCT, EDAR, and 
PCDH15) under selective sweeps in the 1000 Genomes Project genotype datasets. The 
signals of selective sweeps in the three gene loci persist for a wide range of mutation 
selection criteria, suggesting the robustness of our method on identifying sweep regions 
in sparse genotype data. Moreover, the spatial-aware strategy of the clustering makes the 
resolution of detected sweep regions narrowed down to single nucleotides facilitating 
identifying relatively old sweeps of low numbers of selected sites.

There are some limitations of our approach. It cannot distinguish explicitly between 
hard sweeps and soft sweeps, or recent sweeps and older sweeps because mixed sites 
of varying strength of selection are treated as a whole for statistical tests. Our method 
does not deal with the confounding effects of background selection, as the signatures of 
background selection are very similar to the real selection and it has been a challenge to 
confidently classify the background selection for many alternative approaches.

Conclusion
We proposed a novel gene-centric approach for identifying gene-specific sweeps imple-
mented in the Python tool SweepCluster. It performs spatial clustering of polymor-
phisms to infer the regions with signatures of gene-specific sweeps by employing two 
layers of information, i.e., genetic properties and spatial distribution models of the pol-
ymorphisms. It is specifically developed for prokaryotic data of dense genotypes and 
exhibit efficiency and robustness in detecting sweep regions in the validation datasets. It 
also performs well for eukaryotic data in a wide dynamic range of parameters of genetic 
properties. We expect that our new method will be valuable for detecting gene-specific 
sweeps in diverse genotype data and provide novel insights on evolutionary selection.

Availability and requirements

Project name: A python tool SweepCluster.
Project home page: https://​github.​com/​BaoCo​deLab/​Sweep​Clust​er
Operating system: Linux.
Programming language: Python.
Other requirements: Python 3.7 or higher, scipy, numpy, pandas, scikit-learn, multi-

processing, R 3.5 or higher.
License: GPL3.0
Any restriction to use by non-academics: Not for non-academics.

https://github.com/BaoCodeLab/SweepCluster
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Abbreviations
CLR: Composite likelihood ratio; SNPs: Single nucleotide polymorphisms; LD: Linkage disequilibrium; NRMSD: Normal‑
ized root-mean-square of inter-SNP distances; LCT: Lactase; EDAR: Ectodysplasin A receptor; PCDH15: Protocadherin; 
R3HDM1: R3H domain containing 1; UBXN4: UBX domain protein 4; MCM6: Minichromosome maintenance complex 
component 6; GCC2: GRIP and coiled-coil domain containing 2; LIMS1: LIM zinc finger domain containing 1.
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Additional file 13: Fig. S5 SNP clusters with signatures of selective sweep identified by SweepCluster for S. 
pyogenes genotypes pre-selected using population differentiation Fst. (A) Comparison of the number of SNPs 
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Fig. S3B, it is presented here for convenient comaprision). (C) The clusters detected from 1,277 SNPs selected by 
both methods. (D) The clusters detected from 2,729 SNPs selected by population differentiation. The clusters are 
represented as colored bars with the bar height indicating the cluster size (the number of SNPs in the clusters) and 
the bar width indicating the spanning length. The significance of the clustering evaluated with -log10 (p-value) is 
indicated in gradient colors.
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