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intra-sentential and inter-sentential levels is a new topic worthy to be explored. Except
for the unstructured biomedical text, many structured knowledge bases (KBs) provide
valuable guidance for biomedical relation extraction. Utilizing knowledge in the RC
framework is also worthy to be investigated. We propose a knowledge-enhanced read-
ing comprehension (KRC) framework to leverage reading comprehension and prior
knowledge for biomedical relation extraction. First, we generate questions for each
relation, which reformulates the relation extraction task to a question answering task.
Second, based on the RC framework, we integrate knowledge representation through
an efficient knowledge-enhanced attention interaction mechanism to guide the bio-
medical relation extraction.

Results: The proposed model was evaluated on the BioCreative V CDR dataset and
CHR dataset. Experiments show that our model achieved a competitive document-
level F1 of 71.18% and 93.3%, respectively, compared with other methods.

Conclusion: Result analysis reveals that open-domain reading comprehension data
and knowledge representation can help improve biomedical relation extraction in our
proposed KRC framework. Our work can encourage more research on bridging reading
comprehension and biomedical relation extraction and promote the biomedical rela-
tion extraction.
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Background

Chemical, disease, and their relations play an important role in biomedical research [1]
and relation extraction is an essential task in biomedical text information extraction.
Many experts have been making efforts to perform research on automatic biomedi-
cal information extraction from unstructured text. To promote research on chemical-
disease relation (CDR) extraction, the BioCreative-V community proposed a subtask:
chemical-induced disease (CID) relation extraction. Additionally, [2] proposed a docu-
ment-level dataset for chemical reaction (CHR) relation extraction. Here, the relations
between entities are expressed not only in a single sentence but also across sentences.
As described by [3], 30% of relations in the Biocreative V. CDR data are expressed
across more than one sentence. As an example in Fig. 1, it shows the title and abstract
of a document containing two chemical-induced disease pairs (D005445, D004244)
and (D005445, D010146). Among these instances, chemical flunitrazepam’ and disease
‘pain’ appear in the same sentence, while chemical flunitrazepam’ and disease dizziness’
are expressed across sentence boundaries.

Typically, relation extraction can be formulated as a classification task for can-
didate entity pairs, and many machine learning methods have been investigated to
score mention pairs to extract relations, including traditional machine learning (ML)
methods and neural network (NN)-based methods. Most of them attempt to mine
the context information between entity mention pairs to provide evidence for relation
extraction. Some extract rich statistical and knowledge features, some mark the enti-
ties by start and end symbols [4, 5] or extract the shortest dependency path between
entities [1, 6, 7]. It helps to capture the context information and make up the abil-
ity to model long-distance context sequences. Early studies mainly utilized maximum
entropy (ME) models, support vector machines(SVMs)and other kernel-based mod-
els combined with rich context features (e.g., statistical linguistic features), knowl-
edge features and graph structures [8—10]. Li et al. [10] also exploits co-training with
additional unlabeled training data. Since feature extraction is time-consuming and
difficult to expand, neural network-based methods are widely explored and achieve
significant performance. Le et al. [6] extracts the shortest dependency path (SDP) and
learned context information through Convolutional Neural Network (CNN) for CID
extraction. Nguyen et al. [11] investigates the incorporation of character-based word
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Fig. 1 The sample document. Chemical and disease mentions are marked in blue and red, respectively. CID
means the chemical-induced disease relation
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representations into a standard CNN-based relation extraction model. Verga et al.
[3] forms pairwise predictions over entire abstracts using a self-attention encoder.
Zheng et al. [4] uses CNN and LSTM to learn the document semantic formation and
integrated knowledge representation. Li et al. [5] utilizes recurrent piecewise convo-
lutional neural networks integrating knowledge features. Sahu et al. [2] proposes to
build a labeled edge graph convolutional neural network on a document to capture
local and non-local context dependency information for inter-sentence biomedical
relation extraction. Zhou et al. [1] proposes a knowledge-guided convolution network
to leverage prior knowledge representation on the SDP sequence for CID extraction.

Machine reading comprehension (MRC) aims to answer a query according to its
corresponding contexts, one of which is to extract answer spans from contexts. The
task is formulated as a multi-classification task to classify the start index and the end
index of the answer over its contexts. Inspired by the performance and the compre-
hension ability, MRC has been a trend to solve other natural language processing
(NLP) tasks. Levy et al. [12] reduces the zero-shot relation to the problem of answer-
ing simple reading comprehension questions to potentially extract facts of new types
that were neither specified nor observed a priori. Li et al. [13] casts the entity-relation
task as a multi-turn question answering problem and identifies the answer spans from
the context. Li et al. [14] proposes to formulate the flat and nested named entity rec-
ognition problems as a machine reading comprehension task instead of a sequence
labeling task. Additionally, tasks such as summarization, machine translation and so
on are framed as question answering by making task specifications to take the form of
a question, a context and an answer [15].

Motivated by the capability of context understanding on documents, we regard bio-
medical relation extraction as a reading comprehension problem. We utilize a question
formulated by the chemical and relation description to query the context for diseases
or chemicals, hence acquiring the relation between chemical and disease entities or the
relation between chemical entities. In this paper, we are interested in handling biomed-
ical relation extraction with the reading comprehension framework based on the effi-
cient pretrained language model (LM), effectively integrating knowledge with context
together and distinguishing different knowledge in this framework. Hence, we propose
a knowledge-enhanced RC (KRC) framework for biomedical relation extraction, which
integrates knowledge by effective two-step attention layers. The proposed method was
evaluated on the BioCreative V CDR dataset and the CHR dataset respectively. Experi-
ments show that our proposed model achieved competitive performance on both data-
sets compared with other state-of-the-art methods. Our contributions are as follows:

+ To the best of our knowledge, this paper first proposes a novel reading compre-
hension (RC) framework to address the biomedical relation extraction from the
literature. Our work may encourage more research on bridging MRC and biomed-
ical relation extraction so as to take advantage of MRC.

+ To make full use of the pretrained language model (LM) and knowledge represen-
tation, this paper proposes a knowledge-enhanced RC model based on pretrained
LMs to improve biomedical relation extraction.
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+ Through experiments, we demonstrate the effectiveness of using open-domain
reading comprehension data and knowledge information in our proposed RC
framework for biomedical relation extraction. We show that our method can
achieve competitive performance on two document-level datasets.

Problem formulation

Given a  context sequence C = (wl,wl...,w") and two entities

S Se1+1 e S, Se2+1
e1 = (W, w AT L, we) and ey = (W, wet o, L.

L Wwe?) in the context, relation
extraction(RE) aims to clarify the relation r between e; and ey, where r € R is selected
from a predefined relation list R. For the chemical-induced disease (CID) relation extrac-
tion task, the relation r is ‘induce. Here, we reduce the relation extraction task as a reading
comprehension task with unanswerable answers. We transform the annotated RE data

(Context, Entity ey, Entity ey, relation r) to the RC data (Context, Query(ey, r), Answer ey).

Given the context sequence C = (wcl, wf, ..., wl), the entity e; = (wge, wielﬂ, W
and the relation r, extract the entity e; = w2, weT wé) from the context by

answering a query Q = (w;, wg, ..

se2 and e,y respectively denote the start index and the end index, where s, € [1,#],

., w,’;’) constructed by e; and relation r description.

e € [1,n]and 5. < €.
Given context C and question Q, our method either returns an answer span or indi-
cates that there is no answer.

Methods

We adopt a competitive pretrained language model BERT [16] as our backbone that
deals with SQuAD [17] and suits the condition of no answer. Our model consists of
three major layers: (1) BERT encoder layer; (2) knowledge-enhanced attention layer; (3)
prediction layer. Details are described as follows.

BERT encoder layer

To be in line with BERT, given the context sequence C = (wl,w2,...,w") and
the query sequence Q = (W;, wfl,...,w;”), the input is formulated as a sequence

Sqe = ([CLS],W;,WS, .. .,w;”, [SEP],wcl,wf, ..., wZ, [SEP]), where [CLS] indicates the
start token of Q and [SEP] separates Q and C. Then, the word sequence input is tokenized
to token sequence s = [s,']f=1 concatenating with their position embedding and segment
embedding. Denote the BERT encoder which consists of L stacks of transformers as
BERT () as follows:

sf = Tmnsformer(sf_l),l e[1,L] (1)

The hidden representation h = [lfzi]i‘:1 for the token sequence obtained from BERT is
h = BERT (s).

Knowledge-enhanced attention layer

To obtain the knowledge-enhanced context representation, this layer is designed
to integrate knowledge representation with the context representation of BERT.
Here, we describe the details of this layer based on CID relation extraction. In the
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Fig. 2 The overview of the knowledge-enhanced RC model

knowledge base, the same entity pair in different documents may contain different
relation types. This layer shows how to integrate noisy knowledge representation into
the context representation simply and effectively. It takes the BERT hidden represen-
tation h and the knowledge representation r as inputs, and outputs the knowledge-
enhanced representation h.

To integrate prior knowledge representation, we first extract chemical-disease triples
from the Comparative Toxicogenomics Database(CTD) [18] and employ TransE [19] to
learn knowledge representation. Following [1], we extract (chemical, disease, relation)
triples from both the CDR corpus and the CTD knowledge base. In the CTD base, there
are three types of relations, including ‘marker/mechanism, ‘therapeutic’ and ‘inferred-
association, where only ‘marker/mechanism’ indicates the CID relation. For those pairs
in CDR but not in CTD, we set their relations to a specific symbol ‘null’. Thus, there
are four types of relations among all the triples and we finally obtain 2577184 triples for
knowledge representation learning. Then, all the generated triples are regarded as cor-
rect examples to learn lower-dimension chemical representation, disease representation
and relation representation r; by TransE, where r; € R%, and ds denotes the representa-
tion dimension. Here, the chemical, disease and relation representations are initialized
randomly with the normal distribution for training. It is worth noting that there may be

more than one relation type between an entity pair (Fig. 2).
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Then, the probable relation representation r = [r[]i’=1 between candidate entities of
each instance is introduced into the RC model to provide evidence. Here, we take
two-step attention to combine the knowledge information and context informa-
tion. First, we adopt an attention mechanism to select the most relevant KB relation
representation for hidden representation of each token. A bilinear [20] operation is
employed to calculate the attention weights between hidden representation h; € R%
and relation representation r; € R“%, where W; € R%1%% and b; € R? are trainable

parameters.

exp(h;Wir; +b)

Z?/:l exp(h;Wir, +by) (2)

Qjr =

Then, each relation representation r; is aligned to each hidden state h;. Here, k; is
regarded as the weighted relation representation corresponding to each token.

ki = ;aitrt (3)

Second, we adopt a knowledge-context attention mechanism between the token’s knowl-
edge representation k; on each position of the token sequence and the hidden represen-
tation h;. A bilinear operation is employed between k; and h; to achieve weights on the
hidden representation, while Wy € R%%d1 and by € R are parameters.

exp(k;Wh; + by)
Z}lﬁzl exp(k;Wahy + by) (4)

Bij =

Finally, the hidden representation h of tokens is aligned to the weighted knowledge rep-
resentation k and weighted to each position i. Here, we denote the output after our two-

step attention ash = [h;]f:r

h — h;

1= 2 Py 6
j

Here, h; is the context representation enhanced with knowledge representation.

Prediction layer

To obtain the final representation for prediction, the hidden representation h; and the
knowledge enhanced representation h; are first combined with a linear operation to
achieve the weighted representation v; = Wjh; + W, h; + b. Then, we concatenate the
knowledge enhanced representation h; with the weighted representation v; to achieve
the input u; = [h;-; v;] of the prediction layer. A feed-forward network FFN with RELU
[21] activation is applied to the knowledge attention result, which works in some exist-
ing work. Finally, the output is applied to predict the start and end indexes of answers.
For the situation where there is a null answer, its start and end indexes are both zero for
the optimization of the objective function. Actually, the index of zero indicates the start
token ‘[CLS]’ It is not the real text in the context and does not influence the optimization
of the model for the indexes of non-null answers.
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FFN (u;, W3,b3, Wy, bg) = RELU (u; W3 + b3)W4 + by (6)

Here, W4, by, W3 and b3 are trainable parameters. Along the sequence dimension, the
start probability distribution and the end probability distribution for each token s; are
calculated as:

»° exp(FFN (u;, W35, b3, W3, b)) -
)", exp(FFN (w;, W3, b3, W, b)) @

S —

o= exp(FFN (u;, W&, b%, W, b%))
' 3, exp(FFN (uj, W5, b3, W, bg)) ®)

After answer prediction, a predicted disease text or a null answer can be achieved. If the
predicted disease text matches the gold disease name, a CID relation will be detected
between the disease and the chemical which is described in its corresponding question.

After relation extraction on intra-sentential and inter-sentential data, two sets of pre-
diction results are merged. Since all the candidate instances with respect to mention
pairs are extracted, we judge that an entity pair has a CID relation as long as at least one
instance was detected in which the CID relation exists. Since several documents may
have no candidate CID relations after data preprocessing, similar to many other systems,
we take the following heuristic rules to find the likely CID pairs in them: All chemicals in
the title are associated with all diseases in the abstract.

Objective function

To predict the start and end index of answer spans, the optimization objective is to
maximize the conditional probability p(ys,ye|s) of start index y; and end index y, on
the given input sequence s. The loss is defined as the average of log probabilities of the
ground truth start and end position based on the predicted distributions. N is the num-
ber of examples. The answer span index by (i, j) with maximum p?p]? is chosen as the

answer span.

N
1 log (p* log (p°
Loss — _72% 0g(p°) + yelog (p°)
N

)
=1 2

Experiments and results
Dataset
We evaluated our model on two document-level biomedical relation extraction datasets,
including the BioCreative V CDR dataset and the CHR dataset. Table 1 shows the overall
statistics of the two datasets.

The BioCreative V. CDR dataset' was derived from the Comparative Toxicogenom-
ics Database (CTD) for CID relation extraction. The position and MeSH IDs of chem-
icals and diseases are annotated by experts. It contains 1500 titles and abstracts of

! https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/track-3-cdr/.
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Table 1 The overall statistics of the CDR and CHR datasets

Dataset Splits Documents Chemical IDs Disease IDs pos neg

CDR Training 500 1479 1961 1038 4479
Development 500 1519 1851 1012 4310
Test 500 1455 2007 1066 4471

CHR Training 7298 28158 - 19643 69843
Development 1182 4575 - 3185 11466
Test 3614 13800 - 9578 33339

PubMed articles, where the training, development and test sets each consist of 500
abstracts. Following [1], we combine the training set and development set together
as a set due to the limited number of CDR examples, 80% of which is used as training
and 20% of which is used as validation.

Experiments are also conducted on the CHR dataset [2]. It was created by distant
supervision and is a document-level dataset with relations between chemicals. It con-
tains 12,094 titles and abstracts of PubMed articles, 7298, 3158 and 9578 each for
training, development and test datasets.

The experimental results are evaluated by comparing the set of annotated chemical-
disease relations in the document with the set of predicted chemical-disease through
precision (P), recall (R) and F1-measure (F1).

Data preprocessing
To transform data to RC format instances, data was preprocessed as follows.

Instance Construction We extracted entity pair candidate instances from the
original data, including intra-sentential and inter-sentential instances. For intra-sen-
tential instances, all the entity pairs existing in the same sentence are extracted. For
the inter-sentential instances, we follow some of the rules [1] to extract candidates:
(1) In a document, all intra-sentential chemical-disease instances will not be consid-
ered as inter-sentential instances. (2) The sentence distance of all the inter-sentential
instances will not be more than 3. Thus, the chemical-disease entity candidate pairs
and their corresponding contexts are extracted. To be in line with the RC model, we
will remove (mask) the other disease mentions except for the disease in the current
pairs when multiple diseases occur in the context.

Hypernym Filtering According to the annotation guideline of the CID task, it
is to extract the most specific chemical-disease pair. Following [1], we remove the
instances containing hyper entities that have more specific entities in the document
according to the entity index in the Medical Subject Headings (MeSH) [22]. Some of
positive chemical-disease entity pairs may be filtered by this strategy and are treated
as false negative instances.

Query Construction After extracting the chemical-disease candidate instances,
we format a natural language query combining entity e; mention and relation r
description, here r is the chemical-induced disease relation. Taking the candidate

instance (flunitrazepan, pain) in S; in Fig. 1 as an example, we formulate a query



Chen et al. BMC Bioinformatics (2022) 23:20 Page 9 of 19

Table 2 Doc-level performance comparison over our proposed model without and with
knowledge on the CDR dataset

KBs Model P (%) R (%) F1 (%)
Without KBs
Traditional ML ME [8] 62.00 55.10 5830
Kernel-based SVM [24] 53.20 69.70 60.30
NN-based ML
Relation classification CNN+SDP [6] 58.02 76.20 65.88
LSTM+CNN [25] 56.20 68.00 61.50
BRAN(Transformer) [3] 55.60 70.80 62.10
CNN+CNNchar [11] 57.00 68.60 62.30
GCNN [2] 52.80 66.00 58.60
Sequence labeling Bio-Seq(LSTM+CRF) [23] 60.00 67.50 63.50
Reading comprehension RC (Ours) 65.83 66.32 66.07
With KBs
Traditional ML
SVM+-Rules(+CTD)[26] 68.15 66.04 67.08
SVM(4-CTD+-SIDER+MEDI+MeSH) [9] 65.80 68.57 67.16
Kernel-based models(+CTD) [10] 60.84 76.36 67.72
SVM(+4-Euretos KB) [27] 73.10 67.60 70.20
NN-based ML
Relation classification CAN(+CTD) [7] 60.51 8048 69.08
LSTM+CNN(+CTD) [4] 63.60 76.80 69.60
RPCNN(+CTD+SIDER+MEDI+MeSH fea) [5] 65.24 7721 70.77
KCN(H+CTD) [1] 69.65 7298 71.28
Reading comprehension KRC(+DCh-Miner) (Ours) 65.33 67.17 66.23
KRC(4+CTD) (Ours) 7193 7045 71.18

‘fea’ denotes features

“what disease does flunitrazepan induce” to ask the context expecting the answer is
pain. Also, we adopt another strategy to format a pseudo query for comparison with
the natural language query. We concatenate the entity e;, the relation r description
and the type of entity e to construct the pseudo query.

On the CHR dataset [2], all the chemical-chemical entity pairs and their full titles and
abstracts are extracted for instance construction. After extracting the chemical candi-
date instances, queries were also constructed with the entity e; mention and relation r
description. Here, r is the chemical reaction relation description.

Implementation details

We trained our knowledge on TransE* with 1000 epochs and the relation embedding size
was set to 256. For the CDR dataset, we tuned the hyperparameters on the new develop-
ment set to optimize our proposed model. We use the uncased BioBERT(base) as the
pretrained language model. We set the batch size to 12, 32 respectively on the CDR data-
set and the CHR dataset. The learning rates of the bert encoder and the downstream

% https://github.com/thunlp/KB2E/.
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structure are set to 3e-5 and le-4 on the experiments without KBs, while their learning
rates are set to 2e-5 and 3e-5 on the experiments with KBs.

Compared models

To evaluate our approach, we compared the proposed model with the existing rel-
evant models. As shown in Table 2, the comparison models for the CDR dataset
were divided into two categories: methods with knowledge bases (KBs) and methods
without knowledge bases. Each category includes traditional machine learning (ML)
based methods and neural network (NN) based methods. Here, we mainly introduce
the NN-based methods.

o+ CNN+SDP [6] proposed using CNN to learns features on the shortest depend-
ency path between a disease and a chemical for CID relation extraction.

+ BRAN (Transformer) [3] utilized an efficient transformer to encode abstracts and
form pairwise predictions using a bi-affine operation to score all pairs of mentions
and aggregating over mention pairs.

+ Bio-Seq (LSTM~+CRF) [23] proposed a sequence labeling framework for biomedi-
cal relation extraction and extended it with multiple specified feature extractors,
especially for inter-sentential level relation extraction.

o LSTM+CNN [4] utilized LSTM and CNN to hierarchically extract from docu-
ments integrating relation knowledge of CTD.

« RPCNN (PCNN) [5] proposed using PCNN and RNN to extract document-level
representations integrating the knowledge features of four medical KBs for CID
relation classification.

+ KCN (GCNN) [1] combined the shortest dependency path (SDP) sequence and
knowledge representation for CID relation classification. It adopted the gated con-
volutional network (GCNN) with attention pooling combining entity and relation
knowledge representations.

« Ours Different from other models, we propose a new RC framework for biomedi-
cal relation extraction and utilize the pretrained LM combined with the knowl-
edge of relation representation between the possible chemical and disease. It is
worth noting that our model can automatically distinguish different types of rela-
tion knowledge from CTD.

Performance comparison with previous methods
We compare our proposed model with previous work respectively on the CDR and
CHR datasets.

For the CDR dataset, we divide previous models into two categories: models with-
out knowledge bases and models with knowledge bases. Here, the compared models
are rich and diverse, such as heuristic rules, joint training with NER, relation classifi-
cation, sequence labeling and so on.

Among the systems without KBs, much work is based on the neural networks
(NNs). As shown in Table 2, the graph kernel-based SVM is competitive among the
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traditional ML methods, but most of NN-based methods outperform the traditional
ML methods which indicates the NN’s more effective ability of context modeling.
They almost use entity pair relation classification methods except that Bio-Seq [23]
adopts sequence labeling to deal with the CID extraction task. Under the condition
of no extra knowledge, our RC-based model outperforms the previous work and
achieves an improvement of 0.19%. Bio-Seq [23] is a sequence labeling framework
adopting LSTM and CRFE. Compared with Bio-Seq [23], there is an improvement of
2.57%. CNN+SDP [6] is a relation classification method. It extracted the CID relation
with CNN over the shortest dependency path (SDP) of context to deal with the long
sequence and achieved an F1 score of 65.88%. Our method transforms the relation
classification to reading comprehension, no matter on intra-sentential data or inter-
sentential data. Different from CNN+SDP [6], our model does not need to transform
the context sequence into SDP and just uses the pretrained LMs to extract context
information directly from the context sequences. We conduct pointer prediction over
the context sequences instead of classification and achieve the state-of-the-art perfor-
mance of 66.07% on the CDR extraction data under the condition of no KBs.

In addition to the context information, the knowledge information also plays an
important role in our RC-based model for CID relation extraction. Among the systems
with KBs, it mainly includes feature-based traditional ML methods and neural network
(NN)-based methods. Most of the feature-based traditional ML methods adopt support
vector machines (SVMs) and other kernel-based models. More details and differences of
the compared NN-based methods can be seen in Section 4.4. Inspired by [1], we utilize
the knowledge low-dimension representation to guide our RC-based model for chem-
ical-induced disease extraction and then derive the CID relation. Different from [1],
our method does not need to extract the SDP of the sequence and can integrate more
than one type of relation from CTD into the RC model through the knowledge atten-
tion mechanism. On the NN-based models with knowledge representation, our KRC
model achieves competitive performance. Compared with the only KB method and our
RC model without KBs (RC in Table 2), our RC model with KBs (KRC in Table 2) per-
forms better, which indicates that our KRC model can discern different knowledge and
incorporate the knowledge with our attention layers effectively. To test our KRC model
on other KBs, we also conduct experiments with the disease-drug association network
(DCh-Miner)? of the Stanford SNAP database. Compared with the performance without
KBs, it is slightly better. Compared with the performance on CTD knowledge, it per-
forms not so well. It may be caused by the difference between the two KBs. DCh-Miner
only contains a relation that means the drug is associated with disease and we name it
“association’, while the CTD knowledge contains three relations including “therapeutic’,
“inferred-association’, “marker /mechanism” and only “marker /mechanism” indicates
the relation of chemical-induced disease. It is worth noting that DCh-Miner is extracted
from the CTD and the relation “association” covers three relations of CTD. The knowl-

edge in DCh-Miner may mislead the model and decrease the performance.

3 http://snap.stanford.edu/biodata/datasets/10004/10004-DCh-Miner.html.
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Table 3 Doc-level performance comparison over our proposed model without knowledge on the

CHR dataset
Model P (%) R (%) F1 (%)
NN-based ML
Relation classification CNN-RE [2] 81.2 87.3 84.1
RNN-RE [2] 83.0 90.1 86.4
GCNN [2] 84.7 90.5 87.5
Reading comprehension RC (Ours) 935 93.0 93.3

Table 4 Results over LMs finetuned by open-domain reading comprehension dataset without KBs
on the CDR dataset

Model Intra sentential level Inter sentential level Document level

P (%) R (%) F1(%) P (%) R (%) F1(%) P (%) R (%) F1 (%)

biobert 62.27 57.13 5959 49.80 1144 1861 59.85 69.23  64.20
biobert+SQuAD 67.09 5450 60.14 60.10 11.16 18.83 65.83 06632 66.07

For the CHR dataset, there are only models without knowledge bases for compari-
son. Since it was created by distant supervision with the graph database Biochem4j
and chemical relation labels in the dataset are the same as those in Biochem4;j, we did
not add this knowledge to our proposed model for prediction. As shown in Table 3,
three previous NN-based methods are compared with our proposed model. GCNN
[2] built a labeled edge graph convolutional neural network model on a document
graph for document-level biomedical relation extraction. Different from GCNN [2],
we transform the entity pair classification over a document to reading comprehen-
sion over a document. Compared with GCNN [2], we observe that our proposed RC
model is 5.8 percentage points higher than the best F1 score and achieves the state-
of-the-art performance.

Discussion

The effect of different pretrained models

As shown in Table 4, we compared models finetuned on extra open-domain reading
comprehension data. Since our data is biomedical text, we choose the biobert [28] as
the base model which is a language model named bert pretrained on a large scale of
biomedical text. To investigate the effect of reading comprehension pretrained tasks,
we further utilize the biobert model finetuned on the SQuAD [17] data by [29]. We
named this model biobert+SQuAD in Table 4. Here, SQuAD is a large-scale open-
domain reading comprehension dataset. Compared with both traditional ML meth-
ods and neural network based methods, our RC model based on biobert achieves
the top 3 performance. It indicates that our proposed RC framework is effective for
biomedical relation extraction. Compared with results only on the biobert model,
adding open-domain reading comprehension data helps improve the performance of



Chen et al. BMC Bioinformatics (2022) 23:20 Page 13 of 19

Table 5 Results over pseudo queries and natural queries without KBs on the CDR dataset. ‘Natural
Query'means natural language queries

Model Intra sentential level Inter sentential level Document level

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

Pseudo Query  66.75 5291 59.03 57.66 12.01 19.88 64.90 65.57 65.24
Natural Query 67.09 54.50 60.14 60.10 11.16 18.83 65.83 66.32 66.07

Table 6 Ablation study over our proposed KRC model on the CDR dataset

Model Intra sentential level’ Inter sentential level’ Document level

P(%) R(%) F1(%) P(% R((%) F1(%) P(%) R(%) F1(%)

Only KB 5861 62.29 6039 39.56 18.67 2537 5286 81.61 064.16
RC 67.09 54.50 60.14 60.10 11.16 18.83 65.83 66.32 66.07
RCHKB(atten2) 67.94 56.85 61.90 62.00 11.63 19.59 66.88 69.14 67.99
RC+KB(attenT+atten2)  72.74  58.07 64.58 68.31 1173 20.02 7193 7045 71.18

12metrics on intra and inter sentential levels, we used the calculation methods in [1]. If using the calculation methods in [24],

F1 measures of our model without KBs (RC in the table) are 73.82% and 57.07% respectively on intra and inter sentential
levels

the CID relation extraction on the CDR data and there is an improvement of 1.87%.
Benefitting from this RC framework, we can utilize large-scale data from an open
domain reading comprehension task to help biomedical relation extraction espe-
cially when the biomedical relation extraction data is not enough.

The effect of query construction

As described in Section 4.2, two kinds of question construction methods are designed
for our RC model. To select a better query construction strategy, we investigate the
effect of these construction methods on performance. The experiments are conducted
on our RC model based on the SQuUAD finetuned biobert model under the condition of
no knowledge. The performance on the pseudo query and the natural language query
is shown in Table 5. The results show that using the natural language query achieves a
higher document-level F1 of 66.07%. The reason may be that the natural query provides
fine semantic hints for CID relation extraction while the pseudo query is just the simple
concatenation of one entity mention, a relation type and another entity type which may
confuse the model.

The effect of knowledge representation

As shown in Table 6, we investigate the effect of knowledge combination, including only
KB, no KB(RC), and adding KB. In the part of adding KB, we compared two kinds of
methods for knowledge-enhanced attention in our RC model. Only KB means we just
directly match the relation of entity pairs in the CDR test set with the triples in CTD.
From the result of only KB, we can see that the recall is high and the precision is not
so well. It indicates that there is noise in triples extracted from CTD. Also, these triples
can not fully cover CDR data. Thus, it is necessary to combine the CDR data and CTD
knowledge in the RC model. Compared with the results of only KB, our proposed RC



Chen et al. BMC Bioinformatics (2022) 23:20 Page 14 of 19

Table 7 Doc-level performance on the CDR dataset with different scales of CTD knowledge

KB(CTD)—Ratio 0.25 0.50 0.75 1.0
Document-level F1 (%) 63.68 64.81 67.09 7118
The proportion of relation types (Intra sentential level) The proportion of relation types (Inter sentential level)
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Fig. 3 The proportion of relation combination types extracted from CTD in correctly predicted cases on the
intra sentential and inter sentential level

model performs better which indicates that the context information can be somehow
captured by our RC model for CID relation extraction. As described in Section 3.2, there
may be more than one KB relation representation between an entity pair. To further
investigate the effect of our knowledge-enhanced RC model, we compared two opera-
tions of KB relation representation in the first step of our knowledge-enhanced attention
layer. RC+KB(atten2) means we adopt the average operation for different KB relation
representations. RC+KB(attenl+atten2) means we adopt the attention mechanism to
automatically select the relevant KB relation representation in the model. The results
on RC+KB(atten2) and RC+KB(attenl+atten2) show that the automatic attention selec-
tion works when more than one relation representation occurs and achieves a higher F1
of 71.18%. To further analyze the results of instances accompanied by different types of
relations extracted from CTD, a detailed case study of no KBs and using KBs can be seen
in the following section.

To investigate the robustness of our approach dealing with knowledge, we selected
knowledge from the CTD knowledge base (KB) respectively for intra sentential and inter
sentential data by four ratios, including 0.25, 0.5, 0.75, and 1.0 to conduct the knowl-
edge-enhanced experiments on the CID task. The performance gradually increases with
the increase of the knowledge proportion. When the selection ratio is 1.0, there is about
74% of data guided by CTD knowledge. When the selection ratio is 0.75, there is about
55% of data guided by CTD knowledge. As shown in Table 7, the performance of our
KRC model surpasses that of our model without KBs and improves obviously when the
selection ratio is more than 0.75, that is to say, the proportion of data guided by knowl-
edge is more than 55%. Otherwise, it will decrease the performance.



Chen et al. BMC Bioinformatics (2022) 23:20 Page 15 0of 19

Table 8 Good cases and bad cases on our RC model with and without KBs

Predicted Predicted relati
Question Context CTD knowledge redicted answer redicted re’ation

With KBs Without KBs With KBs Without KBs

) Syndrome of
Evaluation revealed the syndrome of ) .
inappropriate

What disease does inappropriate secretion of antidiuretic Inferred-association; B .
Pprop secretion Nuit Induced Not induced

vincristine induce hormone, which was attributed to marker/mechanism 3 .
. R of antidiuretic
the vincristine infusion
hormone

The effect of clonidine, naphazoline and

xylometazoline on analgesia induced by
What disease does morphine, codeine, fentanyl and Therapeutic; . .

e ac phine, Y P . Cataleptic  Null Induced Not induced

xylometazoline induce pentazocine, and on cataleptic effect of ~ marker/mechanism

morphine, codine and fentanyl was

studied in rats
Switching the immunosuppressive regimen
from tacrolimus to cyclosporine did not
improve the clinical situation. The
termination of treatment with any Inferred ati

nferred-association; . .

. . calcineurin inhibitor resulted in a . Nuit Nult Not induced  Not induced
tacrolimus induce . ~_ marker/mechanism

complete resolution of that complication.

CONCLUSIONS: Posterior reversible

encephalopathy syndrome after liver

What disease does

transplant is rare

Chemical and disease mentions are marked in blue and red respectively. Incorrect predicted answers are marked in teal.
The gold answers of instances in line 1, line 2 and line 3 are 'syndrome of inappropriate secretion of antidiuretic hormone,
‘cataleptic’ and 'Posterior reversible encephalopathy syndrome’ respectively. The gold relations of instances in line 1, line 2 and
line 3 are‘induced’

Case study of knowledge effect

This section analyzes relation complexity of integrating knowledge, good and bad cases
with and without knowledge. According to the CTD guideline, there are three rela-
tion types in the knowledge base. Therefore, more than one candidate relation type can
be extracted from CTD for an entity pair in some cases and they may be consistent or
inconsistent with the true relation type of the entity pair.

To discuss the relation complexity when integrating knowledge, we counted the pro-
portion of different relation combinations extracted from CTD for corrected extracted
CID pairs as shown in Fig. 3. Here, ‘inferred-association’ means chemicals are inferred
associated with diseases via CTD-curated chemical-gene interactions. ‘marker/mecha-
nism’ indicates that a chemical may cause a disease. ‘therapeutic’ means a chemical that
has a known or potential therapeutic role in a disease. #’is a separator. The extracted
relations to guide prediction for each CID pair are complex. Some of them are com-
posed of more than one relation. ‘inferred-association#marker/mechanism’ contains two
potentially related relation types. ‘marker/mechanism#therapeutic’ contains two con-
flict relation types. ‘inferred-association#marker/mechanism#therapeutic’ contains both
related and conflict relation types. Except for the related relation types, the statistics in
Fig. 3 show that our method can also deal with the cases with some noisy relation knowl-
edge and extract the correct relations for entity pairs.

Additionally, we analyze some cases with different relation types extracted from CTD.
As shown in Table 8, in the first example, the two relation types in CTD are potentially
related. In this case, the CTD knowledge is consistent with the true relation type of
the candidate entity pair. According to the CTD knowledge, ‘inferred-association’ and
‘marker/mechanism’, our KRC model extracted the answer ‘syndrome of inappropriate
secretion of antidiuretic hormone’ for the vincristine-induced disease correctly and pre-
dicted that vincristine induces the syndrome of inappropriate secretion of antidiuretic
hormone, while our RC model without KBs extracted no answer and could not detect
the CID relation in this case.
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FNs(MI),
21.71%
FPs,
48.19%
FNs(EPI),
30.10%

Fig. 4 The error distribution. FNs denotes the false negative examples. FPs denotes the false positive
examples. FNs(MI) denotes the missing instances for predicting in FNs. FNs(EPI) denotes the error predicted
instances in FNs

In the second example, we explore the case with two conflict relation types in CTD.
In this case, ‘therapeutic’ is inconsistent with the true relation type of the candidate
entity pair. Integrating two different relation types, our KRC model learned from the
context and successfully picked the most relevant relation, predicting that the answer to
the xylometazoline-induced disease was cataleptic’. While integrating no KBs, our RC
model predicted that there was no answer in the context for the naphazoline-induced
disease.

There are still implicit instances that are difficult for our model to extract disease
spans, although the relation types from CTD knowledge indicate that the chemical may
cause the disease. Take the context “Switching the immunosuppressive regimen from
tacrolimus to cyclosporine did not improve the clinical situation. The termination of
treatment with any calcineurin inhibitor resulted in a complete resolution of that com-
plication. CONCLUSIONS: Posterior reversible encephalopathy syndrome after liver
transplant is rare”” of the third case as an example. When asked by a query “what dis-
ease does tacrolimus induce?”, an answer “Posterior reversible encephalopathy syndrome”
is expected to be extracted to indicate the CID relation between the chemical and the
disease. However, no answer (“nu/l”) was predicted. Here, the context did not obviously
reveal the CID relation between “tacrolimus” and “Posterior reversible encephalopathy
syndrome”. It just implies that the termination of the calcineurin inhibitor “tacrolimus”
results in a complete resolution of that complication “Posterior reversible encephalopa-
thy syndrome”, which indicates the CID relation between the two entities.

Error analysis

To detect the main error sources, we performed error analysis on the final results of our
proposed model on the CDR data as shown in Fig. 4. Among these errors, 293 negative
chemical-disease entity pairs were wrongly classified as positive, accounting for 48.19%.
In these instances, disease mentions were extracted by our KRC model while actually
no answer should be predicted. Some inconsistent annotations may lead to some incor-
rectly annotated instances. Some curated CTD knowledge may mislead the predictions.
Some instances containing complex context may make it difficult for our KRC model to
extract the correct chemical-induced disease. Taking the sentence “Ethambutol-induced
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toxic optic neuropathy was suspected and tablet ethambutol was withdrawn.” as an exam-
ple, ‘induced’ appears near ‘Ethambutol’ and ‘toxic optic neuropathy’ which may mislead
the model to extract optic neuropathy’ as the ethambutol-induced disease instead of the
null answer.

315 positive chemical-disease entity pairs were wrongly classified as negative,
accounting for 51.81%. Some positive instances were removed by the instance con-
struction rules and hypernym filtering and they did not appear to be predicted by
the model, which resulted in 132 errors accounting for 21.71%. In some other posi-
tive instances, no answer was extracted while actually disease mentions should be
extracted. Taking the sentence “METHODS: Newborn piglets received levobupivacaine
until cardiovascular collapse occurred.” as an example, there is no obvious trigger and
expression about the relation ‘induce’ which may make it difficult to extract the lev-
obupivacaine-induced disease ‘cardiovascular collapse’. Besides, a few cases with the
relation type ‘null’ of CTD knowledge led to incorrect prediction.

Conclusions

In this paper, we propose a novel knowledge-enhanced reading comprehension frame-
work for biomedical relation extraction, incorporated with an effective knowledge-
enhanced attention mechanism to combine noisy knowledge. In the RC framework, it
shows open-domain reading comprehension data and knowledge representation can sig-
nificantly improve the performance of biomedical relation extraction. The experiments
on the CDR data and the CHR dataset show that our proposed model achieved competi-
tive F1 values of 71.18% and 93.3%, respectively, compared with other methods. In the
future, we would like to design a more sophisticated reading comprehension model for
biomedical relation extraction and apply it to other more complex biomedical tasks.
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