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Background
Proteins are the basis of biological activities, and their functions are generally expressed 
by the interactions between proteins [1]. In organisms, protein–protein interaction (PPI) 
networks consist of proteins and protein interactions. PPI networks provide an elegant 
means for expressing gene regulation and metabolic pathways in complex biological sys-
tems [2]. Protein complexes are the locally dense regions of PPI networks and possess 
graph-like structures in which a node represents a protein and an edge represents inter-
action between two proteins [3].

Complexes take part in many diverse biochemical activities that are fundamental to all 
kinds of functions, such as cell homeostasis, cell cycle control, growth, and proliferation. 
Moreover, specific functional modules usually are related to certain diseases.
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Although great progress has been made in identifying protein complexes, laboratory-
based methods are expensive, ineffective and sometimes even infeasible, and only parts 
of protein complexes are located. In addition, experiments in the laboratory are often 
incomplete because of the constraints of experimental conditions. As it is necessary to 
overcome the lacking of laboratory-based methods, a large number of computational 
algorithms have been designed as alternative methods to identify protein clusters, such 
as density-based clustering [4–8], hierarchical clustering[8–10], partition-based clus-
tering [11, 12], flow simulation-based clustering[13–16] and other methods with inte-
grating biological and topological multiple information [17–20]. Although methods of 
protein complexes detection have achieved some effective results, how to reasonably 
integrate PPI node local data and gene expression biological information to construct 
weighted graphs, and how to define effective detection methods to identify complexes 
from the weighted network still need further study. Only direct neighbors are applied to 
PPI network clustering problems, which is not sufficient. In fact, node resource alloca-
tion information and second-order neighbors often contain some important potential 
information in PPI networks.

Aiming at the solution for the above-mentioned problems, we introduce a novel 
method based on resource allocation and gene expression in weighted PPI networks 
(called NRAGE-WPN) with based on core-attachment structure and second-order 
neighbors searching. First, based on the resource allocation and gene expression of the 
PPI network, a new weight metric is designed to accurately describe the interaction 
between proteins. Then our method detects a series of dense complex cores based on 
density and network diameter constraints and the final complexes are recognized by 
expanding the second-order neighbors of nodes in core complexes. This identification 
method is simple and can accurately identify more complexes.

Methods
Protein complex detection with a computational approach from PPI data is useful as the 
useful supplement to the limited experimental methods. Besides the enhancement in 
graph clustering techniques, successful and accurate methods for protein complex pre-
diction depends more on the construction of weighted graphs. Therefore, constructing 
weighted graph for protein interactions is essential. In this section, we introduce a novel 
method based on resource allocation and gene expression in weighted PPI networks 
with two main steps. First, a method is proposed to evaluate the reliability of the protein 
interaction data considering both the common neighbor information and gene expres-
sion profiles through the weighted graph construction. Second, protein complexes are 
detected based on core-attachment and second-order neighbors in this new weighted 
graph. The workflow of our method is shown in Fig. 1.

Assessing the reliability of protein interaction

To represent a PPI network, a 3-element tuple G = (V,E,W) is employed, where 
V = (Vi)(1 ≤ i ≤ N ) is a set of N proteins, and E = {eij} is the set of PPI edges whose 
values are stored in matrix W. For each pair of nodes, i, j ∈ V  and the edge eij is 
assigned a score as wij . Inspired by the reference [21], resource allocation index (RA), is 
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introduced to measure the similarity of interaction proteins in a network and a weighted 
graph based on resource allocation (WRA) is constructed in this step.

Taking Fig. 2 as an example, there is an edge between node 1 and node 2 and no com-
mon neighbors between them, but e12 is an important bridge for information transmis-
sion between node group{1, 2, 6, 7} and node group{1, 2, 3, 4, 5}. Simply, it is assumed 
that the transmitter 1 can carry resources, and will equally deliver it among all its neigh-
bors. Based on this, the similarity of two nodes is shown in Eq.  (1). We can consider 
node i and node j, which are directly connected without common neighbors and the 
node i can transmit the information to node j through edge eij to help the communica-
tion between two clusters {1, 2, 6, 7} and {1, 2, 3, 4, 5}. The value range of WRA belongs 
to [0 1]. This measure requires only the information of the nearest neighbors which 
therefore has very low computational complexity. N (i) is the set of the neighbors of node 
i and node i, N(j) is the set of the neighbors of node j and node j.

Fig. 1  The workflow of our method

Fig. 2  Sample network
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Pearson’s correlation of expression levels

Co-expression genes tend to encode interacting proteins [22]. In this paper, we mainly 
concentrate on linear gene expression networks unless explicitly stated otherwise and 
Pearson’s correlation coefficient of expression levels (PCC) is employed as biological 
information for interacting protein pair p and q. According to GBA principle (i.e. genes 
with similar expression spectrums have similar biological functions) [23], a higher corre-
lation suggests a higher confidence in their interaction. PCC is generally used to measure 
the strength of the linear relationship between two variables and is also commonly used 
to measure the linear relationship between two sets of gene expression values. Suppose 
there are two columns of gene expression profiles X = (x1, . . . , xn) and Y = (y1, . . . , yn) . 
Matrix Wp is formed by the PCC calculation formula, which is defined in Eq.  (3). The 
value range of PCC belongs to [− 1 1]. If PCC (X,Y) < 0, it means that gene X and Y 
show a negative correlation; if PCC (X,Y) > 0, it means gene X and Y show a positive 
correlation, PCC (X, Y) = 0 means that there is no correlation between genes X and Y. 
If PCC(X, Y) < 0, protein pairs will be removed from PPI network in order to reduce the 
negative effect of low noise data on the detection results of mining protein complexes. 
The value range [0 1] of PCC is employed in this step.

where x denotes the average value of the expression value of gene X at 36 different times 
and y denotes the average value of the expression value of gene Y at 36 different times.

Weighted graph construction

In this part, we first describe how to compute the weighted value by combining gene 
expression information (GEI) based on PCC and RA information between two interac-
tion proteins. The final weighted construction formula is proposed in Eq. (5).

Matrix WP is constructed based on Pearson correlation coefficient and matrix WN is 
constructed based on RA, respectively. After a simple calculation, the range of values 
can be known from 0 to 2. The final values are normalized to [0 1]. α(0 ≤ α ≤ 1 ) is a 
constant, where a smaller α indicates that the importance of the modules is dependent 
more on RA information of the network, and a bigger α indicates that the importance of 
the modules depends more on gene expression information. When α = 0 , the weighted 

(1)WRAij =
∑

u∈N (i)∩N (j)

1

N(u)

(2)WN =
{

WRAij

}

(3)PCCij =
∑n

i=1 (xi − x)(yi − y)
√

∑n
i=1 (xi − x)2

√

∑n
i=1 (yi − y)2

(4)Wp =
{

PCCij

}

(5)W = αWP + (1− α)WN
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method only considers RA information. When α = 1 , the weighted method only con-
siders gene expression information. Therefore the Eq.  (5) can measure the differential 
importance of interaction in protein networks by integrating node local information and 
biological information.

Detecting protein complexes in weighted graphs

The proposed algorithm, NRAGE-WPN, consists of two phases: weighted graph con-
struction and core-attachment protein complex detection based on second-order neigh-
bors searching. In the weighted graph construction phase, gene expression information 
and common neighbor information are integrated. A detailed description of the algo-
rithm is outlined in Algorithm 1. Line 1 is for constructing matrix WN with the given 
PPI datasets. Line 2 is for constructing matrix. Wp with the gene expression data. Line 3 
is for constructing the new matrix W based on WN and Wp, and the protein interaction 
confidence is the sum of the weights of WN and Wp. Lines 4–8 are for identifying core 
clusters. Lines 9–11 are for enlarging core clusters based on second-order neighbors of 
nodes in each core.
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In this algorithm, density and diameter are employed as the condition for complex 
detection.

If a node meets the two constraints in condition (7), it is added to the current cluster 
(subgraph). Generally, � is usually set to 0.7 and δ is set to 2, according to the references 
[12, 24].

(1) Density: The degree of a node V is the sum of the weights for each edge connecting 
to this node. Density in the weighted subgraph G = (V, E) is defined in (6). |N| is the num-
ber of nodes in G and w(e) is the weight of the edge eij in G.

(2) Network Diameter: Diameter is the shortest path in a cluster.

Results
Datasets

The effectiveness of our method is evaluated using PPI networks and gold standards of 
protein complexes from yeast and human and the detail information is shown in Table 1 
and relative detail information can be find in reference [25]. GSE3431 dataset [26] is 
employed in our paper which records the data of 36 time points during three successive 
metabolic cycles.

Evaluation criteria

To evaluate our method on benchmark datasets and compare NRAGE-WPN with 
other methods, evaluation measures are given in this section, such as sensitiv-
ity (SN), positive predictive value (PPV), accuracy (ACC), separation (SEP), frac-
tion match (FRM), maximum matching ratio(MMR), precision (Prec), recall (Rec) 
and f-measure, precision+, recall+, f-measure+, the sum (F_MMR) of MMR and 
f-measure+, the composite score(CS) of MMR, FRM, SEP, ACC and f-measure [25]. 
Given a set of benchmark protein complexes R = {R1,R2, . . . ,Rn} and a set of pre-
dicted clusters P = {P1,P2, . . . ,Pn} , two protein complexes, namely, Ri and Pj , are 
generated from benchmark complex datasets R and predicted protein complex sets 
P, respectively. Tij is the number of proteins in common between ith benchmark 
complex Ri and jth predicted complex Pj . SN , PPV and ACC are defined as follows. 

(6)

m =
∑

eij∈E
w(e)

density(G) =
2 ∗m

(|N| ∗ (|N | − 1))

(7)diameter ≤ δ and density ≥ �

Table 1  PPI networks and gold standards in our experiments

Yeast Human

PPI networks Collins [36],Gavin [37], Krogan core [38], Krogan 
extended [29]

STRING [39], PIPS [40]

Gold standards CYC2008 [41], MIPS [42] Corum [43]
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Ni presents the size of proteins in the ith benchmark module. Here, n is the number 
of benchmark complexes and m is the number of predicted complexes.

To evaluate protein complex prediction in terms of precision and recall, the Jac-
card index is employed. The located complex Pj is defined to match the real complex 
Ri if the Jacquard similarity is greater than 0.5.

In terms of precision+, recall+ and f-measure+, neighborhood affinity score 
NA(Pj ,Ri) between Pj and Ri , as defined in Eq. (10) can be used to determine whether 
they match with each other. If NA(Pj ,Ri) = ω, ω ≥ t , ω is greater than 0.2, Pj and Ri 
are considered to be matching. In this paper, t is usually set as 0.20. |Pi| |Pi| and 

∣

∣Rj

∣

∣ 
∣

∣Rj

∣

∣ are the numbers of proteins in Pi Pi and Rj , respectively.

Comparison with other methods

To inspect the performance of our proposed algorithm, we compare our algorithm 
with MCODE [6], Cfinder [4], ClusterOne [20], ProRank+ [27], MCL [28], PC2P 
[25], CLE [7], CW [8], CLP [29], CI [13], DPCT [30] in different measures as shown 
in Additional file 1: Table S1 and all the weighted graphs are constructed based on 
Eq.  (5). Comparison results about CS measure in four PPI networks of Yeast on 
CYC2008 are shown in Fig. 3.

Comparative analysis is performed with the sum score of MMR, FMR, SEP, ACC 
and f-measure. Performances among different methods are compared for yeast and 
human with the corresponding complex datasets and PPI networks. First, as is illus-
trated in Fig. 3 that NRAGE-WPN can achieve best performance in Collins, Gavin 
and KroganExt network and perform better than other ten methods except PC2P 
in KroganCore in terms of CS on CYC2008. On MIPS, NRAGE-WPN outperforms 
all methods on MIPS in network Collins and ten methods in network Gavin, Kro-
ganExt and KroganCore except PC2P in Additional file 1: Table S1. On CORUM in 

(8)SN =

∑n
i=1 max

j
{Tij}

∑n
i=1Ni

PPV =

∑m
j=1 max{Tij}

i
∑m

j=1

∑n
i=1 Tij

ACC =
√
Sn× PPV

(9)
Jaccard(Pj ,Ri) =

|Pj∩Ri|
|Pj∪Ri| precision = |{Pj∈P|∃Ri∈R,Pjmatches Ri}|

m

recall = |{Ri∈R|∃Pj∈P,PjmatchesRi }|
n f −measure = 2∗recall∗precision

recall+precision

(10)NA(Pj ,Ri) =
∣

∣Pj ∩ Ri

∣

∣

2

∣

∣Pj
∣

∣ ∗ |Ri|

(11)

recall+ =
|{Rj|Rj ∈ R ∧ Pi ∈ P,PimatchesRj}|

n

precision+ =
|{Pi|Pi ∧ Rj ∈ R,RjmatchesPi}|

m

f −measure+ =
2 ∗ recall+ ∗ precision+

recall+ + precision+
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2 combinations, NRAGE-WPN can achieve best performances in terms of CS. Sec-
ond, in terms of f-measure+, NRAGE-WPN results the best performance except in 
Collins on MIPS. Third, in the rest measures, NRAGE-WPN performs better than 
most other methods and the all detail information can be shown in Additional file 1: 
Table S1.

Assessment performances of f‑measure+ and accuracy with parameter α

By evaluating the importance of parameter α , we can more intuitively observe the influ-
ence of a certain parameter on the experimental results, and it is helpful to understand 
the advantages and disadvantages of the algorithm and enhance it. The critical parameter 

Fig. 3  Comparisons of four yeast PPI networks on CYC2008

Fig. 4  f-measure+ in yeast and human for different parameter α 
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α in our method is mainly employed to show the effectiveness of information fusion 
from local neighbors and gene expression information and to affect the detection results 
of protein complexes. This experiment investigates the effects of different parameters α 
from 0.1 to 0.9 at interval of 0.1 on complex detection performance. Using f-measure+ 
and accuracy as our experimental evaluation criterion, the performances with different α 
are evaluated as shown in the Figs. 4 and 5, respectively. In Fig. 4,when the parameter α 
is greater than or equal to 0.3, the f-measure+ tends to stable. In In Fig. 5, when α = 0.3, 
the best performance of accuracy can be achieved. In this article, we take α = 0.3.

Robustness to the different thresholds (t)

In order to illustrate the comprehensive performance of NRAGE-WPN, we demonstrate 
f-measure+ performances with nine thresholds t = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} 
among different methods in Fig.  6. Figure  6a shows the comparisons of f-measure+ 
performances on the CYC2008 benchmark dataset in Collins. It can be illustrated that 
NRAGE-WPN outperforms other eleven methods. Similar results can also be found on 
the CYC2008 benchmark in Gavin in Fig.  6b. Other comparisons are shown in Addi-
tional file  1: Fig. S1, which illustrates that NRAGE-WPN performs better than other 
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combinations on 50%. This further demonstrates the effectiveness of the fusion informa-
tion from local node and gene expression data.

Discussion
Functional analysis

For the protein complexes identified by the NRAGE-WPN algorithm, we measure the 
effectiveness of the algorithm quantitatively and qualitatively. We analyze the biological 
significance of the identified protein complexes. Real protein complexes often present 
high functional homogeneity, so the function enrichment test is employed to demon-
strate the biological significances of detected protein complexes [31]. The function 
enrichment analysis of protein complexes identified from yeast PPI network is carried 
out to further verify the effectiveness of NRAGE-WPN algorithm. The analysis and com-
parison of P value are shown in Table 2. P value of each complex can be divided into 
one of four intervals from small to large: < E-15, [E-15, E-10], [E-10, E-5], [E-5, 0.001]. 
When P value is greater than 0.001, it is generally considered that the function of the 
complex is very likely to be randomly assigned and has no biological significance. The 
percentages in brackets in Table  2 indicate the ratio of the number of complexes in a 
certain interval to the number of complexes in all intervals. For example, a total of 325 
complexes are predicted by NRAGE-WPN on CYC2008 in Collins and effective percent-
age of NRAGE-WPN is greater than other eleven algorithms. Further, with respect to 
the biological relevance, the enrichment score of the annotations are employed to evalu-
ate the performance of predicted complex. The average of detected complexes with at 
least one enriched annotation over all clusters among eleven approaches on six data-
sets is compared in Additional file 1: Table S2. The results illustrate that NRAGE-WPN 
predicts biologically relevant clusters with enrichment scores with the top 70% of other 
methods in terms of the different GO categories.

Effectiveness of RA

Due to the noise data in the PPI network, NRAGE-WPN uses gene expression and RA 
information to score a weight to each interaction of the PPI network. To assess the effect 

Table 2  Performance of functional enrichment comparison and their P values in Collins on CYC2008

Methods Clusters Effective (%) < E-15 (%) E-15-E-5 (%) E-5-0.001 (%)

MCL 212 86.46 13.25 34.00 39.21

MCODE 84 89.65 15.50 59 14.75

CFinder 73 83.50 24.25 42.45 16.80

ClusterOne 106 91.85 29.75 52.47 9.63

ProRank+ 385 87.52 18.17 48.12 21.23

CLE 215 84.14 35.36 26.43 22.35

CW 164 92.79 19.24 54.31 19.24

CLP 207 94.44 8.79 60.28 25.37

CI 132 92.06 25.35 57.47 9.24

PC2P 283 93.20 43.80 32.65 16.75

DPCT 274 94.05 40.72 37.95 15.38

NRAGE-WPN 325 96.42 41.25 48.75 6.42
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of using RA in the f-measure+ for complexes detection, we conduct NRAGE-WPN 
without considering RA information and compare its results with normal the NRAGE-
WPN which employs both gene expression and RA information. Without using RA situ-
ation, a weighted PPI network is constructed by gene expression only. Figure 7 shows 
the results of NRAGE-WPN in RA-OFF and RA-ON in Collins, Gavin, KroganCore and 
KroganExt datasets with CYC2008 and MIPS benchmarks, respectively. From Fig. 7, it 
can be shown that by introducing RA, the quality performance of F_MMR is enhanced. 
In term of RA-ON mode in Collins data, F_MMR increases 8.8% for the CYC2008 
benchmark and 8.3% for the MIPS benchmark. According to Fig. 7, the same trend can 
also be shown in other three PPI datasets on two benchmarks, respectively. This experi-
ment shows that using RA can reduce noise data and improve the overall performance of 
complexes detection.

Fig. 7  The effectiveness of NRAGE-WPN when RA is off/on with CYC2008 and MIPS benchmarks

Fig. 8  The effectiveness of using SNS in NRAGE-WPN compare with NRAGE-WPN without using SNS in four 
PPI datasets with CYC2008 and MIPS benchmarks
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Effectiveness of second‑order neighbors searching (SNS)

The second phase of the NRAGE-WPN method is to enlarge the core complexes by sec-
ond-order neighbors. After detecting core protein complexes from weighted PPI net-
work, due to the nature of complexes of core-attachment, there may be many attachment 
parts to be added to the cores. In this situation, the cores and attachment parts are com-
bined to form final complexes. In order to assess the effect of introducing second-order 
neighbors searching(SNS), we conduct NRAGE-WPN without its second phase. Figure 8 
shows the comparison between second-order neighbors searching-on (SNS-ON) and 
second-order neighbors searching-off (SNS-OFF) modes in terms of f-measure+. On 
the CYC2008 benchmark, when NRAGE-WPN uses the SNS phase, we can see a 5.2%, 
3.2%, 7.8% and 7.7% rise in Collins, Gavin, KroganCore, KroganExt, respectively. As the 
results show, performance of f-measure+ can be improved by introducing the second-
order neighbors searching.

Assessment of density in different weighted graphs

Although PCC cannot identify whether gene variables are directly regulated or indi-
rectly regulated [33–35], in this paper, we mainly focus on PCC as biological informa-
tion to construct weighted graph network based on gene expression, which is one of the 
most commonly used methods for constructing gene regulatory networks. At the same 
time, we discuss the influence of nonlinear correlation of gene expression on the den-
sity of whole network. We construct another four weighted graphs based on KBRV [32] 
method and the density of networks are compared in Fig. 9. First, the results show that 
four weighted networks based on KBRV can increase the density of PPI network. The 
reason is that the weighted value of the protein pairs that can be increased by (12). Sec-
ond, we can find that when α belongs to [0.3 0.5], the densities of four weighted graph by 
(5) decrease slow. In our experiment, α = 0.3 is used. Lastly, in our future work,we will 

(12)W = αWP + (1− α)KBRV

Fig. 9  The density of using different a by comparing with KVRB method for construction of four weighted 
graph in Yeast
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focus on the nonlinear correlation of gene expression for weighted graph construction 
and complex detection.

Conclusions
The identification of protein complexes is important for discovering and understanding 
the cellular organizations and biological processes in PPI networks. In this paper a new 
approach named NRAGE-WPN is proposed for identifying protein complexes in pro-
tein–protein interaction networks. Based on the resource allocation and gene expression 
of the PPI network, we first design a new weight metric to accurately describe the inter-
action between proteins. Our method then constructs a series of dense complex cores 
based on density and network diameter constraints, and the final complexes are recog-
nized by expanding the second-order neighbors of nodes in core complexes. Through 
comparison with eleven methods in Yeast and Human PPI network, the experimental 
results demonstrate that this algorithm not only performs better than other methods 
on 75% in terms of f-measure+, but also can achieve an ideal overall performance in 
terms of a composite score consisting of five performance measures. In the future work, 
we will focus on locating sparse and density protein complexes by integrating multiple 
information.
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