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Background
DNA methylation is a form of epigenetic regulation wherein cytosine is either methyl-
ated or demethylated. It is known to both repress and promote gene expression depend-
ing on its location relative to the target gene (e.g. CpG islands, shelves, shores or open 
sea) and pattern (hypomethylated or hypermethylated). As such, its dysregulation is 
associated with many diseases, including cancer. One of the most widely used methods 
for measuring DNA methylation is bisulfite sequencing [1]. When single-stranded DNA 
reacts with bisulfite, unmethylated cytosine is converted into uracil whereas methylated 
cytosine does not. Subsequent sequencing generates thymine in place of the converted 
unmethylated cytosine. To determine methylation counts, the resulting sequences are 
mapped to a reference genome to identify cytosine loci and so differentiate between 
unmethylated cytosine and thymine loci.

Abstract 

Background:  DNA methylation is commonly measured using bisulfite sequencing 
(BS-seq). The quality of a BS-seq library is measured by its bisulfite conversion efficiency. 
Libraries with low conversion rates are typically excluded from analysis resulting in 
reduced coverage and increased costs.

Results:  We have developed a probabilistic method and software, LuxRep, that imple‑
ments a general linear model and simultaneously accounts for technical replicates 
(libraries from the same biological sample) from different bisulfite-converted DNA 
libraries. Using simulations and actual DNA methylation data, we show that includ‑
ing technical replicates with low bisulfite conversion rates generates more accurate 
estimates of methylation levels and differentially methylated sites. Moreover, using vari‑
ational inference speeds up computation time necessary for whole genome analysis.

Conclusions:  In this work we show that taking into account technical replicates (i.e. 
libraries) of BS-seq data of varying bisulfite conversion rates, with their correspond‑
ing experimental parameters, improves methylation level estimation and differential 
methylation detection.

Keywords:  Methylation, Bisulfite sequencing, Probabilistic

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Malonzo et al. BMC Bioinformatics           (2022) 23:41  
https://doi.org/10.1186/s12859-021-04546-1 BMC Bioinformatics

*Correspondence:   
maia.malonzo@aalto.fi 
1 Department of Computer 
Science, Aalto University, 
00076 Espoo, Finland
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0003-1739-0503
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04546-1&domain=pdf


Page 2 of 19Malonzo et al. BMC Bioinformatics           (2022) 23:41 

Several methods have been developed to estimate methylation levels and analyze dif-
ferential methylation. One of the methods, Methylkit, uses two approaches, logistic 
regression (for samples with replicates) and Fisher’s exact test [2]. Another method, 
BSmooth, assumes that methylation count follows a binomial distribution and estimates 
methylation levels using a local likelihood smoother within a given window [3]. Many of 
the methods use the beta-binomial distribution to model methylation levels. RADmeth 
uses the beta-binomial regression model (with the logit link function) to estimate meth-
ylation levels [4]. BiSeq uses a binomial model in smoothing methylation levels within 
a window (cluster) with weights from a triangular kernel which is a function of dis-
tance between CpG loci [5]. MethylSig uses a beta-binomial approach with an approxi-
mation method for estimating the beta parameters [6]. MOABS, apart from using the 
beta-binomial model to estimate methylation levels, estimates a credible interval for 
the methylation difference between single cytosines (“credible methylation difference”) 
[7]. The paper mentions a feature for estimating bisulfite conversion rate but does not 
elaborate or mention if the estimate is integrated into the model estimating methyla-
tion. DSS-general also uses beta-binomial regression to model count data and it uses the 
arcsine link function [8]. DMRfinder clusters CpG sites into regions given a specified 
distance threshold then uses a hierarchical beta-binomial model [9]. Save for MOABS, 
none of these methods estimate bisulfite conversion rate and none, including MOABS, 
takes this rate into account when estimating methylation level or detecting differential 
methylation.

In the optimal case, the bisulfite conversion rate of a DNA library is high (e.g. above 
99%) [10]. However, when an experiment yields a low conversion rate the common lab 
practice is to exclude the DNA library so as to avoid overestimation of methylation lev-
els, resulting in additional costs or smaller sample size depending on whether a replace-
ment library is prepared or not. An advanced computational approach to handle poor 
conversion rates would render exclusion of samples unnecessary. The methylation 
analysis method LuxGLM [11] estimates methylation levels from bisulfite sequencing 
data using a probabilistic model that accounts for bisulfite conversion rate. It showed 
that taking into account experimental parameters like bisulfite conversion efficiency 
improved accuracy of methylation analysis. However, though this model was able to 
handle biological replicates with a general linear model component, it assumed data 
from each sample consisted of only a single bisulfite-converted DNA library. In this 
work we propose LuxRep, an improved method and software to allow use of replicates 
from different DNA libraries with varying bisulfite conversion rates. To make LuxRep 
tool computationally efficient and thus more applicable to genome-wide analysis we also 
propose to use variational inference.

Implementation
Our software consists of two modules: (1) estimation of experimental parameters from 
control data (“experimental parameters”) and (2) inference of methylation level (“bio-
logical parameters”) and differential methylation from DNA bisulfite sequencing data 
using the previously estimated experimental parameters. While LuxGLM was origi-
nally designed for analysis of both methylated (5mC) and hydroxymethylated cytosines 
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(5hmC), the level for only one methylation modification (methylcytosine, 5mC) is 
included in this work (although our model can also be extended to 5hmC).

To facilitate genome wide analysis, in our model implementation the experimental 
parameters are first computed from the control data since all cytosines per technical 
replicate have the same value for these parameters (Fig. 1). Methylation levels are then 
determined individually for each cytosine, and differential methylation thereafter, using 
the pre-computed experimental parameters as fixed input (Fig. 2). We will next describe 
these two models in detail in Sects. 2.1–2.2.

Experimental parameters

Methylation estimates are a function of experimental parameters: bisulfite conversion 
rate ( BSeff ), sequencing error ( seqerr ) and incorrect bisulfite conversion rate ( BS∗eff ). A 
BS-seq library with low BSeff results in overestimation of methylation levels. High seqerr , 
on the other hand, can lead to both over and underestimation of methylation levels. 
Though typically not measured in high-throughput bisulfite sequencing experiments, 
high BS∗eff leads to underestimation of methylation level.

To demonstrate that differences in technical parameters (specifically bisulfite conver-
sion rate) is common we took a real bisulfite sequencing dataset [12] and compared the 
bisulfite conversion efficiencies of the technical replicates (i.e. libraries) per biological rep-
licate (Additional file 1: Fig. S1). Most samples had significantly variable conversion rates, 
i.e. differences in technical parameters is common. Moreover, in practice, BS-seq datasets 
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Fig. 1  Plate diagram of LuxRep model for the module analyzing experimental parameters from control data
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obtained with non-optimal conversion efficiencies are commonly ignored as currently there 
does not exist a statistical analysis tool that would allow analyzing BS-seq datasets with dif-
ferent conversion efficiencies. This in turn leads to loss of data, decrease in statistical power, 
loss of a biological sample, and increase in sequencing costs.

We start by briefly reviewing the underlying statistical model [11] and then introduce 
our extension that can handle technical replicates. Briefly, the conditional probabil-
ity of a sequencing readout being “C” in BS-seq data is a function of the experimental 
parameters that include seqerr and BSeff , and depends on the methylation level θ ∈ [0, 1] . 
If a read was generated from an unmethylated cytosine (C), the conditional probability 
pBS(“C”|C) is given by

The term (1− BSeff )(1− seqerr) refers to the condition wherein unmethylated cytosine 
is incorrectly not converted into uracil and correctly sequenced as “C” whereas the term 
BSeff seqerr represents the condition wherein the unmethylated cytosine is correctly con-
verted into uracil but incorrectly sequenced as “C”. Similarly, in the case of methylated 
cytosine

where (1− BS∗eff )(1− seqerr) denotes the case that methylated cytosine is correctly not 
converted to uracil and correctly sequenced as “C” while the term BS∗eff seqerr represents 

(1)pBS(“C”|C) = (1− BSeff )(1− seqerr)+ BSeff seqerr.

(2)pBS(“C”|5mC) = (1− BS∗eff )(1− seqerr)+ BS∗eff seqerr,
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Fig. 2  Plate diagram of the LuxRep model for estimating methylation level of a single cytosine with 
biological as well as technical replicates. The circles represent latent (white) and observed (gray) variables and 
the unbordered nodes represent constants
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the case that methylated cytosine is incorrectly converted to uracil and incorrectly 
sequenced as “C”.

In [11], bisulfite conversion, sequencing error and incorrect bisulfite conversion rates 
were specific to each biological replicate, not technical replicate.

The experimental parameters follow a logistic normal distribution, where the bisulfite 
conversion rate BSeff is given by

and its hyperparameters are

such that logit(BSeff ) ∼ N (µBSeff , σBSeff ) , where µBSeff is the mean and σBSeff is the stand-
ard deviation ( ψµ,µ

BSeff
= 4 , ψµ,σ

BSeff
= 1.29 , ψσ ,µ

BSeff
= 0.4 and ψσ ,σ

BSeff
= 0.5 ). See [13] for 

details.
The sequencing error seqerr is modeled similarly

such that logit(seqerr) ∼ N (µseqerr , σseqerr) , where µseqerr is the mean and σseqerr is the 
standard deviation ( ψµ,µ

seqerr = −8 , ψµ,σ
seqerr = 1.29 , ψσ ,µ

seqerr = 0.4 and ψσ ,σ
seqerr

= 0.5).
The hyperparameter values above were used since they worked well in a previously 

published related work [11] although we chose a lower ψµ,µ
seqerr since it generated more 

robust methylation estimates with mid-values of theta (i.e. 0.3 and 0.7). Other than 
that, to confirm that the results were not sensitive to hyperparameter values we tested 
different values ranging from low ( ψµ,µ

BSeff
= 1 , ψµ,σ

BSeff
= 1 , ψσ ,µ

BSeff
= 0.1 , ψσ ,σ

BSeff
= 0.1 , 

ψ
µ,µ
seqerr = −10 , ψ

µ,σ
seqerr = 1 , ψ

σ ,µ
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hyperparameter values, relative to the values used in this paper, and indeed the methyla-
tion estimates were robust regardless of hyperparameter values (Additional file 1: Fig. 
S2).

The BS-seq experiments typically include completely unmethylated DNA fragments 
as controls (such as the lambda phage genome) that allow estimation of BSeff and seqerr . 
However, as BS-seq experiments typically do not include completely methylated DNA 

(3)BSeff = logit−1(µBSeff + σBSeff rBSeff )

(4)µBSeff ∼ N (ψ
µ,µ
BSeff

,ψ
µ,σ
BSeff

)

(5)ln(σBSeff ) ∼ N (ψ
σ ,µ
BSeff

,ψσ ,σ
BSeff

)

(6)rBSeff ∼ N (0, 1),

(7)seqerr = logit−1(µseqerr + σseqerrrseqerr)

(8)µseqerr ∼ N (ψµ,µ
seqerr

,ψµ,σ
seqerr

)

(9)ln(σseqerr) ∼ N (ψσ ,µ
seqerr

,ψσ ,σ
seqerr

)

(10)rseqerr ∼ N (0, 1),
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fragments as controls that would be needed to estimate the incorrect bisulfite con-
version rate BS∗eff , it is set to a constant value (e.g. BS∗eff = 0 , see Sections "Estimating 
experimental parameters" and "Estimating methylation levels" for specific values used in 
results). Note also that the bisulfite conversion rate and sequencing error parameters are 
specific for each biological samples and technical replicate.

In Fig. 1, θcontrol represents the proportions of DNA methylation modifications in the 
control cytosine. In this case the proportion consists of unmethylated DNA, but this can 
be adjusted if additional DNA methylation modifications are included.

Following Eqs. 1 and 2, the observed total number of “C” readouts for a single control 
cytosine is binomially distributed,

where N control
BS  is the total number of reads and the probability of observing “C” is given 

by

Using the sequencing read counts from the control cytosines N control
BS,C  and N control

BS  , pos-
terior distributions of unknowns in this model are obtained using the inference meth-
ods described in section "Variational inference". Posterior means of BSeff and seqerr (and 
BS∗eff if available) are then used in the actual methylation level analysis as described in 
the next section.

Biological parameters

For computing the biological parameters, the observed total number of “C” readouts for 
a single noncontrol cytosine is similar to Eq.  11, NBS,C ∼ Bin(NBS, pBS(“C”)) , where NBS 
is the total number of reads and the probability of observing “C”, similar to Eq.  12, is 
given by

where θ = p(5mC).
LuxRep retains the general linear model with matrix normal distribution used by 

LuxGLM to handle covariates wherein matrix normal distribution is a generalisation of 
multivariate normal distribution to matrix-valued random variables. The following sec-
tion summarizes the linear model (see [11] for more details).

In the general linear model component of LuxGLM (Fig. 2)

where Y ∈ R
N×2 contains the unnormalized methylation fractions, D is the design 

matrix (size N-by-p, where p is the number of parameters), B ∈ R
p×2 is the parameter 

matrix, and E ∈ R
N×2 is the noise matrix.

To derive the (normalized) methylation proportions θ = (θ1, . . . , θN )
T , LuxGLM uses 

the softmax link function (or transformation)

(11)N control
BS,C ∼ Bin(N control

BS , pBS(“C”)
control),

(12)pBS(“C”)
control = pBS(“C”|5mC)θcontrol + pBS(“C”|C)(1− θcontrol).

(13)pBS(“C”) = pBS(“C”|5mC)θ + pBS(“C”|C)(1− θ)

(14)Y = DB+ E,
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The softmax function is obtained when generalizing the logistic function to multiple 
dimensions. That is, the softmax function σ : RK → [0, 1]K  is defined by σ(z)i = ezi

∑K
j=1 e

zj
.

In matrix normal distribution,

where M is the location matrix and U and V are scale matrices. Alternatively, X (in Eq.  
16) can also be written as the multivariate normal distribution

where vec(·) denotes vectorization of a matrix and ⊗ denotes the Kronecker product.
Given Eq. 14, B and E take on the following prior distributions

Using the vectorized multivariate normal distribution formulation of the matrix normal 
distribution, matrix Y then becomes

Assuming the scale matrices UB , VB , UE and VE are all diagonal with parameter and 
noise specific variances σ 2

B
 and σ 2

E
 , probability densities for B , E and Y can be stated as

Variance σ 2
B
= 5 and σ 2

E
∼ Ŵ−1(α,β) , where α = β = 1 , are used in this work. We 

chose to use the hyperparameter value σ 2
B = 5 because that seems to be widely appli-

cable and provides robust inference results. To confirm that the results are not sensi-
tive to the particular choice of σ 2

B value, we carried out an ablation study where we 
repeated the methylation level estimation experiment (from Fig. 7) with three differ-
ent values of σ 2

B : 1, 5, and 10. Our results in Fig. S3 confirm that the results have very 
little or no variation depending on the choice of σ 2

B value.
The inverse gamma distribution was used as prior for σ 2

E since (with the alpha and 
beta hyperparameters used) it is uninformative and makes no strong assumptions 
with regards to the spread of the noise term. Also, the inverse gamma distribution is 

(15)θi = Softmax(rowi(Y)).

(16)X ∼ MN (M,U,V)

(17)vec(X) ∼ N (vec(M),U ⊗ V),

(18)E|UE,VE ∼ MN (0,UE,VE)

(19)B|MB,UB,VB ∼ MN (MB,UB,VB).

(20)
vec(Y)|D,MB,UB,VB,UE,VE ∼ N ((I⊗D)vec(MB),

(I⊗D)(VB ⊗UB)(I⊗D)T + VE ⊗UE).

(21)vec(B) ∼ N (vec(0), σ 2
B(I⊗ I))

(22)vec(E) ∼ N (vec(0), σ 2
E
(I⊗ I))

(23)
vec(Y)|D, σ 2

B, σ
2
E
∼ N (vec(0),

σ 2
B(I⊗D)(I⊗ I)(I⊗D)T + σ 2

E
(I⊗ I)).
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a conjugate prior to a normal distribution with known mean µ and unknown variance 
σ 2.

We extend the model to allow modelling of technical replicates wherein the methyla-
tion level θ is the same for all different bisulfite-converted DNA libraries from the same 
biological sample but the experimental parameters ( seqerr and BSeff ) vary across both the 
biological replicates as well as the technical replicates.

In the modified model (Figs. 1 and 2), NBS,C and NBS represent the observed “C” and 
total counts, respectively, from each of the Mi technical replicates per biological sample 
i ∈ {1, ..,N } . Note that the experimental parameters BSeff and seqerr , taken from the pos-
terior means, are sample and replicate-specific.

To detect differential methylation, hypothesis testing was done using Bayes factors (via 
the Savage-Dickey density ratio method) as implemented in [11].

Variational inference

[11] used Hamiltonian Monte Carlo (HMC) for model inference (since the model is 
analytically intractable), whereas in variational inference (VI) the posterior p(φ|X) of 
a model is approximated with a simpler distribution q(φ; ρ) , which is selected from a 
chosen family of distributions by minimizing Kullback-Leibler divergence between 
p(φ|X) and q(φ; ρ) . We use the automatic differentiation variational inference algorithm 
(ADVI) from [14], which is integrated into Stan. ADVI is used to generate samples from 
the approximative posterior q(φ; ρ).

There are a few parameters which can be tuned to make the ADVI algorithm [14] fast 
but accurate. These parameters are number samples used in Monte Carlo integration 
approximation of expectation lower bound (ELBO), number of samples used in Monte 
Carlo integration approximation of the gradients of the ELBO and number of samples 
taken from the approximative posterior distribution. The default values for gradient 
samples NG and ELBO samples NE are 100 and 1 respectively. Here we compare the 
computation times and preciseness of the Savage-Dickey estimate computed using HMC 
and ADVI with different NE and NG values. The tested values for NE were 100, 200, 500 
and 1000 and for NG 1, 10 and 100. To make the HMC and ADVI methods comparable, 
the number of samples retrieved from the approximative posterior distribution is set to 
be the same for both methods.

To choose the best number of gradient samples and ELBO samples, simulation tests 
on LuxGLM model were executed. These tests were conducted in the following way: 
First, simulated data from the LuxGLM model was generated. The number of reads and 
replicates were varied (the tested values were 6, 12, 24 and 6, 10, 20 respectively) and for 
each combination data sets with differential methylation and without differential meth-
ylation were generated. The calculation of the Bayes factors was made using different NE 
and NG values. For each setting 100 data sets were simulated and Bayes factors were cal-
culated. Using the computed Bayes factors, ROC curves and AUROC statistics were pro-
duced. Also, the computation times for each parameter value combination were taken 
down. The results of these tests for the case of 12 reads and 10 replicates are shown in 
Additional file 1: Figs. S4 and S5.

In Additional file 1: Fig. S4 the computation times for different parameter values are 
shown. In Additional file 1: Fig. S5 the computation time was plotted as a function of 
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accuracy of the method when compared to the HMC approach. The average computa-
tion time for the HMC method is plotted in red. From the figures we can see that with 
the all tested parameter combinations the computing Savage-Dickey estimate with 
ADVI is faster than with HMC. In Additional file 1: Fig. S5, on the left side of the dashed 
line are the parameter combinations which gave better precision than HMC approach.

Results
Estimating experimental parameters

Samples prepared for BS-seq are typically spiked-in with unmethylated control DNA 
(often Lambda phage genome) that allows estimation of bisulfite conversion efficiency 
BSeff . For demonstration purposes, dummy control cytosine data were generated using 
the model illustrated in Fig. 3. Based on a cursory examination of an actual dataset gener-
ated from spiked-in Lambda phage DNA (data not shown), bisulfite sequencing data for 
444 control cytosine were simulated with number of reads per cytosine NBS ∈ {1, . . . , 3} . 
For comparison, another set-up was generated with coverage NBS = 10 . Experimental 
parameters were set to fixed values while the methylation modification fractions θcontrol 
were drawn from Dir(α) (parameters listed below).

The choice to use 90% as the low bisulfite conversion efficiency is based on Additional 
file  1: Fig. S1 which shows low conversion efficiencies to be around 90%. To test our 
method also with a lower conversion efficiency (<90%) we added the conversion effi-
ciency 85% (Additional file 1: Fig. S6). As the plots show, the full model generates more 
accurate median on average than the reduced model also at 85% conversion efficiency.

Sequencing error and bisulfite conversion rates were estimated using the model 
illustrated in the plate diagram in Fig.  1 based on the dummy control cytosine data. 

(24)

αcontrol = (999, 1)

BS∗eff = 0.001

seqerr = 0.001

BSeff ∈ {0.995, 0.9}

Kcontrol = 444

NBS ∈ {1 . . . 3, 10}

N control
BS,C ,

N control
BS

θcontrol

BSeff

αcontrol BS∗eff seqerr

K control cytosine

Mi replicate

Fig. 3  Plate diagram of LuxRep model for generating dummy control data
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Incorrect bisulfite conversion rate, BS∗eff , was set to a fixed value (0.1%) (in LuxGLM it 
was estimated from control data) because genome scale bisulfite sequencing typically do 
not include methylated cytosine control data. The data consists of N biological samples 
( i ∈ {1, . . . ,N } ), each of which has Mi technical replicates corresponding to different 
bisulfite-converted DNA library preparations. The LuxGLM model [11] was modified 
to determine experimental parameters for each technical replicate separately (shown as 
the “replicates” plate in the diagram in Fig. 1). The circles represent latent (white) and 
observed (gray) variables and the squares/unbordered nodes represent fixed values (for 
parameters and hyperparameters).

Figure 4 shows the estimates for the experimental parameters. LuxRep generated good 
estimates for BSeff and seqerr , particularly with technical replicates that had high BSeff 
(99.5%), even with extremely low coverage ( NBS = 1 . . . 3 ). Technical replicates with 
higher coverage ( NBS = 10 ), though, were more accurate in terms of median closer to 
the actual values and lower variance.

Estimating methylation levels

For estimating methylation levels and analyzing differential methylation, we 
first simulated technical replicates with low ( BSBeff ∼ beta(90, 10) ) and high 

Fig. 4  Parameter estimates of BSeff and seqerr . The x-axis shows whether the samples were drawn from ‘G’ 
(good quality) or ‘B’ (bad/low quality) technical replicates corresponding to BSBeff and BSGeff , respectively, and 
grouped according to the two scenarios, discussed in section "Estimating methylation levels", ‘GGB’ and ‘GBB’. 
Low and high coverage refer to NBS = 1 . . . 3 and NBS = 10 , respectively
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( BSGeff ∼ beta(99.5, 0.5) ) BS conversion rates with varying sequencing depth NBS and 
methylation level ( θ ∈ [0.1, 0.9] ). The datasets were generated following the model illus-
trated in Fig. 5 with methylation levels and experimental parameters generated following 
the beta distribution with parameters set to values listed below.

where the Dirichlet distribution is denoted by Dir(·).
Two scenarios were simulated consisting of three technical replicates each: (i) two rep-

licates with high BSeff (i.e. good samples, ‘G’) and one with low BSeff (i.e. bad sample, 

(25)

BSBeff ∼ beta(90, 10)

BSGeff ∼ beta(99.5, 0.5)

seqerr ∼ beta(0.1, 99.9)

BS∗eff ∼ beta(0.1, 99.9)

NBS ∈ {6, 12, 24}

Kcytosine = 4

θ1 ∼ beta(100, 900)

θ2 ∼ beta(300, 700)

θ3 ∼ beta(700, 300)

θ4 ∼ beta(900, 100)

N control
BS = 20

K control
cytosine = 100

θcontrol ∼ Dir(999, 1)

N control
BS,C ,

N control
BS

NBS,C,
NBS

θcontrol

BSeffBS∗eff seqerr

θ

αcontrol

αθ βθ

αBS∗
eff

βBS∗
eff

αseqerr

βseqerr

αBSeff

βBSeff

K control cytosine

Mi replicate

K cytosine

N sample

Fig. 5  Plate diagram of LuxRep model for simulating data for estimating methylation level
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‘B’)(‘GGB’), and (ii) one ‘G’ replicate and two ‘B’ replicates (‘GBB’). Each scenario was 
analyzed using (i) the full LuxRep model (Fig. 2) and (ii) a reduced model with experi-
mental parameters fixed to BSeff = 1 , seqerr = 0 and BS∗eff = 0 , and using the “C” and 
“T” counts from only the ‘G’ samples (those with BSeff = 99.5% and above) to simulate 
the traditional approach of not accounting for experimental parameters (Fig. 6). Results 
from estimating the models with HMC and ADVI were also compared.

Datasets ( n = 100 ) were analysed with the full and reduced LuxRep models with var-
ying methylation levels, varying number of reads, different combinations of replicates 
with varying BSeff (‘G’ and ‘B’), and using either HMC or ADVI to evaluate or approxi-
mate the posterior, respectively (Fig.  7). For each simulated data set we estimated the 
methylation level θ using the posterior mean of samples ( S = 1000 ) drawn from the pos-
terior (HMC) and approximate posterior (ADVI) distribution.

The variance of the estimates using the full model was generally lower compared to the 
reduced model across θ and NBS values (Fig. 7) demonstrating the utility of using LuxRep 
with replicates of varying BSeff . The decrease in variance was generally greater with the 
second scenario (‘GBB’), highlighting the capability of LuxRep to make use of samples 
with low BSeff . Improvements in the estimates were comparable when using HMC and 
ADVI. Notable also is the comparable accuracy between the two scenarios ‘GGB’ and 
‘GBB’, i.e. ‘GBB’ was relatively as accurate as ‘GGB’ even though it had more replicates 
with low BSeff.

To more directly address the question of whether the full model significantly improves 
accuracy compared with traditional methods we performed methylation estimation 
using the full and reduced (representing traditional methods) methods with varying 
bisulfite conversion rates, including all samples for both the full and reduced models 
(Additional file  1: Fig. S6). Lower bisulfite conversion rates (85% and 90%) generated 
greater differences in estimates with the full model generally showing a more accurate 
median, specially with θ values of 0.3 and 0.7. The median were generally similar with 
higher bisulfite conversion rates. In terms of variance, the differences varied according 

∑
NBS,C,∑
NBS

θ

Y

B σ2
E

σ2
B α β

D

BSeff =1
BS∗eff =0
seqerr=0

N samples

Fig. 6  Plate diagram of the reduced LuxRep model that mimics the traditional approach of not accounting 
for experimental parameters
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to methylation level and bisulfite conversion rate (e.g. the variance of the full model was 
generally slightly higher with θ values of 0.1 and 0.3, whereas the variance of the reduced 
model was generally higher with theta 0.9).

Since most genomic regions tend to be unmethylated we queried the estimates when 
the actual methylation level approaches zero ( θ = 0.1 ). As shown in Fig.  7 and Addi-
tional file 1: Fig. S6, at low methylation levels (e.g. 0.1), the median is below the actual 
value, that is the methylation levels tend to be underestimated. It follows that for 
genomic regions that are unmethylated it is unlikely that the method will erroneously 
estimate a higher methylation level.

To test the utility of LuxRep on an actual bisulfite sequencing dataset, methylation 
levels were estimated from an RRBS dataset [12] consisting of two individuals and 
three replicates each (two low and one high BSeff  , individual 1: 96.38%, 99.32% and 
99.96%; individual 2: 94.59%, 98.67% and 99.98%). The replicate with high BSeff  was 
analyzed with the full model while the two low BSeff  replicates were analyzed with 
both the full and reduced models. The difference in the estimated methylation levels 
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Fig. 7  Boxplots of estimates of methylation levels. Datasets were analysed with the full and reduced LuxRep 
models with varying methylation levels (columns, values shown at topmost panel), varying number of reads 
(rows, values shown on right panel), different combinations of replicates with varying BSeff (‘G’ and ‘B’) (x-axis), 
and using either HMC or ADVI to evaluate or approximate the posterior, respectively. The boxplots show the 
posterior means ( n = 100)
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(1000 CpG sites) between the high BSeff  replicate and the low BSeff  replicates using 
the full and reduced models were measured by taking their Euclidean distance which 
showed greater similarity when using the full model (individual 1: reduced: 2.29, full: 
2.23; individual 2: reduced: 2.55, full: 2.49).

Detecting differential methylation

Accuracy in determining differential methylation was measured by generating data-
sets consisting of two groups (A and B) with varying methylation level difference �θ 
between the two groups and when one or two of three replicates have low BSeff  (‘GGB’ 
and ‘GBB’, respectively). Each group consisted of four biological replicates wherein 
each biological replicate had three technical replicates each (with different sequenc-
ing read coverage, NBS = 10 or NBS = 6 ; the standard threshold for total sequencing 
read coverage is NBS = 10 ). The model for generating simulated data is described in 
Fig. 8 (where θ ∼ Beta(αθ ,βθ ) , with parameters shown in Table 1).

Differential methylation was analysed using the full and reduced LuxRep models (see 
Figs. 2 and 6, respectively, and, for additional details of hyperpriors used, [11]), evaluated 
with HMC and ADVI. Eq. 26 shows the design matrix D and parameter matrix B used 
in the general linear model component (Bayes factors were computed using the Savage-
Dickey density ratio estimator using samples of b2,1 and b2,2 , S = 1600 and S = 1000 
from the posterior distributions approximated with HMC and ADVI, respectively).

AUROCs were calculated based on ∼ 200 positive ( �θ  = 0 ) and ∼ 200 negative ( �θ = 0 ) 
samples (Fig. 9). The full model consistently generated higher AUROCs compared to the 

(26)

Table 1  θ  parameters

θ αθ βθ

0.2 200 800

0.3 300 700

0.4 400 600

0.5 500 500

0.6 600 400

0.7 700 300

0.8 800 200
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NBS,C,
NBS

θ

BSeff

BS∗eff

seqerr
αθ βθ

Nreplicate = 3

Nsample = 4

Ngroup = 2

Fig. 8  Plate diagram of model for generating dummy data for differential methylation analysis

Fig. 9  AUROCs of differential methylation calls. Accuracy in determining differential methylation was 
measured by generating datasets consisting of two groups (A and B) with varying �θ ( θA and θB levels are 
shown in top panels and when one or two of three replicates have low BSeff (‘GGB’ and ‘GBB’, respectively.) For 
‘GBB’ (top box) and ‘GGB’ (bottom box) NBS = 10 and NBS = 6 , respectively, for each technical replicate. X-axis 
shows whether HMC or ADVI was used to evaluate or approximate the posteriors
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Fig. 10  Select ROC curves of differential methylation calls generated from the full and reduced models (with 
technical replicates ‘GBB’ and ‘G’, respectively) where θA = 0.2 and θB was set to 0.3, 0.4 and 0.5 (top, middle 
and bottom panels, respectively). Samples were generated from the approximated posterior using variational 
inference
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Fig. 11  Comparison of running times using HMC and ADVI for model evaluation
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reduced model, moreso with the ‘GBB’ subsets, showing that LuxRep is able to utilize 
DNA libraries with low BSeff to improve differential methylation analysis.

Select ROC curves generated from the full and reduced models show notable 
increase in AUROCs when using the full over the reduced model (Fig. 10). Moreover, 
the difference in AUROCs increases with decreasing �θ.

In addition to AUROC, to provide empirical statistical power, we calculated the 
true positive rates for differential methylation (Additional file 1: Fig. S7). True posi-
tive rates were generally higher in the full model compared to the reduced model, as 
expected.

Comparing running times

Running times were measured using the Stan [15] time records and by a Python func-
tion, and with or without the additional time required for post-processing the output 
files (i.e. parsing relevant information), with varying number of reads (Fig.11). The com-
putations were performed using a computing cluster; a single core with 2GB memory 
was used for ADVI approximation (HMC sampling could be more efficiently run with 
one core for each MCMC chain hence run time was based on the slowest chain). Signifi-
cant reduction in running times were observed with using ADVI over HMC.

Conclusions
LuxRep tool described in this paper allows technical replicates with varying bisulfite 
conversion efficiency to be included in the analysis. LuxRep improves the accuracy of 
methylation level estimates and differential methylation analysis and lowers running 
time of model-based DNA methylation analysis by using ADVI.
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