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Background
“How can scientists better understand the workings of a cell? Studying the transcrip-
tome, RNA expressed from the genome, reveals a more complex picture of the gene 
expression behind it all” [1]. In this regard, understanding the transcriptome comprises 
a prerequisite for full understanding of the biological function of a cell, a tissue and even 
an organ [1]. Recently, in light of the development of high throughput sequencing tech-
nologies (e.g. RNA-seq, Iso-Seq), researchers are able to profile whole transcriptome 
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of an organ, tissue or even a single cell of a species. To mine these data, an increasing 
number of bioinformatics tools (software) have been developed. Transcriptome analyses 
involve multiple modules (e.g. expression level calculation, identification of differentially 
expressed genes, variant calling, co-expression network construction etc.) and the pro-
cessing of data from different sequencing platforms (e.g. bulk RNA-seq data generated 
from Illumina platform, scRNA-seq from 10x Genomics platform, Iso-Seq from PacBio 
platform). Many current tools, however, have been proven both time and labor consum-
ing and not friendly for users, especially non-bioinformaticians, mainly due to the fol-
lowing five issues. First, most existing tools are limited to the data analysis from a single 
sequencing platform. Second, most tools have only one analysis module. For example, 
the most recently published tool, RASflow [2], is only designed for the gene expression 
difference analysis. Third, most tools are developed using different advanced computer 
languages, (e.g. RNASeqR [3] based on R, scGEAToolbox [4] based on Matlab), which 
are challenging for non-bioinformatician users. Fourth, the input formats vary among 
different tools. Lastly, the results generated from most tools can’t be visualized.

Here, we present a Linux-based command-line toolkit, RNA-combine, for the com-
prehensive analysis of bulk RNA-seq, scRNA-seq as well as Iso-Seq data, perform-
ing analyses for multiple modules (e.g. read preprocessing, read alignment, transcript 
quantification, detection of differential expression and annotation, alternative splicing, 
result visualization, etc.). This toolkit represents the assembly of a wide range of routine 
and customized transcriptome analysis workflows and is free from the abovementioned 
issues and thus is friendly and easily implemented for users.

Implementation
Our RNA-combine consists of 16 modules and could process transcriptome data (bulk 
RNA-seq, scRNA-seq, and Iso-Seq) from three sequencing platforms (Illumina, 10x 
Genomics, PacBio). All analysis modules are scripted in the form of bash command 
lines, which can be easily customized and launched by users.

The usage of each module is provided in the user manual and the scheme of our toolkit 
is shown in Fig. 1. Moreover, the organization of all modules and their function descrip-
tions in RNA-combine is shown in Additional file 1: Figure S1.

Introduction of analysis modules

Bulk RNA‑seq data analysis

The workflow of bulk RNA-seq data analysis starts with raw sequencing file preprocess-
ing, including removing rRNA sequences using Sortmerna [5], removing adapters and 
trimming low quality bases using Trimmomatic [6], aligning reads to reference genome 
using Hisat2 [7], counting reads on genes to calculate gene expression levels using fea-
tureCounts [8]. The aligned sequence files and/or gene count matrix can be used as 
inputs for downstream analysis modules: variant (INDEL and SNP) calling, DEG analy-
sis, function annotation, gene co-expression analysis and splicing site detection.

In the variant calling module, two methods are introduced: the one is conducted 
by GATK [9], which has been widely used as one of the most reliable methods in 
the variant identification from RNA-seq data [10]; the other is Strelka2 [11], which 
shows better sensitivity and precision in variant calling compared with GATK [12]. 



Page 3 of 11Dong et al. BMC Bioinformatics           (2022) 23:26 	

Notably, we apply three or more methods in each of the three modules: DEG, splic-
ing site detection, gene co-expression analysis. This approach integrates the advan-
tages of different methods. For instance, in DEG module, we use DESeq2 [13], limma 
[14], edgeR [15] and T-Test which differ from each other in both gene expression 
normalization and DEG identification: DESeq2 normalizes gene expression with a 
“geometric” normalization strategy and detects DEGs using an exact test; edgeR uses 
the weighted mean of log ratios for normalization and an exact test for DEG identi-
fication; limma adopts a quantile normalization approach and an empirical Bayesian 
analysis for DEG detection, whereas T-Test method applies a T-Test on RPKM (Reads 
Per Kilobase of transcript per Million mapped reads)/FPKM (Fragments Per Kilo-
base of exon model per Million mapped fragments) normalized data. In the module 
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Fig. 1  The Schematic workflow of RNA-combine. It includes three analysis units dealing with bulk RNA-seq, 
scRNA-seq and Iso-Seq data, respectively
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of splicing site detection, three methods with different strategies are adopted: DEX-
seq [16] based on exon boundaries, StringTie [17] based on transcripts, and rMATS 
[18] based on splicing events. In the module of gene co-expression, we use linear-
association based Pearson and Spearman coefficients, both of which have been widely 
used in constructing gene co-expression networks. We also apply a recently published 
method PMI [19], which measures nonlinearly direct dependencies based on the part 
mutual information among variables (gene expression). We further adopt SSN [20], 
which can construct a sample-specific network relying on the gene expression pro-
files of control samples and process one case sample. We introduce clusterProfiler 
[21] to the functional enrichment (GO pathways and KEGG pathways) module. It is 
noted that with the aligned sequence files and gene count matrix, users can customize 
workflows to meet specific analysis requirements.

scRNA‑seq data analysis

Cellranger [22] is used for preprocessing raw fastq files, including the read alignment 
and generation of feature-barcode matrices. The feature-barcode matrices can be passed 
onto downstream analyses.

Currently, the library construction used for scRNA-seq often causes doublet arti-
facts (i.e. two cells have the same barcode, thus mistakenly regarded as one cell), which 
may generate biased results. To overcome this limitation, we apply Scrublet [23] in the 
toolkit, which can identify such artifacts and exclude them before further analyses. 
Then, we utilize SCANPY [24] to conduct a sequence of processing and analysis, includ-
ing the quality control, dimension reduction, cell clustering, cell type annotation, trajec-
tory inference, providing users with the visualization of the number of genes in cells, 
percentage of mitochondrial genes in cells, cell cluster atlases, cell connectivity, and cell 
trajectories. To assign each cell cluster to a cell type, we develop a new method, based 
on two classical cell marker databases, CellMarker [25] and PanglaoDB [26]. Taken the 
DEG list of a cell cluster of interest (against with other cell clusters) as the input, our 
method searches related cell type information for each DEG in the two databases, with 
the cell type showing the largest hit number considered as the true one.

Iso‑Seq data analysis

We use one of the most well-established pipeline-PacBio’s IsoSeq V3 [27] to process raw 
sequencing data, including polishing, hierarchical clustering, iterative merging to obtain 
consensus full-length transcripts. For the read alignment, we suggest users to use local 
alignment methods (e.g. Minimap2 [28] in our toolkit), since the length of Iso-Seq reads 
is much longer than those generated by RNA-seq.

Interface of the input format

For omics (e.g. transcriptome) analysis, one of the most labor-intensive and time-con-
suming processes is the formatting of input files for different tools. In our toolkit, we 
develop a layer of interface that could automatically format inputs for user-specified 
tools, guaranteeing that these tools could be linked smoothly. Under this environment, 
bioinformaticians and non-bioinformaticians could quickly link different tools to a relia-
ble processing workflow without extra commands. More importantly, the users just need 
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to input the workflow with raw transcriptome sequencing data and reference genomes. 
Our toolkit will start from initial preprocessing and load the modules of interest. For 
instance, in the analysis of bulk RNA-seq data, one can set up a workflow starting from 
raw sequencing data preprocessing, to the calculation of expression level of each gene or 
transcript, identification of differentially expressed gene or transcript, detection of alter-
native splicing event and differential splicing site, construction of co-expression network 
and sample-specific network, variant calling (SNPs, INDELs), and biological pathway 
annotation.

Visualization

Because each module of transcriptomic analysis involves thousands of genes and multi-
ple dimensions (e.g. genes, networks etc.), the data presentation with graphical visualiza-
tion is in need to facilitate the result interpretation. However, this has been neglected in 
most of the previous tools. To address this issue, we develop a visualization plugin under 
the environment of R and Python, which realizes the visualization of the results for each 
module and can generate qualified graphs for publication.

Backtracking and recording

During the processing of large datasets (e.g. transcriptomes of multiple samples), spuri-
ous interruption might occur due to unexpected factors (e.g. interruption of power sup-
ply, storage overload). This abolishes the entire workflow and users have to spend a lot 
efforts to manually check all the processes. To minimize this effect as much as possible, 
we develop a Backtracking Executor plugin in our toolkit. It automatically records the 
interrupted processes (i.e. error logs) in a user-specified directory. Based on these log 
files, it is easy for users to resume data processing from the interrupted points. As a con-
sequence, the plugin enables users to keep tracking the processes and thus greatly reduc-
ing the efforts spent on debugging.

Results and discussion
Case studies

In this section, we focused on the assessments of reliability and automation of RNA-
combine using several published transcriptome data. We first tested the workflow of 
the bulk RNA-seq analysis with a transcriptome dataset from three normal breast tis-
sues and three breast tumor tissues [29]. Starting from the fastq files, RNA-combine 
first removed contaminated sequences, aligned sequences to reference genome, counted 
read numbers on genes, producing a gene count matrix, which was then passed for the 
differential expression analysis, co-expression analysis and splicing site detection. The 
results of differentially expressed genes between tumor and normal conditions and 
the enriched functional terms were shown in Fig. 2a, c, and the sample distances were 
shown in Fig.  2b. Among the identified differentially expressed genes, MUC1, which 
has been approved by FDA as a diagnostic marker to monitor clinical course of patients 
with breast tumor during treatment [30], was significantly upregulated in the tumor 
samples, suggesting that our toolkit was reliable. Genes specifically co-expressed with 
MUC1 in either tumor or normal tissues were shown in Fig. 2d. Moreover, three genes 
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with differential splicing sites (exon-based, transcript-based and event-based) identified 
between tumor and normal samples were shown in Fig. 3.

Next, using the pipeline of scRNA-seq data analysis in RNA-combine we analyzed a 
scRNA-seq dataset of 3k PBMCs (peripheral blood mononuclear cell) from a healthy 
donor generated from 10x Genomics (https://support.10xgenomics.com). The gene-
barcode matrix was used for doublet detection, cell clustering, cell type annotation and 
cell connectivity analysis. The number of 35 candidates were detected as potential dou-
blets among 2700 cells (Fig.  4a) and thus were discarded. The clustering results were 
shown in Fig. 4b. These cell clusters were further annotated according to classical cell 
markers, such as NKG7 for natural killer cells and T cells [31], PPBP for Megakaryocytes 
[32], CD79A for B cells [33] (Fig. 4c). The cell connectivity analysis revealed two main 
branches (lymphocytes and myeloid cells), as shown in Fig. 4d.

We used the public Alzheimer’s Iso-Seq dataset (1 percentage of total  samples) [34] 
to test the pipeline of Iso-Seq. This test produces a total of 2245 high-quality full-length 
transcripts. Estimated running time of each module in all of the above analyses is shown 
in Additional file 1: Table S1.

Overall, these results suggested that our toolkit worked smoothly and automatically 
for real transcriptome data from different sequencing platforms and it could process the 
data with raw sequencing fastq files and reference genomes as inputs.

Compared with other methods

We compared the features of RNA-combine with four toolkits (RNASeqR, RASflow, 
scGEAToolbox, NASQAR [35]) published in recent 2  years (Fig.  5). Among them, 
RNASeqR and RASflow could only process bulk RNA-seq data, and scGEAToolbox is 

Fig. 2  Application of bulk RNA-seq data analysis workflow to breast tumor datasets. a Volcano plot of DEGs 
between breast tumor and normal breast samples. b Heatmap and PCA (principal component analysis) plots 
of sample distances. c Functional pathway enrichment of DEGs in normal (left) and tumor (right) samples. d 
Differentially co-expressed network between tumor and normal samples with MUC1 as a hub
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designed for scRNA-seq data only. Although NASQAR can process both bulk RNA-seq 
and scRNA-seq data, it can’t process Iso-Seq data.

Regarding the analysis module, our toolkit covers all the analysis modules imple-
mented in RNASeqR, RASflow, scGEAToolbox, and most modules in NASQAR 
(except for metagenomic differential analysis and gene enrichment analysis), and it 
also includes nine extra modules (i.e. rRNA removal, alternative splicing site detec-
tion, variant detection, gene-co-expression network construction, scRNA gene-bar-
code matrix production, doublet detection, cell type annotation, PacBio sequence 
alignment and full-length transcript analysis) that are absent in the abovementioned 
software. One major difference between RNA-combine and other toolkits is that it 
implements the modules of raw data preprocessing, which enables users to use raw 
fastq files as input directly. Another difference is the development of the input for-
matting interface, which automatically formats inputs for different analysis modules, 
therefore enabling end-to-end analysis from raw sequencing files to direct graphic 
visualization of results. This is important because input formatting is both time- and 
labor-consuming, especially for users without advanced programming skills. RNA-
combine is a Linux-based toolkit, enabling users to parallel jobs, thus speeding up the 
analysis processes. Collectively, RNA-combine is more comprehensive on data analy-
sis and more user-friendly.

Fig. 3  Examples of differential splicing sites in tumor and normal conditions identified from exon-based (a), 
transcript-based (b), event-based (c) approaches
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Conclusions
We conclude that RNA-combine presented in this study is a user-friendly, reliable 
toolkit for the comprehensive analysis of transcriptome data generated from different 
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sequencing platforms. It enables users to set up a customized workflow to analyze data 
from multiple platforms and generate analysis reports and result visualization. Impor-
tantly, this toolkit empowers researchers without advanced bioinformatics skills to ana-
lyze their data by working with human-readable configuration files. We will continue to 
provide user supports and feature enhancements in future releases.

Availability and requirements

Project name: RNA-combine
Project home page: The software and usage guideline are available online at https://​
github.​com/​dongx​uemin​666/​RNA-​combi​ne
Operating system(s): Linux
Programming language: Python, R, Shell
Other requirements: R 3.6, Python 3.7
License: MIT, licenses for dependent packages, tools and methods are shown 
in Additional file 1: Table S2
Any restrictions to use by non-academics: license needed

Abbreviations
scRNA-seq: Single cell RNA sequencing; SNP: Single nucleotide polymorphism; INDEL: Insertion or deletion of bases; 
rRNA: Ribosomal RNA; DEG: Differentially expressed gene; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and 
Genomes; SSN: Sample-specific network; FDA: Food and Drug Administration.
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