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Abstract 

Background:  Researchers have attempted to apply deep learning methods of artificial 
intelligence for rapidly and accurately detecting acute lymphoblastic leukemia (ALL) in 
microscopic images.

Results:  A Resnet101-9 ensemble model was developed for classifying ALL in micro‑
scopic images. The proposed Resnet101-9 ensemble model combined the use of 
the nine trained Resnet-101 models with a majority voting strategy. Each trained 
Resnet-101 model integrated the well-known pre-trained Resnet-101 model and its 
algorithm hyperparameters by using transfer learning method to classify ALL in micro‑
scopic images. The best combination of algorithm hyperparameters for the pre-trained 
Resnet-101 model was determined by Taguchi experimental method. The microscopic 
images used for training of the pre-trained Resnet-101 model and for performance 
tests of the trained Resnet-101 model were obtained from the C-NMC dataset. In 
experimental tests of performance, the Resnet101-9 ensemble model achieved an 
accuracy of 85.11% and an F1-score of 88.94 in classifying ALL in microscopic images. 
The accuracy of the Resnet101-9 ensemble model was superior to that of the nine 
trained Resnet-101 individual models. All other performance measures (i.e., precision, 
recall, and specificity) for the Resnet101-9 ensemble model exceeded those for the 
nine trained Resnet-101 individual models.

Conclusion:  Compared to the nine trained Resnet-101 individual models, the 
Resnet101-9 ensemble model had superior accuracy in classifying ALL in microscopic 
images obtained from the C-NMC dataset.
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Background
Acute lymphoblastic leukemia (ALL) is a cancer of the lymphoid line of blood cells char-
acterized by development of numerous immature lymphocytes. As in acute leukemia, 
ALL progresses rapidly and is typically fatal within weeks or months if left untreated. If 
ALL is diagnosed in an early stage, however, curative treatment may be possible. Diag-
nosis is typically based on a complete blood count and microscope analysis of cell mor-
phology, both of which are often performed manually by medical laboratory scientists. 
Although these tasks can be automated, the required equipment currently has a high 
cost and limited availability [1, 2]. An automated system that uses relatively low-cost and 
easily obtained microscopic images for diagnosis of leukemia would have many advan-
tages. Therefore, artificial intelligence models for automatically detecting ALL in micro-
scopic images are urgently needed.

Literature review

Vogado et al. [3] extracted features from blood smear images by using pre-trained con-
volutional neural networks (CNNs) to obtain unique image descriptions. The authors 
evaluated several feature selection techniques and performed principal component anal-
ysis to select the features of the final descriptor. An ensemble model comprising sup-
port vector machine, multilayer perceptron, and random forest was then used to classify 
images as healthy or pathological. Rehman et  al. [4] improved accuracy in diagnosing 
ALL by using a computer-aided system that integrated image processing and deep learn-
ing techniques. The authors proposed a method of classifying ALL in stained bone mar-
row images. Robust segmentation and deep learning techniques were used to train the 
CNN to classify bone marrow images accurately. Shafique and Tehsine [5] deployed a 
pre-trained AlexNet for automated detection and classification of ALL. The authors then 
classified ALL into subtypes L1, L2, and L3 in the French/American/British classification 
systems. The last layers of the pre-trained AlexNet were replaced with new layers for 
classifying input images into four classes: L1, L2, L3, and Normal. A data augmentation 
technique was also used to avoid overtraining. Liu and Long [1] proposed an ensem-
ble model that used bagging ensemble learning method for training in ALL classifica-
tion. The learning efficiency and classification accuracy of the proposed ensemble model 
was enhanced by using augmented images of ALL and elaborately designed training 
subsets for model training. In their preliminary test set, the proposed ensemble model 
obtained a weighted F1-score of 0.84. Prellberg and Kramer [2] presented a simple and 
effective classification approach that used a ResNeXt CNN with squeeze-and-excitation 
modules. Preliminary tests of their approach in the C-NMC-2019 dataset achieved an 
average weighted F1-score of 0.8789 in 24 training runs. Kassani et  al. [6] presented a 
hybrid system for automated classification of leukemic B-lymphoblasts. The hybrid 
system integrated two CNNs (VGG16 and MobileNet) and transfer learning to extract 
features from input images of leukemic B-lymphoblasts. The proposed system fused fea-
tures from selected intermediate layers to obtain an auxiliary feature set, which was used 
for further improvement of classification accuracy. Additionally, features extracted from 
lower levels were integrated in higher dimension feature maps, which not only improved 
the capability to discriminate intermediate features, but also avoided the problem of 
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vanishing/exploding network gradients. Loey et al. [7] proposed two automated classifi-
cation models for detecting leukemia in blood microscopic images. Use of transfer learn-
ing in the two models yielded several advantages over traditional approaches. Their first 
classification model pre-processed blood microscopic images then used AlexNet, a pre-
trained deep CNN, for feature extraction. The AlexNet enabled application of numerous 
well-known classifiers. Their second classification model used pre-processed images to 
fine tune the AlexNet for both feature extraction and classification.

Notably, the above literature on detection of leukemia in microscopic images reveal 
that most related studies performed so far have investigated individual models for clas-
sifying microscopic images of ALL. Using an ensemble model, in which classification 
is based on the majority results, can reduce image classification errors. Moreover, few 
studies have discussed how algorithm hyperparameters affect classification accuracy 
in a pre-trained CNN model. Therefore, the motivations for this study were the lack of 
research on an ensemble model and lack of research on effect of algorithm hyperparam-
eters on accuracy of a pre-trained CNN model.

Objectives

This study had two objectives. The first objective was to determine the best combina-
tion of algorithm hyperparameters for the pre-trained Resnet-101 model. The second 
objective of this study was to establish an ensemble model that used multiple trained 
Resnet-101 models and a majority voting strategy to classify ALL in microscopic 
images. The method of integrating an ensemble model and a majority voting strategy 
can solve the problem that different single models classify the same image with differ-
ent symptoms. That is, classification of images by the ensemble model is analogous to 
classification of images according to the consensus of medical laboratory scientists. In a 
pre-trained Resnet-101 model, learning speed and classification quality are determined 
by algorithm hyperparameters that are set before the learning process begins. In subse-
quent training, however, a pre-trained Resnet-101 model may require different algorithm 
hyperparameters (e.g., optimizer, learning rate, and mini-batch size) to improve its clas-
sification accuracy. This study used Taguchi method, which is a systematic and robust 
experimental method, to generate the best combination of algorithm hyperparame-
ters for a pre-trained Resnet-101 model. In experimental comparisons, the Resnet101 
ensemble model had superior classification accuracy compared to trained Resnet-101 
individual models and had excellent accuracy in classifying ALL in microscopic images.

Problem description

Acute lymphoblastic leukemia, a cancer type that affects the blood and bone marrow, is 
characterized by overproduction of immature white blood cells, called lymphoblasts or 
leukemic blasts. Since the bone marrow cannot produce adequate numbers of red cells, 
normal white cells, and platelets, people with ALL are susceptible to anemia and recur-
rent infections as well as easy bruising and bleeding. As a result, blast cells that spill out 
of the bone marrow and into the bloodstream can accumulate in various organs, includ-
ing the lymph nodes (glands), spleen, liver, and central nervous system (brain and spinal 
cord) [1, 2].
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Acute lymphoblastic leukemia occurs in approximately 25% of all pediatric cancers. 
When viewed under a microscope, immature leukemic blasts and normal cells are diffi-
cult to distinguish due to their similar morphology [8]. Figure 1 compares representative 
microscopic images of ALL cells and Normal cells.

Detecting ALL often requires review of numerous and highly similar microscopic 
images by a medical laboratory scientist, which can be extremely time consuming and 
burdensome. Additionally, medical personnel in rural and/or under-developed areas 
may lack adequate training in detecting ALL in blood microscopic images. Therefore, 
the considered problem was how to screen numerous highly similar blood microscopic 
images for ALL efficiently and accurately. To aid medical laboratory personnel in identi-
fying ALL in blood microscopic images, an artificial intelligence model trained by deep 
learning method may be a useful tool.

Results
The proposed Resnet101 ensemble model integrated multiple trained Resnet-101 mod-
els with a majority voting strategy for classifying ALL in microscopic images. The well-
known pre-trained Resnet-101 model with its appropriate algorithm hyperparameters 
was trained to classify ALL in microscopic images. The training set of microscopic 
images used to train the pre-trained Resnet-101 model was obtained from the C-NMC 
dataset. The preliminary test set of microscopic images was used for performance eval-
uation of the trained Resnet-101 model. The experimental environment was Matlab 
R2019 and its toolboxes developed by MathWorks.

The experimental data used to test performance in classifying ALL in microscopic 
images included the training set and the preliminary test set. Table 1 shows the number 
of microscopic images in the training set and in the preliminary test set. To maintain 
compatibility with the CNN-based architecture and the developed software, each micro-
scopic image was processed as a 224 × 224 × 3 image, where 3 is the number of color 
channels.

Fig. 1  Representative microscopic images of ALL cells and Normal cells

Table 1  Number of images in datasets for training and preliminary testing of performance in 
classifying ALL in microscopic images

Class Training set Preliminary test set Total images

ALL 7272 1219 8491

Normal 3389 648 4037

Total images 10,661 1867 12,528
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A pre-trained Resnet-101 model was selected for training process, and then tried to set 
different algorithm hyperparameters before the learning process began. The algorithm 
hyperparameters for the pre-trained Resnet-101 model in this study were ‘Optimizer’, 
‘MiniBatchSize’, ‘MaxEpochs’, and ‘InitialLearnRate’. Optimizer was the training option. 
MiniBatchSize was a mini-batch at each iteration. MaxEpochs was the maximum num-
ber of training epochs. InitialLearnRate was an option for decreasing the learning rate 
during training.

A three-level OA of the minimum number of experiments for four factors is L9(34). 
Table 2 shows the three-level L9(34) OA, and Table 3 shows the factors and levels. The 
three levels for the ‘Optimizer’ hyperparameter (factor A) were ‘adam (adaptive moment 
estimation)’, ‘sgdm (stochastic gradient descent with a momentum)’, and ‘adam’. The three 
levels for the ‘MiniBatchSize’ hyperparameter (factor B) were 60, 65, and 70. The three 
levels for the ‘MaxEpochs’ hyperparameter (factor C) were 8, 10, and 12. The three levels 
for ‘InitialLearnRate’ hyperparameter (factor D) were 10−4, 10−5, and 10−6. Instead of 81 
(34) experiments, the L9(34) OA required only 9 experiments.

Table 4 shows the combinations of the four algorithm hyperparameters that combined 
the values in Tables 2 and 3 and were used in a pre-trained Resnet-101 model for clas-
sifying ALL in microscopic images.

The algorithm hyperparameter combinations in Table 4 were used in three independ-
ent experimental runs in the training set of the pre-trained Resnet-101 model and in the 
preliminary test set of the trained Resnet-101 model. In tests of performance in classify-
ing ALL in microscopic images, Table 5 shows the accuracy obtained in a single run and 
the average accuracy, standard deviation (SD), and η value obtained in three runs.

Table 2  Three-level L9(34) OA

Number of experiments Factors

A B C D

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

5 2 2 3 1

6 2 3 1 2

7 3 1 3 2

8 3 2 1 3

9 3 3 2 1

Table 3  Factors and levels

Factor (Algorithm hyperparameter) Levels

1 2 3

A: Optimizer adam sgdm adam

B: MiniBatchSize 60 65 70

C: MaxEpochs 8 10 12

D: InitialLearnRate 10−4 10−5 10−6
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Table 4  Combinations of four algorithm hyperparameters for a pre-trained CNN model

Number of 
experiments

Algorithm hyperparameters

Optimizer MiniBatchSize MaxEpochs InitialLearnRate

1 adam 60 8 10−4

2 adam 65 10 10−5

3 adam 70 12 10−6

4 sgdm 60 10 10−6

5 sgdm 65 12 10−4

6 sgdm 70 8 10−5

7 adam 60 12 10−5

8 adam 65 8 10−6

9 adam 70 10 10−4

Table 5  Accuracy of the trained Resnet-101 model in classifying ALL in microscopic images 
when the algorithm hyperparameter combinations in Table  4 were used in three independent 
experimental runs

Experiments 
1–9

Dataset Runs of experiment Average accuracy SD η value

1 2 3

1 Training set 0.9777 0.9796 0.9792 0.9788 0.0010 33.4870

Preliminary test set 0.8045 0.8066 0.7927 0.8013 0.0075 14.0346

2 Training set 0.985 0.9864 0.9872 0.9862 0.0011 37.2024

Preliminary test set 0.7916 0.7943 0.805 0.7970 0.0071 13.8487

3 Training set 0.9211 0.9218 0.9216 0.9215 0.0004 22.1026

Preliminary test set 0.7477 0.7483 0.7483 0.7481 0.0003 11.9754

4 Training set 0.7892 0.7888 0.7893 0.7891 0.0003 13.5185

Preliminary test set 0.6508 0.6508 0.6508 0.6508 0.0000 9.1385

5 Training set 0.9533 0.9538 0.9535 0.9535 0.0003 26.6572

Preliminary test set 0.7783 0.7809 0.7788 0.7793 0.0014 13.1253

6 Training set 0.864 0.8639 0.8647 0.8642 0.0004 17.3420

Preliminary test set 0.6909 0.6904 0.6888 0.6900 0.0011 10.1737

7 Training set 0.985 0.9877 0.985 0.9859 0.0016 37.0156

Preliminary test set 0.8056 0.8013 0.7965 0.8011 0.0046 14.0288

8 Training set 0.9056 0.9057 0.9064 0.9059 0.0004 20.5282

Preliminary test set 0.7268 0.7327 0.7338 0.7311 0.0038 11.4082

9 Training set 0.9796 0.9831 0.9831 0.9819 0.0020 34.8624

Preliminary test set 0.7954 0.7868 0.7563 0.7795 0.0205 13.1318

Table 6  Response table for each factor

Level Factors

A B C D

1 13.2862 12.4006 11.8722 13.4306

2 10.8125 12.7940 12.0397 12.6837

3 12.8563 11.7603 13.0432 10.8407

Effect 2.4737 1.0337 1.1710 2.5898

Maximum 13.2862 12.7940 13.0432 13.4306

Best level number 1 2 3 1

Best level value adam 65 12 10−4
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Table 6 is the response table for each factor, and Fig. 2 plots the effects of the factors, 
which were obtained by computing the η value for each factor level in Table 5. Table 6 
shows that factor levels 1, 2, 3, and 1 were selected for factors A, B, C, and D, respec-
tively. Thus, the best factor-level combination was A1: adam, B2: 65, C3: 12, and D1: 
10−4.

In the confirmation experiment, the best combination of algorithm hyperparameters 
(i.e., A1: adam, B2: 65, C3: 12, and D1: 10−4) was used in nine independent experimen-
tal runs of the trained Resnet-101 model, and the nine models were generated, namely 
Resnet-101-8249(#1), Resnet-101-8184(#2), Resnet-101-8452(#3), Resnet-101-8125(#4), 
Resnet-101-8061(#5), Resnet-101-8281(#6), Resnet-101-8307(#7), Resnet-101-8002(#8), 
and Resnet-101-8216(#9). For classifying ALL in microscopic images, Table  7 shows 
the accuracy achieved in the nine models for the training set and the preliminary test 
set. Table 7 also shows that the average accuracy and η value obtained in the nine mod-
els performed in the preliminary test set were 0.8209 and 14.9359, respectively, which 
exceeded those in each L9(34) OA experiment (Table 5) in the preliminary test set. The 
best combination of algorithm hyperparameters in the response table can obtain the 
best result even though not all factor-level combinations were tested. Therefore, the best 

η1

Level

10.00

12.00

14.00

A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3

Fig. 2  Plots of factor effects

Table 7  Accuracy of the nine trained Resnet-101 individual models in classifying ALL in 
microscopic images when the best combination of hyperparameters was used in nine independent 
experimental runs

Model Accuracy for the training set Accuracy for the 
preliminary test 
set

Resnet-101-8249(#1) 0.9881 0.8249

Resnet-101-8184(#2) 0.9856 0.8184

Resnet-101-8452(#3) 0.9872 0.8452

Resnet-101-8125(#4) 0.9893 0.8125

Resnet-101-8061(#5) 0.9841 0.8061

Resnet-101-8281(#6) 0.9848 0.8281

Resnet-101-8307(#7) 0.9811 0.8307

Resnet-101-8002(#8) 0.9877 0.8002

Resnet-101-8216(#9) 0.9859 0.8216

Average accuracy 0.9860 0.8209

SD 0.0025 0.0136

η value 37.0637 14.9359
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combination of algorithm hyperparameters obtained in the confirmation experiments 
was used in the trained Resnet-101 model for classifying ALL in microscopic images.

Additionally, ANOVA was performed to determine what factors had the greatest influ-
ence on the accuracy of the trained Resnet-101 model in classifying ALL in microscopic 
images. Table 8 shows the ANOVA results. Factors A (optimizer) and D (initialLearn-
Rate) had the largest effects on accuracy. The percentage contributions of Factors A and 
D to experimental variance were 41.62% and 42.34%, respectively, and their total per-
centage contribution to experimental variance was 83.96%. Therefore, statistically sig-
nificant factors in the accuracy of the trained Resnet-101 model in classifying ALL in 
microscopic images were A1 (adam) and D1 (10−4).

Table 7 shows the high classification accuracy achieved by each model in the prelimi-
nary test set. In all models, classification accuracy in the preliminary test set exceeded 
that of all L9(34) OA experiments (Table 5). Therefore, the nine trained Resnet-101 indi-
vidual models were selected for inclusion in the ensemble model. The Resnet101 ensem-
ble models comprised four ensemble models (Resnet101-3, Resnet101-5, Resnet101-7, 
and Resnet101-9). A microscopic image classified as ALL cell by most models was con-
sidered an ALL class, and a microscopic image classified as Normal cell by most models 
was considered a Normal class. The accuracy metric was used to compare performance 
in the trained Resnet-101 and Resnet101 ensemble models. Precision, recall, specificity, 
and F1-score were further used to validate classification performance. The results were 
depicted by creating a confusion matrix of actual class versus predicted class for the 
respective classes.

The comparison of classification accuracy in the four ensemble models in the prelimi-
nary test set were as follows.

The Resnet101-3 ensemble model, which combined Resnet-101-8249, 
Resnet-101-8184, and Resnet-101-8452 models, classified ALL in microscopic images by 
aggregating the results of a majority voting strategy. Table 9 shows the confusion matri-
ces used to compare ALL and Normal classes in the Resnet-101-8249, Resnet-101-8184, 
Resnet-101-8452, and Resnet101-3 ensemble models for the preliminary test set.

Based on the data in Table 9, Table 10 shows the classifier accuracy, precision, recall, 
specificity, and F1-score obtained by the trained Resnet-101 individual models and by the 
Resnet101-3 ensemble model. When the preliminary test set was used, the accuracy of 
the Resnet101-3 ensemble model (0.8409) was higher than those of the Resnet-101-8249 
and Resnet-101-8184 models but lower than that of the Resnet-101-8452 model. 

Table 8  Summary of ANOVA results

Factor Sum of squares Degrees of 
freedom

Variance Expected sum 
of squares

Percentage 
contribution 
(%)

A: optimizer 10.4812 2 5.2406 10.4812 41.62

B: miniBatchSize 1.6333 2 0.8167 1.6333 6.49

C: maxEpochs 2.4063 2 1.2031 2.4063 9.56

D: initialLearnRate 10.6617 2 5.3309 10.6617 42.34

Error 0.0000 0

ST 25.1825 8 100
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Other performance measures (i.e., precision, recall, specificity, and F1-score) for the 
Resnet101-3 ensemble model approximated those in the trained Resnet-101 individual 
models.

The Resnet101-5 ensemble model applied a majority voting strategy to classify ALL in 
microscopic images. That is, the Resnet101-5 ensemble model classified ALL by aggre-
gating the results of five models: Resnet-101-8249, Resnet-101-8184, Resnet-101-8452, 

Table 9  Confusion matrix for classification of images as ALL or Normal classes by the trained 
Resnet-101 individual models and by the Resnet101-3 ensemble model for the preliminary test set

Model Actual classes

ALL Normal

Resnet-101-8249 Predicted classes ALL 1095 203

Normal 124 445

Resnet-101-8184 Predicted classes ALL 1047 167

Normal 172 481

Resnet-101-8452 Predicted classes ALL 1114 184

Normal 105 464

Resnet101-3 ensemble Predicted classes ALL 1104 182

Normal 115 466

Table 10  Classification accuracy, precision, recall, specificity, and F1-score obtained by trained 
Resnet-101 individual models and by the Resnet101-3 ensemble model for the preliminary test set

Model Accuracy Precision Recall Specificity F1-score

Resnet-101-8249 0.8249 0.8436 0.8983 0.6867 0.8701

Resnet-101-8184 0.8184 0.8624 0.8589 0.7423 0.8607

Resnet-101-8452 0.8452 0.8582 0.9139 0.7160 0.8852

Resnet101-3 ensemble 0.8409 0.8585 0.9057 0.7191 0.8814

Table 11  Confusion matrix for classification of images as ALL and Normal classes by the trained 
Resnet-101 individual models and by the Resnet101-5 ensemble model for the preliminary test set

Model Actual classes

ALL Normal

Resnet-101-8249 Predicted classes ALL 1095 203

Normal 124 445

Resnet-101-8184 Predicted classes ALL 1047 167

Normal 172 481

Resnet-101-8452 Predicted classes ALL 1114 184

Normal 105 464

Resnet-101-8125 Predicted classes ALL 1078 209

Normal 141 439

Resnet-101-8061 Predicted classes ALL 1030 173

Normal 189 475

Resnet101-5 ensemble Predicted classes ALL 1100 173

Normal 119 475
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Resnet-101-8125, and Resnet-101-8061 models. Table  11 shows the confusion 
matrices used for comparisons of ALL and Normal classes in the Resnet-101-8249, 
Resnet-101-8184, Resnet-101-8452, Resnet-101-8125, Resnet-101-8061, and 
Resnet101-5 ensemble models for the preliminary test set.

Based on the data in Table 11, Table 12 shows the classifier accuracy, precision, recall, 
specificity, and F1-score obtained by the trained Resnet-101 individual models and 
by the Resnet101-5 ensemble model. In the preliminary test set, the accuracy of the 
Resnet101-5 ensemble model (0.8436) was superior to that of all trained Resnet-101 
individual models except Resnet-101-8452 model. Other performance measures (i.e., 
precision, recall, specificity, and F1-score) obtained by the Resnet101-5 ensemble model 
were not consistently superior or inferior to those of the trained Resnet-101 individual 
models.

As in the Resnet101-7 ensemble model, the Resnet101-7 ensemble model used a 
majority voting strategy to classify ALL in microscopic images. However, the Resnet-7 
ensemble model integrated seven models: Resnet-101-8249, Resnet-101-8184, 
Resnet-101-8452, Resnet-101-8125, Resnet-101-8061, Resnet-101-8281, and 
Resnet-101-8307 models. The Resnet101-7 ensemble model classified ALL by aggre-
gating the results of the majority voting strategy. Table 13 shows the confusion matri-
ces used to compare performance in classifying images in the preliminary test set as 
ALL or Normal classes in the seven trained Resnet-101 individual models and in the 
Resnet101-7 ensemble model.

Based on the data in Table 13, Table 14 shows the classification accuracy, precision, 
recall, specificity, and F1-score obtained by the trained Resnet-101 individual models and 
by the Resnet101-7 ensemble model. In the preliminary test set, the Resnet101-7 ensem-
ble model achieved an accuracy of 0.8506, which was superior to those of the trained 
Resnet-101 individual models. All other performance measures (i.e., precision, recall, 
specificity, and F1-score) obtained for the Resnet101-7 ensemble model were higher than 
those for the trained Resnet-101 individual models. That is, the Resnet101-7 ensemble 
model had superior accuracy in classifying ALL in microscopic images.

The Resnet101-9 ensemble model, which combined Resnet-101-8249, 
Resnet-101-8184, Resnet-101-8452, Resnet-101-8125, Resnet-101-8061, 
Resnet-101-8281, Resnet-101-8307, Resnet-101-8002, and Resnet-101-8216 models, 
accurately classified ALL in microscopic images by using a majority voting strategy to 
aggregate the results of these nine models. Table 15 shows the confusion matrices used 

Table 12  Classification accuracy, precision, recall, specificity, and F1-score obtained by trained 
Resnet-101 individual models and by the Resnet101-5 ensemble model for the preliminary test set

Model Accuracy Precision Recall Specificity F1-score

Resnet-101-8249 0.8249 0.8436 0.8983 0.6867 0.8701

Resnet-101-8184 0.8184 0.8624 0.8589 0.7423 0.8607

Resnet-101-8452 0.8452 0.8582 0.9139 0.716 0.8852

Resnet-101-8125 0.8125 0.8376 0.8843 0.6775 0.8603

Resnet-101-8061 0.8061 0.8562 0.845 0.733 0.8505

Resnet101-5 ensemble 0.8436 0.8641 0.9024 0.733 0.8828
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for comparisons of ALL and Normal classes. Table  15 is the confusion matrix for the 
classification performance of the nine trained Resnet-101 individual models and the 
Resnet101-9 ensemble model for the preliminary test set.

Based on the data in Table 15, Table 16 shows the classifier accuracy, precision, recall, 
specificity, and F1-score obtained by the trained Resnet-101 individual models and by 
the Resnet101-9 ensemble model. When the Resnet101-9 ensemble model was used in 
the preliminary test set, the accuracy was 0.8511, which was superior to the accuracies 
obtained by the trained Resnet-101 individual models. Other performance measures 
(i.e., precision, recall, specificity, and F1-score) obtained by the Resnet101-9 ensemble 
model were higher than those obtained by the trained Resnet-101 individual models. 

Table 13  Confusion matrix for classification of images as ALL and Normal classes by the trained 
Resnet-101 individual models and by the Resnet101-7 ensemble model for the preliminary test set

Model True classes

ALL Normal

Resnet-101-8249 Predicted classes ALL 1095 203

Normal 124 445

Resnet-101-8184 Predicted classes ALL 1047 167

Normal 172 481

Resnet-101-8452 Predicted classes ALL 1114 184

Normal 105 464

Resnet-101-8125 Predicted classes ALL 1078 209

Normal 141 439

Resnet-101-8061 Predicted classes ALL 1030 173

Normal 189 475

Resnet-101-8281 Predicted classes ALL 1114 216

Normal 105 432

Resnet-101-8307 Predicted classes ALL 1090 187

Normal 129 461

Resnet101-7 ensemble Predicted classes ALL 1116 176

Normal 103 472

Table 14  Classification accuracy, precision, recall, specificity, and F1-score obtained by trained 
Resnet-101 individual models and by the Resnet101-7 ensemble model for the preliminary test set

Model Accuracy Precision Recall Specificity F1-score

Resnet-101-8249 0.8249 0.8436 0.8983 0.6867 0.8701

Resnet-101-8184 0.8184 0.8624 0.8589 0.7423 0.8607

Resnet-101-8452 0.8452 0.8582 0.9139 0.716 0.8852

Resnet-101-8125 0.8125 0.8376 0.8843 0.6775 0.8603

Resnet-101-8061 0.8061 0.8562 0.845 0.733 0.8505

Resnet-101-8281 0.8281 0.8376 0.9139 0.6667 0.8741

Resnet-101-8307 0.8307 0.8536 0.8942 0.7114 0.8734

Resnet101-7 ensemble 0.8506 0.8638 0.9155 0.7284 0.8889
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That is, the Resnet101-9 ensemble model had superior accuracy in classifying ALL in 
microscopic images.

The classification results from Resent101-3, -5, -7, -9 ensemble models showed that 
the classification accuracy of multiple integrated models was higher than that of a sin-
gle model and fewer integrated models. In this study, the ensemble models that inte-
grated the largest number of models (i.e., nine models) had the highest classification 

Table 15  Confusion matrix for performance of the trained Resnet-101 individual models and the 
Resnet101-9 ensemble model in classifying images in the preliminary test set as ALL or Normal 
classes

Model Actual classes

ALL Normal

Resnet-101-8249 Predicted classes ALL 1095 203

Normal 124 445

Resnet-101-8184 Predicted classes ALL 1047 167

Normal 172 481

Resnet-101-8452 Predicted classes ALL 1114 184

Normal 105 464

Resnet-101-8125 Predicted classes ALL 1078 209

Normal 141 439

Resnet-101-8061 Predicted classes ALL 1030 173

Normal 189 475

Resnet-101-8281 Predicted classes ALL 1114 216

Normal 105 432

Resnet-101-8307 Predicted classes ALL 1090 187

Normal 129 461

Resnet-101-8002 Predicted classes ALL 1032 186

Normal 187 462

Resnet-101-8216 Predicted classes ALL 1099 213

Normal 120 435

Resnet101-9 ensemble Predicted classes ALL 1118 177

Normal 101 471

Table 16  Classification accuracy, precision, recall, specificity, and F1-score obtained by the trained 
Resnet-101 individual models and by the Resnet101-9 ensemble model for the preliminary test set

Model Accuracy Precision Recall Specificity F1-score

Resnet-101-8249 0.8249 0.8436 0.8983 0.6867 0.8701

Resnet-101-8184 0.8184 0.8624 0.8589 0.7423 0.8607

Resnet-101-8452 0.8452 0.8582 0.9139 0.716 0.8852

Resnet-101-8125 0.8125 0.8376 0.8843 0.6775 0.8603

Resnet-101-8061 0.8061 0.8562 0.845 0.733 0.8505

Resnet-101-8281 0.8281 0.8376 0.9139 0.6667 0.8741

Resnet-101-8307 0.8307 0.8536 0.8942 0.7114 0.8734

Resnet-101-8002 0.8002 0.8473 0.8466 0.7130 0.8469

Resnet-101-8216 0.8216 0.8377 0.9016 0.6713 0.8684

Resnet101-9 ensemble 0.8511 0.8633 0.9171 0.7269 0.8894
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accuracy. Therefore, the Resnet101-9 ensemble model combined with a majority vot-
ing strategy was used to classify ALL in microscopic images.

Discussion
The preliminary test set contained 1867 microscopic images, including 1219 images of 
ALL cells and 648 images of Normal cells. Table 17 shows the numbers of images that 
the Resnet101-9 ensemble model classified incorrectly. 101 microscopic images were 

Table 17  Image classification errors by the Resnet101-9 ensemble model for the preliminary test 
set

Number of incorrect classifications: The number of incorrect classifications of an image by the nine individual models

Classification error status Number of 
incorrect 
classifications

Numbers of microscopic images Amount of 
incorrect 
classifications

5 165, 261, 279, 355, 368, 388, 533, 570, 
574, 632, 690, 857, 1010, 1095, 1235, 
1254, 1301, 1355, 1522, 1606, 1625, 
1682, 1709, 1715

24

6 294, 377, 528, 544, 908, 912, 1099, 1219, 
1408, 1433

10

ALL incorrectly classified as 7 210, 447, 525, 629, 646, 767, 799, 805, 
855, 882, 887, 913, 1132, 1223, 1405, 
1861

16

Normal 8 250, 389, 433, 612, 746, 976, 1031, 1127, 
1277, 1361, 1492, 1515, 1521, 1652, 
1692

15

9 47, 179, 204, 219, 239, 295, 336, 427, 
634, 692, 719, 737, 768, 843, 850, 859, 
869, 910, 961, 1019, 1081, 1116, 1121, 
1310, 1337, 1397, 1418, 1434, 1528, 
1531, 1580, 1588, 1592, 1769, 1796, 
1834

36

5 60, 63, 67, 90, 127, 187, 240, 391, 431, 
461, 465, 567, 787, 891, 946, 1335, 1365, 
1367, 1441, 1449, 1485, 1487, 1514, 
1538, 1634, 1723, 1739, 1758, 1823, 
1865

30

6 158, 173, 233, 258, 305, 313, 376, 405, 
442, 464, 728, 747, 814, 866, 872, 933, 
1062, 1074, 1123, 1149, 1275, 1591, 
1603, 1629, 1696, 1729, 1787

27

Normal incorrectly classified as 7 236, 251, 298, 382, 446, 475, 516, 693, 
698, 724, 898, 1111, 1126, 1175, 1195, 
1265, 1295, 1377, 1399, 1431, 1473, 
1530, 1716, 1815

24

ALL 8 13, 172, 220, 289, 420, 435, 484, 529, 
627, 684, 775, 831, 949, 1063, 1119, 
1247, 1263, 1379, 1411, 1537, 1545, 
1590, 1624, 1673, 1732, 1759, 1820, 
1840, 1850

29

9 26, 35, 50, 54, 117, 142, 160, 171, 212, 
214, 256, 259, 264, 299, 320, 340, 369, 
421, 423, 469, 472, 530, 531, 536, 609, 
643, 654, 682, 735, 786, 791, 840, 854, 
864, 867, 896, 924, 930, 931, 963, 974, 
980, 996, 1017, 1072, 1191, 1220, 1222, 
1249, 1252, 1267, 1307, 1324, 1409, 
1422, 1440, 1458, 1460, 1525, 1526, 
1623, 1724, 1741, 1749, 1773, 1786, 
1814

67
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ALL cells but were incorrectly classified as Normal cells, and 36 images were incorrectly 
classified by nine individual models and should be reviewed by medical laboratory sci-
entists. 177 microscopic images were Normal cells but were incorrectly classified as ALL 
cells, and 67 images were incorrectly classified by nine individual models and should be 
reviewed by medical laboratory scientists. Microscopic images of acute lymphoblastic 
leukemia were obtained from the C-NMC dataset for testing the performance of the 
proposed artificial intelligence methods. Classification accuracy of the preliminary test 
set in the previous studies [1, 2, 9] and the Resnet101-9 ensemble model is no more than 
0.9. The authors coming from Medical University believed that some images from the 
C-NMC dataset were incorrectly labeled and needed further confirmation by medical 
laboratory scientists. In most object detection and classification problems encountered 
in the medical field, professional knowledge or experience is needed to label objects 
correctly. Therefore, a reliable dataset of correctly labeled objects is essential for model 
training and testing.

This study found that an appropriate combination of algorithm hyperparameter set-
tings for a pre-trained Resnet-101 model is essential for accurately classifying ALL in 
microscopic images. In the trained Resnet-101 model, the best combination was Opti-
mizer of ‘adam’, MiniBatchSize of 65, MaxEpochs of 12, and InitialLearnRate of 10−4. 
The results of this study indicate that a poor combination of algorithm hyperparame-
ters for a pre-trained Resnet-101 model cannot accurately classify ALL in microscopic 
images. Although different trained Resnet-101 individual models have different accuracy 
in classifying ALL in microscopic images, the Resnet101 ensemble model used a voting 
mechanism to aggregate the classification results. That is, classification of microscopic 
images of ALL by the ensemble model is analogous to classification of microscopic 
images of ALL according to the consensus of medical laboratory scientists.

Although studies by Liu and Long [1], by Prellberg and Kramer [2], and by Mon-
dal et  al. [9] used the same database (C-NMC dataset), they used different image size 
and processing, different performance criteria, and did not provide confusion matri-
ces. Therefore, prediction performance comparisons with these earlier studies are not 
possible. Liu and Long [1] reported a weighted  F1-score of 0.84, weighted precision of 
0.84, and weighted recall of 0.85 for their preliminary test set. Prellberg and Kramer 
[2] reported an average weighted  F1-score of 0.8789, an average weighted precision 
of 0.8791, and an average weighted recall of 0.9201 for 24 runs of their model in their 
preliminary test set. Additionally, Prellberg and Kramer [2] concluded that all related 
works have reported good results, but comparisons are not possible because the data-
sets are rarely publicly available. Mondal et al. [9] reported that their proposed weighted 
ensemble model, using the kappa values of the ensemble candidates as their weights, has 
outputted a weighted F1-score of 0.886 and a balanced accuracy of 0.862 in their prelimi-
nary test set. Among the studies that have used publicly available datasets for ALL, com-
parisons are not possible because the procedures for evaluating classification accuracy 
differed among studies. Furthermore, all related studies reported so far have used small 
datasets. Use of a large dataset is essential for an accurate assessment of state-of-the-art 
classification technology; we hope the C-NMC dataset can meet this need.

The amount of data in the preliminary test set (1,867 records) is much smaller than 
the amount of data in the training set (10,661 records), and the image labeling of the 
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preliminary test set data has problems, resulting in lower average accuracy and η val-
ues the preliminary test set than those of the training set (Table 5). The problem with 
the image labeling of the preliminary test set data has been explained in the discussion 
paragraph. Additionally, the F1-score of the preliminary test set in the previous studies 
[1, 2, 9] is 0.84–0.886 and the F1-score of the preliminary test set in this study is 0.8894 
(obtained by Resnet101-9 ensemble model), indicating that the image labeling of the 
preliminary test set data needs further confirmation by medical laboratory scientists.

Conclusions
This Resnet101-9 ensemble model proposed in this study accurately and efficiently 
classified microscopic images as ALL. The first contribution of this study is the con-
firmation that an appropriate combination of algorithm hyperparameters for a pre-
trained Resnet-101 model can obtain high image classification accuracy. The second 
contribution of this study is the confirmation that the image classification accu-
racy of an ensemble model can be enhanced by (1) applying a majority voting strat-
egy and by (2) increasing the number of models (e.g., up to nine) integrated in the 
ensemble model. Additionally, this study investigated the number of image misclas-
sifications made by the Resnet101-9 ensemble model used to classify ALL in micro-
scopic images. When the Resnet101-9 ensemble model was used to classify ALL in a 
preliminary test set of microscopic images, accuracy was 85.11%, which was supe-
rior to the accuracies obtained by the nine trained Resnet-101 individual models (i.e., 
Resnet-101-8249(#1), Resnet-101-8184(#2), Resnet-101-8452(#3), Resnet-101-8125(#4), 
Resnet-101-8061(#5), Resnet-101-8281(#6), Resnet-101-8307(#7), Resnet-101-8002(#8), 
and Resnet-101-8216(#9) models, accuracy ranging from 80.02% to 84.52%). Other per-
formance measures obtained for the Resnet101-9 ensemble model (i.e., 86.33% preci-
sion, 91.71% recall, 72.69% specificity, and 88.94% F1-score) were also superior to those 
obtained by the nine trained Resnet-101 individual models. That is, the Resnet101-9 
ensemble model had superior capability in classifying ALL in microscopic images com-
pared to the nine trained Resnet-101 individual models.

Methods
The research procedure was collecting data and processing microscopic images for 
classifying ALL that could be used for model training, selecting the pre-trained 
Resnet-101 model for transfer learning, using Taguchi method to design the combina-
tions of algorithm hyperparameters for the pre-trained Resnet-101 model, fine-tuning 
and further training the pre-trained Resnet-101 model to classify ALL in microscopic 
images, comparing and recording classification performance among different trained 
Resnet-101 models, inferring the best factor-level combination of algorithm hyper-
parameters, analyzing algorithm hyperparameters in the trained Resnet-101 model 
for classifying ALL in microscopic images, generating and selecting multiple trained 
Resnet-101 models for use in a Resnet101 ensemble model, and, finally, comparing 
the classification performance of the Resnet101 ensemble model with that of trained 
Resnet-101 individual models. The detailed steps were as follows.
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Collecting data and processing microscopic images for classifying ALL

The microscopic images in the C-NMC dataset were divided into a training set, a pre-
liminary test set, and a final test set. The training set had 10,661 microscopic images, 
including 7,272 images of ALL (cancer) cells and 3,389 images of Normal cells. The 
preliminary test set had 1,867 microscopic images, including 1,219 images of ALL 
cells and 648 images of Normal cells. Since the ground truth for the final test set was 
not released, the final test set was not used in the study. Image preprocessing by the 
dataset authors limited each microscopic image to a single cell and a 450 × 450 pixels 
resolution [8, 10].

To maintain compatibility with the CNN-based architecture and the developed 
software, each microscopic image was processed as a 224 × 224 × 3 image, where 3 is 
the number of color channels.

Selecting the pre‑trained Resnet‑101 model for transfer learning

The most important characteristics of pre-trained CNN models are network accu-
racy, speed, and size. The choice of a pre-trained network generally involves a tradeoff 
among these characteristics. Accuracy in classifying images contained in the Ima-
geNet database [11] is the most common measure of the accuracy of networks trained 
on the database used in the ImageNet large-scale visual recognition challenge (ILS-
VRC) [12]. Networks that achieve high accuracy on ImageNet are also expected to 
achieve high accuracy in other natural image datasets that are used to evaluate per-
formance in transfer learning or feature extraction. The Resnet [13] achieved a 3.57% 
Top-5 error rate and was the winner of ILSVRC 2015. Therefore, this study selected 
Resnet-101 (101 layers) for evaluating performance in classifying ALL in microscopic 
images. Since the Resnet-101 has been trained on more than 1 million images from 
the ImageNet database used in the ILSVRC, Resnet-101 has learned rich feature rep-
resentations for a wide range of images and can classify images into 1000 object cat-
egories. The image input size for the Resnet-101 is 224 × 224 × 3.

Transfer learning is a machine learning approach in which a model developed for a 
task is reused as the starting point for a model developed for another task. In trans-
fer learning, a pre-trained CNN model is used to construct a predictive model. Thus, 
the first step is selecting a pre-trained CNN model from available models. The sec-
ond step is reusing the pre-trained CNN model, and the third and final step is tuning 
the pre-trained CNN model for a new task. Depending on the input–output pair data 
available for the new task, the researcher may consider further modification or refine-
ment of the pre-trained CNN model. Transfer learning is typically much faster in a 
pre-trained CNN model compared to a CNN model without pre-training.

Using Taguchi method to design algorithm hyperparameter combinations 

for the pre‑trained Resnet‑101 model

The Taguchi method [14–17] is a statistical experimental method of implementing and 
evaluating improvements in processes and products. The main principle of the method 
is to enhance quality by minimizing the cause of variations rather than by eliminating 
them. The Taguchi method minimizes the number of experiments needed to study a 
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large number of design variables. An efficient way to study the effects of several con-
trol factors simultaneously is to arrange matrix experiments in orthogonal arrays (OAs). 
The better factor-level combinations are determined by OAs and signal-to-noise ratios 
(SNRs).

For the pre-trained Resnet-101 model to achieve high accuracy in classifying ALL in 
microscopic images, selecting appropriate algorithm hyperparameters was essential. 
The algorithm hyperparameters for the pre-trained Resnet-101 model in this study were 
Optimizer, MiniBatchSize, MaxEpochs, and InitialLearnRate. To account for nonlinear 
effects and to minimize the required number of experiments, a three-level L9(34) OA 
was used. Therefore, the combinations of algorithm hyperparameters obtained by the 
three-level L9(34) OA were used in a pre-trained Resnet-101 model for classifying ALL in 
microscopic images.

Fine‑tuning and training the pre‑trained Resnet‑101 model to classify ALL in microscopic 

images

To fine-tune a pre-trained Resnet-101 model, transfer learning is often faster and eas-
ier than constructing and training a new Resnet-101 model for a new task. Although 
a pre-trained Resnet-101 model has already learned a rich set of image features, it can 
be fine-tuned to learn features specific to a new dataset. In this study, the pre-trained 
Resnet-101 model was fine-tuned to learn features specific to the C-NMC dataset. Since 
a pre-trained Resnet-101 model can learn to extract a different feature set, the final 
Resnet-101 model is often more accurate. The starting point for fine tuning deeper lay-
ers of a pre-trained Resnet-101 model used for transfer learning is to train the networks 
with a new C-NMC dataset. Figure 3 is a flowchart of the transfer learning procedure 
used in the Resnet-101 model.

Comparing and recording classification performance among different trained Resnet‑101 

models

The results recorded for the training set and the preliminary test set included (1) accu-
racy in each run of the experiment, (2) average accuracy in three independent runs, (3) 
standard deviation in accuracy in three independent runs and (4) η value.

Accuracy was defined as the proportion of true positive and true negative results 
for a population. The concept of SNR was first applied in communications and then in 
engineering. For engineering applications, a larger SNR (η) is preferable and indicates 
better performance. Taguchi recommended multiplying the common logarithm of 
SNR by 10, which obtains the SNR in decibels (dB). In this study, the equation for the 

Load a 
pre-trained 
Resnet-101

model

Replace
final layers

Predict and 
assess network 

accuracy

Deploy 
results

Train network using 
a combination of 
hyperparameters

Fig. 3  Flowchart of transfer learning procedure used in the Resnet-101 model
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smaller-the-better characteristic was η = −10 log (y−m)2 , where y = 1
n

∑n
t=1 yt (a set 

of data y1, y2, …, yn, accuracy of model training and prediction in each experiment) and 
m = 1 (i.e., the accuracy of the target is 100%).

Inferring the best factor‑level combination of algorithm hyperparameters

A response table was built to find the best factor-level combination of algorithm hyper-
parameters by using the L9(34) OA and η values. To build the response table, the effects 
of different factors were set as follows: Efl = average of sum of ηi for factor f at level l, 
where f is the factor name, l is the level number, and i is the experiment number. After 
the nine experiments for L9(34) were performed, the response table was used to inves-
tigate the η of each factor level. The response table showed the average η of each factor 
level and maximum average η of each factor. The main objective was to use the response 
table to find the best level for each factor. The best level was defined as the level with the 
highest Efl value in the experimental region. That is, the best factor-level combination 
of algorithm hyperparameters was inferred according to the results of the nine experi-
ments, even though not all factor-level combinations (i.e., 34 experiments) of algorithm 
hyperparameters were considered.

Analyzing the algorithm hyperparameters in the trained Resnet‑101 model for classifying 

ALL in microscopic images

The Taguchi experimental design process uses analysis of variance (ANOVA) to iden-
tify important control factors by performing the smallest number of experiments. The 
ANOVA analyses were performed to find the algorithm hyperparameters in the trained 
Resnet-101 model that significantly affected the most important characteristic, i.e., accu-
racy in classifying ALL in microscopic images.

Generating and selecting multiple trained Resnet‑101 models for integration 

in a Resnet101 ensemble model for classifying ALL in microscopic images

The best factor-level combination of algorithm hyperparameters obtained by the 
response table for the trained Resnet-101 model was used to classify ALL in microscopic 
images. The trained Resnet-101 models that had the better performance in classifying 
ALL in microscopic images were then integrated in a Resnet101 ensemble model used to 
classify ALL in microscopic images in the preliminary testing data set.

Comparing the classification performance of the Resnet101 ensemble model with that of 

trained Resnet‑101 individual models

Classification performance was compared in the Resnet101 ensemble model and the 
trained Resnet-101 individual models. Classification performance was compared in 
terms of accuracy, precision, recall (i.e., sensitivity), specificity, and F1-score values. The 
five measures were introduced below.

Accuracy is the proportion of true results (both true positive and true negative) in the 
population. When an information retrieval task is performed, precision is a measure of the 
relevance of results. Precision is calculated as the positive predictive value (number of true 
positives over number of true positives plus number of false positives). Another measure 
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of information retrieval performance is recall (sensitivity), which is calculated as true posi-
tive rate (number of true positives over the number of true positives plus the number of 
false negatives). Specificity is calculated as true negative rate (number of true negatives over 
the number of false positives plus the number of true negatives). The F1-score is a func-
tion of precision and recall and was used to measure prediction accuracy when classes 
were very imbalanced. The formula used to calculate F1-score in this study was 2 × (preci-
sion × recall)/(precision + recall) [18, 19].
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