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Abstract 

Background:  Cell-based models are becoming increasingly popular for applications 
in developmental biology. However, the impact of numerical choices on the accuracy 
and efficiency of the simulation of these models is rarely meticulously tested. Without 
concrete studies to differentiate between solid model conclusions and numerical arti-
facts, modelers are at risk of being misled by their experiments’ results. Most cell-based 
modeling frameworks offer a feature-rich environment, providing a wide range of 
biological components, but are less suitable for numerical studies. There is thus a need 
for software specifically targeted at this use case.

Results:  We present CBMOS, a Python framework for the simulation of the center-
based or cell-centered model. Contrary to other implementations, CBMOS’ focus is on 
facilitating numerical study of center-based models by providing access to multiple 
ordinary differential equation solvers and force functions through a flexible, user-
friendly interface and by enabling rapid testing through graphics processing unit (GPU) 
acceleration. We show-case its potential by illustrating two common workflows: (1) 
comparison of the numerical properties of two solvers within a Jupyter notebook and 
(2) measuring average wall times of both solvers on a high performance computing 
cluster. More specifically, we confirm that although for moderate accuracy levels the 
backward Euler method allows for larger time step sizes than the commonly used for-
ward Euler method, its additional computational cost due to being an implicit method 
prohibits its use for practical test cases.

Conclusions:  CBMOS is a flexible, easy-to-use Python implementation of the center-
based model, exposing both basic model assumptions and numerical components to 
the user. It is available on GitHub and PyPI under an MIT license. CBMOS allows for fast 
prototyping on a central processing unit for small systems through the use of NumPy. 
Using CuPy on a GPU, cell populations of up to 10,000 cells can be simulated within a 
few seconds. As such, it will substantially lower the time investment for any modeler 
to check the crucial assumption that model conclusions are independent of numerical 
issues.

Keywords:  Cell-based model, Center-based model, Numerical method, Implicit solver, 
Python, NumPy, CuPy
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Background
Cell-based models offer the possibility to study questions relating cellular to population 
level behavior by explicitly representing each individual cell and its mechanical interac-
tion with its neighbors [1]. As such, they are becoming increasingly popular for applica-
tions in developmental [2, 3] and cancer biology [4, 5].

There exist a multitude of cell-based models which can be categorized as either on- or 
off-lattice models. On-lattice models such as cellular automata [6] or the cellular Potts 
model [7] restrict the movement of cells in space to a fixed grid. Off-lattice models, on 
the other hand, track the movement of particles in continuous space. Depending on the 
resolution of the shape of the cells, the particles can represent cell midpoints (center-
based or cell-centered model [8, 9]), cell membrane junctions (vertex-based model [10]) 
or even individual cell parts, such as in the immersed boundary method [11] or the sub-
cellular element model [12]. Center-based models represent cells as overlapping spheres 
or as Voronoi polyhedra defined by the topology of their midpoints [9, 13]. Cells then 
interact mechanically with their neighbors according to pairwise forces, in an analogy 
to them being connected by springs. The exact definition of the cell’s neighborhood 
depends on the method, where the most common ones are either solely distance-based 
or restrict interaction to neighboring Voronoi polyhedra. Pairs of cells attract or repel 
each other depending on the distance between them. Currently available software for the 
general simulation of center-based models include the open-source frameworks Chaste 
[14], MecaGen [15], PhysiCell [16], and ya‖a [17], as well as the closed-source packages 
CellSys [18], EPISIM [19] and Biocellion [20].

Aside from relying on the basic modeling assumptions described above, the center-
based model includes many numerical aspects such as the method used to solve the 
system of ordinary differential equations (ODE) governing the movement of the cell 
midpoints. All open-source software implementations mentioned above use explicit low 
order integration methods, with Chaste and MecaGen using the most simple first-order 
forward Euler method [21], PhysiCell using the second-order Adams-Bashforth method 
[21] and lastly, ya‖ a implementing Heun’s method [22], another second-order method. 
Contrary to other areas in the field of systems biology where the benefits of higher order 
and adaptive integration algorithms have been clearly established, this question has yet 
to be studied extensively in the case of cell-based models. It is our hope that providing 
a software designed specifically for ease-of-experimentation with different solvers will 
help shed empirical light on this issue.

For now, choosing all model components and their parameters - such as cutoff radii 
and spring stiffness values for the force functions or time step sizes for the numerical 
solver - as well as understanding their effects on the accuracy and efficiency of the simu-
lation of population-level behavior remain open problems. Nevertheless, the robustness 
of biological conclusions to both basic model assumptions and numerical issues is of the 
utmost importance in order to build upon predictions and understanding gained from 
simulations. More specifically, with the increased usage of cell-based models there is an 
increased need for the numerical study of these models for several reasons [23]: (1) In 
the absence of exact data on intercellular forces in cell populations such as tissues, mod-
els abstract how cells mechanically interact with their immediate neighbors in different 
ways, e.g. with different types of ad-hoc pairwise interaction forces. Modelers need to 
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study how their model conclusions at the population level are affected by changes to the 
exact mathematical definition of these force functions. (2) In general, it is not straight-
forward to know whether more complex numerical methods for solving the update 
equations—e.g. a higher order method or an implicit method—are beneficial over more 
simpler ones in terms of computational cost for a given level of accuracy. (3) Careful 
consideration needs to be given to the choice of purely numerical parameters, such as 
time step length, as these have been shown to affect model conclusions drawn from cell-
based models [24].

Several publications have studied these three points in the context of center-based 
models. Such publications include the work of Pathmanathan et  al. [25], where they 
compared the bulk mechanical properties of a non-proliferating tissue simulated using 
different physics-based forces, and the work by Atwell [26] which investigated both the 
use of different forces and of different numerical solvers for the simulation of a tumor 
growth type experiment. In particular, the latter compared a fourth-order explicit 
Runge-Kutta method and two implicit methods to the commonly used first-order 
explicit forward Euler method in terms of accuracy and run times, as well as proposing 
a simple adaptive mechanism to ensure that the time step size is chosen small enough to 
not violate a given absolute movement threshold on the displacement of the cell centers. 
Additionally, in [13] Osborne et al. compared five different cell-based models including 
the center-based model with respect to their underlying model assumptions, implemen-
tation details and applicability to different common biological problems. All of the above 
studies were done using the Chaste simulation framework. Furthermore, as part of the 
supplementary information of the publication announcing the PhysiCell code [16], Ghaf-
farizadeh et al. ran convergence studies for the second-order explicit Adams-Bashforth 
method (used by PhysiCell for updating the cell positions) for a two-cell test case and a 
compressed spheroid population.

In a previous study [27] we explored the question of how the formulation of the force 
function governing the pairwise interaction forces affects the numerical properties of the 
two-dimensional center-based model when used in combination with the different first 
and second-order explicit numerical methods commonly used in center-based model 
implementations. We showed that, for the simulation to remain physically correct, the 
size of the time step must be carefully tailored to the choice of force function. Moreover, 
choosing the time step size too large for a given force function/solver combination led to 
geometrical differences at the population level, with the different force functions exhib-
iting varying sensitivity to this issue. These findings illustrate the importance of ensuring 
that model conclusions are independent of numerical choices.

With the exception of [27], all of the above studies have been performed within a typi-
cal feature-rich modeling software written primarily to study biological problems within 
the context of a specific modeling problem. These frameworks typically only provide one 
type of force function and one solver and do not expose the numerical components of 
the model to the user (note that Chaste provides general interfaces which the user could 
extend [14]). As a complementary approach, there is value in studying these issues in a 
more general setting in order to inform modelers on how the combination of different 
basic model assumptions can affect typical population level behavior and how to avoid 
common pitfalls with respect to numerical parameters.
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To this end, we have written CBMOS, a framework designed explicitly for the numeri-
cal study of center-based models in two and three space dimensions. Our code is a 
Python implementation making it easily accessible for novice and experienced program-
mers alike, while internally relying heavily on NumPy’s vectorized routines [28] for per-
formance. Through the optional use of the CuPy library [29], it enables transfer of the 
calculation of the pairwise cellular forces to a graphics processing unit (GPU) if avail-
able, thus allowing for the simulation of cell population sizes of up to 10,000 cells in a 
few seconds.

CBMOS is publicly available on GitHub [30] along with all Jupyter notebooks that 
were used to generate the figures in this publication. Additionally, it is available on the 
Python Package Index (PyPI) and can be installed via pip by running pip install 
cbmos. It has minimal requirements consisting mainly of the scientific Python stack 
NumPy and SciPy, along with the optional requirement of CuPy if execution on the GPU 
is desired. Documentation can be found on the project’s GitHub page [31]. Users inter-
ested at trying out CBMOS without installing it on their system, can also choose to run 
it through Google Colaboratory (or Google Colab for short) [32]. Google Colab offers a 
Python computing environment based on Jupyter notebooks with access to GPU hard-
ware. It runs entirely in the cloud and is accessible through a web browser [33]. Most 
conveniently, it also features the possibility to directly run Jupyter notebooks hosted on 
GitHub, such as those that can be found in the CBMOS directory, enabling any potential 
user to quickly get started with CBMOS.

Implementation
In this section we briefly state the mathematical description of the center-based model 
as it is implemented in CBMOS and explain its design using a minimal working example. 
Moreover, we describe implementation aspects such as the array programming para-
digm we use, as well as which parts of the code are extended to the GPU. Finally, we 
describe how interested users can install it.

Mathematical description of the center‑based model

The center-based model implemented in CBMOS tracks the movements of the midpoint 
coordinates x of a population of cells over time. Individual cells are implicitly repre-
sented as circles (in two dimensions) or spheres (in three dimensions) with a fixed radius 
R . They are assumed to interact mechanically according to pairwise interactions with 
their neighbors within a certain maximum interaction distance rA , with the magnitude 
of their force interaction depending only on their distance r . If two neighboring cells 
are located closer than some rest length s , they exert repulsive forces on each other to 
eliminate their overlap. If they are placed exactly the rest length s apart, they exert no 
forces on each other. (As a default, CBMOS uses a rest length of s = 1.0 cell diameter.) 
Additionally, if located in close proximity, but not overlapping (i.e. at a distance larger 
than the rest length s but smaller than the maximum interaction distance rA ), they exert 
adhesive forces pulling them closer. Specific pairwise force functions implementing such 
behavior include the cubic force implemented in MecaGen [15],
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the piecewise quadratic (PWQ) force used in PhysiCell [16],

and the generalized linear spring (GLS) force used in Chaste [14],

In all three functions µ denotes the spring stiffness (split between repulsive and adhesive 
interactions for the piecewise quadratic force into the parameters µR and µA ). Further-
more, rR denotes the interaction distance for repulsive interactions for the piecewise 
quadratic force and α controls the width of the exponential decay of the GLS force in the 
adhesive regime (see [27] for an in-depth discussion and other force function examples). 
These one-dimensional forces are extended to two or three dimensions by multiplication 
with the normalized direction vector between cell midpoints, i.e. we define the pairwise 
force vector between cells i and j as Fij = F(�rij�)

rij
�rij�

 , where rij = x(j) − x(i) and x(i) and 

x(j) denote the midpoint coordinates of cells i and j . Other force functions implemented 
in CBMOS include the linear force [34, 35] and the Hertz force [36, 37].

The cells are assumed to move in a microenvironment with a very low Reynolds num-
ber [38] in which inertial effects can be neglected. Under this assumption, the update 
equation for the midpoint coordinates of the i th cell is

where the drag force proportional to the cell’s velocity is balanced with the force being 
exerted on the cell by its neighbors. The drag coefficient η acts as a scaling of the pair-
wise interaction forces and can thus be arbitrarily fixed as η = 1.

Given an initial placement for the coordinates of the population, Eq.  (4) is solved 
numerically at discrete time points. Methods implemented in CBMOS for doing this 
include the explicit first-order forward Euler method [21] (commonly used by other 
center-based model simulation software such as Chaste [14] and MecaGen [15]), the 
explicit second-order Midpoint [22], Heuns [22] (used by ya‖ a [17]) and Adams-Bash-
forth [21] methods (the latter is used by PhysiCell [16]), as well as the implicit first-order 
backward Euler method [21]. Moreover, it is also easily possible to use other solvers 
from the standard library thanks to CBMOS being compatible with scipy.inte-
grate’s interface that provides access to several high-order numerical methods as well 
as LSODA [39]. We refer to the results section for a detailed description and comparison 
of the forward and backward Euler methods.
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Design overview

CBMOS allows to probe the interplay of different model components—mainly the pair-
wise interaction force and the numerical solver—and their combined effect on the popu-
lation level behavior as well as on the efficiency of the simulation. To do so, CBMOS 
provides a flexible, easy-to-use interface that is easily expandable to study the effects of 
force functions, ODE solvers, time step sizes or cellular events in the context of center-
based models. CBMOS implements a number of pairwise force functions found in the 
literature and other popular software packages for the simulation of center-based mod-
els, as well as five ODE solvers, including three second-order solvers and one implicit 
solver. A simple example showing how to set up and run a simulation of two cells can 
be seen in Listing 1, with a more complex example being described on CBMOS’ docu-
mentation web page [31]. Furthermore, the interested user can find code examples on 
common numerical analysis workflow scenarios in the Jupyter notebooks available in the 
GitHub repository (see the examples folder, as well as the code belonging specifically 
to this and our previous publication [27]).

The CBMOS code is event-driven, meaning that cell events are queued according to 
their execution time and the mechanical equations for the center positions are solved in 
between the execution of cell events, see Fig. 1 for the general structure of the code. The 
event-driven implementation is advantageous for the numerical study of center-based 
models as it avoids an additional splitting error that arises when simulations proceed in 
a step-driven manner. Nevertheless, we allow for cellular events to be aggregated at fixed 
time points to improve simulation efficiency when a large number of cellular events 
need to be handled, as is commonly done in major modeling software. For those experi-
ments described in the results and discussion section that include proliferation (i.e. the 
monolayer growth benchmark and the small monolayer population undergoing intense 
proliferation), we used simple cell division events where division times were determined 
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at cell birth. However, CBMOS’ interface allows for the implementation of a variety of 
cellular events. Examples illustrating cell cycles that depend on the cellular environment, 
and cell death, can be found in the package’s documentation.

The use of array programming and extension to the GPU

Simple center-based model implementations typically target cell counts from a few hun-
dred to a few thousand cells. Larger system sizes are possible by using parallel implemen-
tations in a compiled language as done e.g. by PhysiCell [16], Chaste [40] or Biocellion 
[20]. Additionally, the ya‖ a framework [17] achieves high performance by executing 

Fig. 1  Simplified flow chart for the CBMOS code. The positions of the cell midpoints are calculated 
numerically with the ODE solver between any two consecutive cell events. At that point, the next event 
is resolved and new events are queued. This process is repeated until the end time is reached. If the 
aggregation of cellular events is needed for efficiency, the event queue is built with event times rounded 
to the next possible event time according to the desired resolution. The main bottleneck consists of the 
calculation of the total force, highlighted with a darker background. This is where CuPy is used as a drop-in 
replacement for NumPy when access to a GPU is available
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CUDA/C++ code on GPUs. We follow a complementary approach in our code as its 
main purpose lies in facilitating the numerical study of the model components. As such, 
performance is secondary to fast prototyping, but nevertheless the possibility of simulat-
ing more cells in less time would allow for more realistic test problems and is thus very 
desirable. The three main points of our approach can be summarized as (i) the use of 
the Python programming language to enable fast prototyping [41], (ii) the use of array 
programming via NumPy to achieve a reasonable performance on the central process-
ing unit (CPU) and (iii) the use of a high-level GPU-library as a replacement to NumPy 
which enables the transfer of the most computationally expensive portions of the code to 
the GPU. This speeds up the simulations by a factor of up to 30 for our typical test prob-
lems on a modern and widely accessible GPU, allowing for larger system sizes while still 
retaining the advantage of having a fast and easily accessible development cycle.

The computational bottleneck of a center-based model implementation is the calcu-
lation of the total force acting on each cell. According to this force the cell position is 
updated in every time step in Eq. (4). In order to calculate the total force vector for the 
complete cell system, all pairwise forces need to be evaluated. In other major center-
based software, computing the force interactions between cell pairs is usually done using 
a bounding box technique, where space is discretized into voxels larger than the maxi-
mum interacting distance between cells [42]. The forces applied to a given cell are then 
only computed for the cells located in the same voxel and in neighboring voxels. Given 
that the system usually relaxes to a given density of cells per voxel, i.e. the number of 
cells per voxel will be bounded from above, this algorithm achieves linear complexity 
with respect to the number of cells. Unfortunately, implementing such an algorithm in 
pure Python code is typically orders of magnitude slower than in compiled languages.

Calculating the interactions between all possible cell pairs, on the other hand, can be 
–contrary to the bounding box algorithm– easily expressed with array programming 
instead, a programming paradigm based on elementary array operations, such as index-
ing, vectorization, broadcasting and reduction. In Python, NumPy is now the de facto 
standard for array programming [43]. By using an optimized, pre-compiled layer of C 
code under the hood, NumPy provides improved performance for all array operations, 
while still making it possible to write legible Python programs. This means that while 
this naive implementation scales quadratically with the number of cells, it still achieves 
decent performance thanks to NumPy. On top of that, there exist a myriad of Python 
modules implementing NumPy’s array protocol. Such libraries include Dask [44], for dis-
tributed large arrays or PyData/Sparse [45] for sparse matrices. For GPU computations 
in particular, there exist several high-level libraries aiming to extend NumPy, such as 
CuPy [29], MinPy [46] (deprecated, now merged with MXNet Gluon [47]) and afNumPy 
[48]. In practice, such array implementations provide drop-in replacements for a large 
subset of NumPy functions and thus require only minimal modifications of the code to 
be used.

If a GPU is available, a CBMOS user can specify the use of the CuPy library as a high 
performance computing backend. Although originally developed specifically for 3D 
graphics, GPUs have become widely available for general computations in recent years 
with the advent of the CUDA programming language and GPGPUs (general-purpose 
computation on GPUs) [49]. When threads are relatively independent and only have 
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to synchronize for atomic operations, GPUs make it possible to run massively parallel 
applications executing thousands of threads at a time. In the case of CBMOS, the bulk 
of the computations is done when computing the total force which can be expressed as 
independent, predictable operations applying to all elements of an array, making it well-
suited for GPU computations. The arrays involved in the computation of the total force 
are created on the GPU and calculation of the force vector is done there. This GPU-ena-
bled version reduces the computation time for a single evaluation of the force vector for 
10,000 cells to 0.4 s, which is about thirty times faster than on the CPU.

Code availability and usage

The full program is readily available under the MIT license on the Python package index 
[50] and on GitHub [30]. Installing and running CBMOS is straightforward as it only 
depends on a few well maintained external modules (mainly the Python scientific soft-
ware stack NumPy and SciPy, and optionally CuPy). The documentation is available 
on the project’s GitHub page [31] and describes how to set up a simple simulation. An 
example of a convergence study is also presented there.

Users interested in extending CBMOS’ functionality will find it easy to add force func-
tions, solvers or even utility functions for e.g. generating and plotting population con-
figurations to the appropriate submodules.

One of the main advantages of CBMOS over other similar software is the possibility to 
run simulations, analyse them and interpret the results all in a single Jupyter Notebook. 
Jupyter Notebooks have become very popular in recent years and are an excellent way 
to report reproducible scientific findings [41]. In fact, the recent development of online 
platforms providing free, ready-to-use resources to execute such notebooks (even on 
GPUs) makes this process even easier. For instance, all the notebooks used in this study 
are freely available on our GitHub repository and can be set up and rerun in a couple 
minutes on Google Colab [32].

Results and discussion
We now proceed to demonstrate how CBMOS can be used to perform numerical exper-
iments. The following section has two main parts. First, we focus on the computational 
performance of CBMOS both on CPU and GPU and draw practical bounds as to which 
one is most suitable, depending on the number of cells considered in the simulation. 
Second, to show-case what kind of questions can be addressed using CBMOS, we con-
duct a numerical study comparing the implicit backward Euler method for solving the 
update equation to the more commonly used explicit forward Euler method. Note that 
while all numerical experiments were done in two dimensions, CBMOS is capable of 
simulating three dimensional cell populations as well.

Performance comparison CPU/GPU

In this section, we illustrate the performance gain enabled by evaluating the total force 
vector on the GPU instead of the CPU, pushing the limit of how many cells a center-
based code written in Python can simulate. First, we ran a performance benchmark to 
study wall time as a function of the number of cells for a compressed monolayer relaxing 
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to steady state. Second, we prescribed a fixed wall time and counted how many cells 
could be simulated in a monolayer growth experiment within that time. For both experi-
ments we compared our array-programming-based implementation to the bounding 
box algorithm described in the implementation section. Taken together, these experi-
ments provide a practical estimate for the most suitable algorithm in terms of cell popu-
lation sizes.

The benchmarks were run on Snowy, an HPC cluster provided by the Multidiscipli-
nary Center for Advanced Computational Science (UPPMAX). The node we used con-
sisted of two 8-core Xeon E5-2660 processors at 2.2 GHz, 128 GB of memory, and was 
equipped with an Nvidia T4 GPU.

Relaxation benchmark

In the first benchmark scenario we generated cell populations of different sizes arranged 
in a compressed honeycomb pattern in which the distance between any two neighboring 
cells was initialized to 0.8 cell diameters (the rest length was set to s = 1.0 cell diameter). 
We then allowed the system to relax to steady state over the course of one in-simulation 
hour. Within this time no proliferation took place, so that no cellular events needed to 
be handled. The force function was chosen as the generalized linear spring (GLS) force 
with parameter settings µ = 1.95 and a = −2 log(0.002/µ) . The choice of these param-
eters resulted in a relaxation time between daughter cells after cell division of 1 h (in-
simulation time), as described in [27]. The time step was set to �t = 0.1h , ensuring that 
cell trajectories after cell division remain physically correct (again, for details we refer to 
our previous numerical study [27]).

Figure  2a shows the total execution time for the relaxation experiment with the 
three implementations described in the implementation section: (1) the bounding box 

Fig. 2  a Wall time as a function of the number of cells in a relaxation experiment. Cells started in a 
compressed honeycomb shape where distances were reduced by 20% of the rest length and the simulation 
was run until the system relaxes. b Number of cells simulated as a function of the wall time measured in 
seconds. The simulation started with a single cell that proliferated according to an exponentially distributed 
cell cycle duration. At regular time intervals, the simulation was stopped and the amount of cells was 
counted. Each simulation was run five times with a different seeds, from which we drew the 95% confidence 
intervals. A time step of 0.1 h and the GLS force with µ = 1.95 and a = −2 log(0.002/µ) were used for all 
simulations in both benchmarks. For the bounding box algorithm, the box size was equal to the cutoff 
distance, namely 1.5 cell diameters



Page 11 of 24Mathias et al. BMC Bioinformatics           (2022) 23:55 	

implementation (denoted by ‘Box’ in the legend), (2) the array implementation using 
NumPy and running only on the CPU (denoted by ‘NumPy’) and (3) the array imple-
mentation using CuPy in addition to NumPy (denoted by ’CuPy’), which transfers the 
calculation of the force vector at each time step to the GPU. Although the bounding box 
implementation has the best computational complexity, it was an order of magnitude 
slower than both array implementations for all practical use cases considered here (as 
a reference, in the previous CBMOS publication [27], we only considered experiments 
with 2, 38, 74 and 400 cells). The bounding box implementation only beats the NumPy 
implementation starting at 104  cells and above, at which point the simulation took 
around five minutes to complete.

Transferring the calculation of the force vector—the main computational bottleneck—
to the GPU brought significant improvements starting already from 100 cells. More spe-
cifically, the GPU-enhanced array implementation was up to about one and a half orders 
of magnitude faster for the range of 100–10,000 cells. For lower numbers of cells its per-
formance was dominated by the overhead of transferring the data to and from the GPU. 
Most notably, for 10,000  cells, the simulation only took 4  s, compared to around five 
minutes for the bounding box implementation and the CPU-only array implementation. 
Above this point, the GPU we used ran out of memory. In terms of pure execution times 
(given enough memory), however, we can theoretically estimate this implementation to 
be faster than the bounding box implementation for up to 6.25× 105 cells by extrapolat-
ing from the algorithm’s quadratic complexity.

Overall, this benchmark illustrates the range of application of the CBMOS package 
in terms of cell population sizes for non-proliferating two dimensional populations and 
in the context of exploratory prototyping, where single realizations should run within 
a minute. For up to a 100  cells, the NumPy implementation is sufficient. Above this 
threshold, the use of a GPU enables significant performance gains for the simulation of 
up to 10,000 cells, decreasing the simulation time from several minutes to just a few sec-
onds. For larger system sizes, the memory requirements become prohibitive and other 
center-based software frameworks should be considered.

Proliferation benchmark

In a second benchmark, we studied the question of how many cells one could simulate 
with the different versions within a fixed execution time in a monolayer growth experi-
ment. To this end, we set up a single initial cell. This initial ancestor proliferated accord-
ing to an exponentially distributed cell cycle duration (with a mean of 1.0 h), generating 
a large cell population over time. We stopped the simulation after a fixed wall time had 
elapsed and counted the number of the cells in the population. We considered simula-
tion times of up to a few 100 s, which in our opinion is about the maximum reasonable 
waiting time one can afford to wait when prototyping. Division events were only allowed 
to take place every 0.1h. All other parameters, in terms of force functions and time steps, 
were the same as in the relaxation benchmark.

Figure 2b shows our results by plotting the number of cells simulated as a function of 
wall time. Again, in spite of its quadratic complexity, the NumPy implementation out-
performs the bounding box implementation by an order of magnitude in terms of the 
number of simulated cells for all practical simulation times. Deploying the code on a 
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GPU showed even greater performance, simulating around 10,000 cells in about 8 s, at 
which point the GPU ran out of memory.

In the previous relaxation benchmark the number of cells was fixed from the begin-
ning and no proliferation took place, meaning no cell events needed to be handled dur-
ing the simulation. This allowed the solver to run continuously from the beginning to the 
end. In this benchmark, however, proliferation was included and division events took 
place throughout the simulation, usually forcing the solver to restart after every time 
step once the cell population had grown past a certain size (due to the large number of 
cells and consequently division events). This benchmark shows that even in this case the 
CuPy implementation largely outperforms the two other options.

Having shown that our implementation is reasonably efficient for system sizes of up 
to 10,000 cells (when using the GPU) in different experimental settings, we now move 
on to study the use of an implicit method for solving the system of ODEs for the cell 
midpoints.

Numerical study of the implicit backward Euler method

In this section we show-case the ability of CBMOS to study the numerical properties of 
center-based models, by illustrating two common workflows: (1) a comparison of the 
numerical properties of two solvers by using CBMOS within a Jupyter notebook and (2) 
measuring the average wall time of both solvers when used to calculate cell trajectories of 
two dimensional cell populations, where the latter experiment is run on a high performance 
computing cluster. In particular, we investigate whether the use of an implicit method is 
beneficial in terms of computational cost necessary to achieve a desired accuracy. Before 
describing the numerical experiments we conduct, we give a brief overview of the two 
numerical methods in question, the forward and backward Euler methods.

Mathematical definition of the forward and backward Euler methods

A commonly used numerical method for solving the ODE system for the center positions 
in center-based model implementations is the forward Euler method [21]. It is an explicit 
method, meaning the function value at the next time point can be explicitly calculated from 
the current function value. For an initial value problem stated as

the forward Euler method can be written as

where xn denotes the current function value, xn+1 the function value at the next time 
point tn+1 = tn +�t and �t is the step size. As an explicit method, the forward Euler 
method suffers from stability issues for stiff systems. More specifically, if the time step 
size �t is chosen too large, the numerical solution will oscillate and grow without 
bounds, even though the true solution is smooth and decreases. Equation systems with 
steep force gradients—as is the case in Eq. (4) after cell proliferation—can be expected 
to behave stiffly. The backward Euler method—the simplest implicit method for solving 

(5)ẋ = F(x), x(t0) = x0

(6)xEFn+1 = xn +�t F(xn),
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ODE systems—does not exhibit this constraint on the time step size and is a common 
solution to stiffness issues [51]. It can be written as

Note that here, in contrast to Eq. (6), the total force F (which in general is non-linear) is 
evaluated at the next time point. Thus, obtaining a value for the next function value xn+1 
with the backward Euler method requires the iterative solving of Eq.  (7) with a linear 
system solve in each step.

Implicit methods such as the backward Euler method gain their improved stability prop-
erties at an increased computational cost. As they formulate the equation for the next 
function value depending on the gradient at the next time point (instead of the current as 
explicit methods do), they require this equation to be solved iteratively with a linear system 
solve in each step. The function value xn+1 in Eq. (7) is calculated by solving

by Newton iterations, where G(x) = x − xn −�tF(x) . More specifically, x(0)n+1 is initial-
ized using xn and then for several iterations j the following two steps are executed,

In the first step J = J(x
(j)
n+1) denotes the Jacobian of G which directly depends on the 

Jacobian of the ODE system A = {∂Fk/∂xl}k ,l as J = I−�tA , where I is the identity 
matrix. J defines the linear system that needs to be solved for �x . This can be done e.g. 
with the generalized minimal residual method (GMRES) [52].

CBMOS provides an analytically correct implementation of the Jacobian J . In practice, 
however, it is more efficient to approximate the matrix-vector product Jv in GMRES via

without having to assemble the Jacobian J [53]. Here, ξ denotes an approximation param-
eter, for which we use ξ = 0.001 in all our numerical experiments.

In general, the improved stability properties of the backward Euler method should 
allow for larger time step sizes necessary to achieve a given accuracy, at least for mod-
erate accuracy requirements. However, it is not clear in practice whether the increase 
in time step size can compensate for its additional cost or if using the forward Euler 
method with more—yet cheaper—small time steps is more efficient. In the next section, 
we use the investigation of this question to illustrate CBMOS’ potential.

Numerical comparison of the forward and backward Euler methods

First, we demonstrate how CBMOS can be used in a regular Jupyter Notebook to con-
duct simple numerical studies. The notebook used for this case study is provided along 
this manuscript as Additional file 1. More specifically, we examine the different stability 
properties of the forward and backward Euler methods using the simple test case of two 
cells relaxing after cell division. The cells were initially placed at an overlap of 0.3 cell 

(7)xEBn+1 = xn +�t F(xn+1).

(8)G(xn+1) = 0

1.J�x = −G(x
(j)
n+1)

2.x
(j+1)
n+1 = x

(j)
n+1 +�x.

(9)Jv =
1

ξ

(

G(x
(j)
n+1 + ξv)− G(x

(j)
n+1)

)
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diameters which they eliminated until they were at rest at a distance of one cell diam-
eter with no forces acting between them. Parameters have been chosen such that the 
duration of this process—called the relaxation time—was (arbitrarily) fixed as 1 h. As 
shown in our previous study [27], using the forward Euler method requires the time step 
size to be chosen lower than a certain stability threshold to recover a numerically sta-
ble solution. Moreover, if cell trajectories after division should be physically correct, i.e. 
cells should not jump apart before adhering again, then the time step size is even more 

Fig. 3  Stability of the numerical solution for the relaxation dynamics between daughter cells under 
different force functions when calculated using the forward Euler method (left column) and the backward 
Euler method (right column). The different rows use successively larger time step sizes: a, b �t = 0.025 h, 
c, d �t = 0.075 h, e, f �t = 0.125 h. The legend shown in panel a is valid for all panels. For reference, the 
dotted curves correspond to an accurate solution (less than 1% relative error) calculated using �t = 0.005 h. 
Parameters for the force functions were chosen as s = 1.0 cell diameters, rA = 1.5 cell diameters, µcubic = 5.7 , 
µR = 9.1 , µA = 1.911 , rR = 1.18029 , µGLS = 1.95 , α = 7.51 . The first two panels of the left column of this figure 
were regenerated using data from [27] (published under the Creative Commons CC BY 4.0 license [55]) with 
changes to the range of the y-axis in panel a 
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restricted by a monotonicity bound which is half the stability bound for this specific 
test case. The exact values of these bounds are force function and parameter dependent 
(see [27] for details). Varying the time step size, numerical solver and force function can 
easily be done in CBMOS by passing these as arguments when creating the model or 
launching the simulation.

Figure 3 shows the behavior of the numerical solution for the cell trajectories after 
cell division when calculated using the forward (left column) and backward (right col-
umn) Euler methods. Subsequent rows differ in the size of the time step used, ranging 
from a very small time step size of �t = 0.025 h in panels (a, b), to a large step size of 
�t = 0.125 h in panels (e, f ). All panels show the trajectories for three different pair-
wise force function choices, illustrating that stability is both a property of the solver 
and the ODE system itself (defined via the pairwise force function). For reference, the 
dotted curves in each panel correspond to an accurate solution (less than 1% relative 
error) calculated using �t = 0.005 h. In the left column, where the explicit forward 
Euler method was used, we observe that for the smallest time step size all trajectories 
are physically correct, whereas for the larger step sizes the trajectories show physi-
cally correct (piecewise polynomial force in (c) and GLS force in (c, e)), physically 
incorrect yet stable (cubic force in (c) and piecewise polynomial force in (e)) or even 
numerically unstable behavior (cubic force in (e)), depending on how sensitive the 
force functions are to the time step choice (note that the first two panels from the left 
column were regenerated using the same data as in our previous publication [27]).

In contrast, the right column of Fig.  3 shows the exact same experimental setup 
for the implicit backward Euler method. Here, we observe that independently of the 
time step size and the force function choice the trajectories remain physically correct. 
(Note of course that for larger time step sizes the accuracy decreases as expected). 
Our further investigations in [27] illustrated that a choice of a too large time step in 
combination with the forward Euler method—in particular a time step size violating 
the monotonicity bound at the pairwise cell level—could result in geometrical dif-
ferences even at the population level. It is therefore of interest to resolve the pair-
wise dynamics correctly and hence the question arises whether the backward Euler 
method is a more suitable choice because it allows for larger time step sizes without 
stability nor monotonicity constraints.

We now turn to another common setup when doing numerical studies, where the 
duration of the computations makes it impractical to run the numerical experiment 
itself within a Jupyter notebook. This case arises when the time step size required 
for the experiment is very small, when the simulation includes many cells, or when 
many repeated simulations are necessary. In this setup, the experiment is typically 
run on a high performance computing cluster using batch scripts and the results are 
processed in a Jupyter notebook afterwards. Specifically, we were interested in evalu-
ating the cost of using the backward Euler method versus the forward Euler method 
to investigate whether using the backward Euler method could be more efficient for 
moderate accuracy values of 5–10%. Once again, CBMOS’ application programming 
interface (API) makes it straightforward to switch between numerical configurations 
and to compare the results.
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To do so, we averaged wall times over 10 repetitions of calculating the cell trajecto-
ries for the convergence study presented in the appendix (c.f. Fig. 5). Figure 4 shows 
this average as a function of the relative error for four different experimental setups: 
(1) relaxation between two daughter cells after cell division—same as before when 
comparing the stability properties in the results section—; (2) adhering cells placed at 
an initial distance of 1.15 cell diameters; (3) a small monolayer population of initially 
19 cells, all cells were allowed to divide at the beginning of the simulation, leading to a 
highly compressed cell population which then relaxed to a steady state configuration 

Fig. 4  Average wall times for calculating cell trajectories as a function of relative error with respect to a 
reference solution for different force function (cubic, piecewise quadratic and GLS) and solver (forward 
and backward Euler) combinations. The panels show the results for the four different experimental setups 
considered: a relaxation between daughter cells, b adhering cells, c small monolayer under intense 
proliferation and d compressed monolayer of 400 cells (simulated using CuPy as a backend). In each panel 
full lines represent experiments using the forward Euler (FE) method, whereas for the dashed lines the 
backward Euler (BE) method was used (the legends in panels a, d are both valid for all panels)

Table 1  Table showing the relative error values εrel and the time step values �t (in hours) for the 
forward and backward Euler methods in combination with different force functions 

The experimental setup chosen was the relaxation of a compressed monolayer of 400 cells. Values were rounded to three 
decimals

Forward Euler Backward Euler

εrel �t εrel �t

Cubic force 0.031 0.108 h 0.030 0.808 h

Pw. quad. force 0.031 0.136 h 0.029 0.808 h

GLS force 0.027 0.212 h 0.030 0.646 h
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over the course of two in-simulation hours; (4) relaxation of a large monolayer, simi-
larly to the setup of the relaxation benchmark. Here, we initialized a monolayer 
population of 400 cells for which we were able to conduct the convergence study in 
a reasonable time by using CuPy as a backend. We note that for moderate accuracy 
requirements, the backward Euler method is able to use larger time step sizes than 
the forward Euler method. Nevertheless, using the backward Euler method is about 
one order of magnitude slower than using the forward Euler method across the com-
plete range of relative error values for both experimental setups with two cells and 
the intense proliferation test case. It is only for the case of the large compressed mon-
olayer and a relative error of roughly 3% or larger that the backward Euler method 
achieves a similar wall time to the forward Euler method. At this point the backward 
Euler method was able to use time step sizes up to nearly 8 times as large depending 
on the force function chosen. The exact values for relative errors and time step sizes 
are compared in Table 1.

Implicit methods, such as the backward Euler method, can be beneficial when stability, 
rather than accuracy, is the limiting factor [21]. In this subsection, we have investigated 
if this was indeed the case for ODE systems from center-based models. We conclude 
that based on our numerical experiments it is not beneficial to use the backward Euler 
method compared to the forward Euler method, even if it allows for larger time step 
sizes for low accuracy values. Its additional computational cost due to requiring a linear 
solve remains too high even when approximating the Jacobian and using as few itera-
tions as possible.

Most importantly, these numerical experiments could not have been performed with 
the same ease with other existing center-based simulation software. Indeed, the Python 
programming language makes it simple to iterate over the model parameter combina-
tions and repeat the same experiment while keeping all the other parameters constant. 
Moreover, because these parameters are exposed to the user by CBMOS’ API, there is 
no requirement to dive into CBMOS’ source code to change the numerical behavior of 
the simulation. All these factors make CBMOS a suitable tool for prototyping experi-
ments, where one needs to compare similar setups and fine tune numerical parameters. 
Furthermore, the ability to write such experiment in Jupyter notebooks makes it possible 
to present the results and the code in a concise, reproducible report [54]. As already 
stated previously, the notebook used for the stability experiments is provided along this 
manuscript as Additional file 1. All other notebooks and data necessary to reproduce the 
results presented in this article can be found in the CBMOS GitHub repository.

Conclusions
In this article we presented CBMOS, an open-source package for the numerical study 
of center-based models. CBMOS provides a flexible interface to study the effect of core 
components of the numerical simulation of center-based models—amongst others the 
force function used for the pairwise interaction forces between cells and the numeri-
cal method for solving the update equation for the cell midpoint coordinates—on the 
mechanics of a proliferating cell population as well as on the efficiency of the simulation 
itself. To this end, it includes implementations of many popular force functions as well 
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as several explicit and implicit first- and second-order numerical methods. Its interface 
is designed to allow for easy extension in terms of more force functions or numerical 
methods, but also more types of cellular events.

Written in Python, CBMOS provides easy access for modelers of any level and enables 
fast prototyping workflows. Thanks to relying on NumPy’s array programming para-
digm it is reasonably efficient simulating small cell populations on the order of hundreds 
of cells on the CPU. Moreover, it extends this range to cell populations of up to 10,000 
cells in connection with a high-end GPU through the CuPy library. In that case execu-
tion times for simulating monolayer growth are on the order of a few seconds, with the 
amount of memory available on the specific GPU becoming the limiting factor. In its 
current state on our test hardware CBMOS was capable of running repeated conver-
gence studies on test systems with thousands of cells within a few hours.

Naturally, an implementation in a compiled language (as used for other open source 
simulation packages for center-based models such as e.g. PhysiCell [16] or Chaste [14]) 
or accessing CUDA features more directly (as done e.g. in ya‖ a [17]) can be expected to 
be more performant in terms of pure execution speed. However, those kinds of imple-
mentations usually require a substantial investment in terms of both development and 
implementation time, not to mention that they may require a steep learning curve for 
users less familiar with programming. It is our hope that developing a Python package 
will have the additional benefit of being more easily accessible for modelers not coming 
from a computational background. In general, the combination of a interpreted language 
with high-level GPU-libraries such as CuPy can be very attractive and advantageous as 
the former permits fast-prototyping workflows, while the latter ensures significant per-
formance gains at virtually no added implementation time cost.

CBMOS is implemented in an event-driven fashion, meaning it simulates the mechan-
ics of the cell population until the next cellular event happens. This has the advantage 
that cellular events are applied at the exact time they occur. For large populations with 
many cellular events this approach can become inefficient due to the need to simulate 
the mechanics for fractions of a time step in order to advance the system to the correct 
state before applying the cellular event. Therefore, we have chosen to augment CBMOS 
with the option to aggregate cellular events to a fixed time resolution. This means that 
at pre-determined time points we apply all cellular events that would have taken place 
between the last check point and the current time. This time-driven approach is how 
most center-based model frameworks are implemented. It results in a lower bound to 
the step size of the mechanics simulation at the cost of an additional splitting error. 
Thanks to implementing both approaches CBMOS could be used in future work to 
investigate the error of the time-driven versus the event-driven approach. This would 
allow to formulate guidelines on how to choose the fixed time resolution of the cellular 
events in order to balance incurred error with simulation efficiency.

In a previous publication [27] we used a prototype of CBMOS to investigate how popu-
lar force functions should be parametrized to reproduce consistent mechanical behavior 
for two dimensional cell populations, as well as how the combination of force function 
and numerical solver affects the efficiency of center-based models in terms of time step 
sizes. For the latter we focused on explicit first and second-order solvers. In this article, 
to further illustrate the types of questions CBMOS can be used to address, we studied the 
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complementary question of whether an implicit method for solving the update equations 
can be beneficial. More specifically, we studied whether the better stability properties of 
the backward Euler method can balance out its increased computational cost compared 
to the forward Euler method for different experimental setups. In line with our previous 
study we considered three popular force function choices on the test cases of (1) daughter 
cells relaxing after cell division, (2) adhering cells and (3) a small monolayer population 
undergoing intense proliferation. Furthermore, we considered a large compressed mon-
olayer of 400 cells as an additional setup, the simulation of which was possible thanks to 
using CuPy as a GPU-backend. For all experimental setups the backward Euler method 
was less efficient in terms of wall time for computing the cell trajectories than the forward 
Euler method, although it was able to use larger time step sizes for moderate to small accu-
racy values. On average, the backward Euler method was around one order of magnitude 
slower than the forward Euler method, even with generous threshold settings and when 
approximating the Jacobian at the cost of an extra evaluation of the total force (instead 
of assembling the complete analytical Jacobian at a higher cost). These results extend K. 
Atwell’s findings in her thesis [26], where she investigated the backward Euler method as 
well as another second-order implicit method for a small tumor-growth experiment.

To summarize, our results confirm that using the forward Euler method with suffi-
ciently small time step sizes is computationally more efficient than using the backward 
Euler method, at least as long as fixed time-stepping is used. With adaptive time step-
ping, where the time step size is chosen dynamically according to a suitable error esti-
mate, there might be gains with the backward Euler method for systems that spend long 
durations in states where overall the forces between cells are weak, e.g. when strong 
compression forces due to cell division events are rare. Additionally, in such a setting 
it might be even more advantageous to switch between both methods, depending on 
whether the time step size is restricted by accuracy or stability concerns. We leave the 
exploration of both ideas for future work.

There exist several other center-based model frameworks implementing a larger 
feature set and better performance due to being written in a compiled language. Nev-
ertheless, we believe that, by making it possible to isolate fundamental aspects of the 
simulation through a user-friendly API, CBMOS offers easy access to any modeler wish-
ing to quickly challenge key numerical properties of their center-based model or to test 
preliminary hypotheses before committing to a more complex simulation framework.

Appendix
Convergence study

Aside from stability, an important property of a numerical method is its order of con-
vergence, describing how fast its accuracy increases when decreasing the time step size. 
It can be shown theoretically that both the forward and backward Euler methods are 
first-order methods, meaning that roughly speaking halving the step size also halves the 
error in the numerical solution. To confirm this numerically, we conducted a conver-
gence study where we analysed the error as a function of the time step size for both 
methods and different example systems. We generated cell trajectories for multiple time 
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Fig. 5  Impact of time step size on the relative error for the different combinations of forces and both 
numerical solvers tested on four model problems (1)–(4). a, b Convergence study for the relaxation 
experiment (1), initial separation 0.3 cell diameters, c, d convergence study for adhering cells (2), initial 
separation 1.15 cell diameters, e, f convergence study for a monolayer population of initially 19 cells under 
intense proliferation (3) and g, h convergence study for a compressed monolayer population of 400 cells 
(4). The numerical solver used was in a, c, e, g the forward Euler method, and in b, d, f, h the backward Euler 
method. The axes of the plots are in logarithmic scale. The dotted lines show a linear function to facilitate 
observation of the convergence order. Note that the first three panels in the left column include data 
used also in our previous publication [27] (published under the Creative Commons CC BY 4.0 license [55]). 
Compared to the original work, the ranges of the x and y-axes as well as the legends have been modified and 
additional data has been included
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step values and calculated the error for each value �t relatively to a reference solution 
xref generated with a very small time step of �tref = 10−4 h as

where the coarser solution x�t was interpolated down to the fine time grid used for the 
generation of xref . Moreover, we measured the wall time for the generation of the cell 
trajectories (averaged over 10 repetitions), these data form the basis for Fig.  4 in the 
main text.

Figure  5 shows the results of our convergence study for four different experimental 
setups. The first setup, shown in panels (a, b), considered the relaxation between two 
daughter cells after cell division, same as before when comparing the stability proper-
ties in the results section. In the second, shown in panels (c, d), we placed two cells at an 
initial distance of 1.15 cell diameters and let them adhere until they touched. The third 
setup in panels (e, f ) was chosen as a small monolayer population of initially 19 cells. 
All cells were allowed to divide at the beginning of the simulation, leading to a highly 
compressed cell population which then relaxed to a steady state configuration over the 
course of two in-simulation hours. Finally, as a fourth experimental setup we considered 
the relaxation of a large monolayer, similarly to the setup of the relaxation benchmark. 
Here, we initialized a monolayer population of 400 cells for which we were able to con-
duct the convergence study in a reasonable time by using CuPy as a backend. The results 
for this experimental setup are shown in panels (g, h).

In the left column of Fig. 5 the forward Euler method was used to calculate cell trajecto-
ries, whereas the right column shows the results for the backward Euler method. All plots 
show the relative error as a function of time step size for three different force functions 
with the axes in logarithmic scale. We observe that both numerical methods show the cor-
rect first-order convergence across all force functions and experimental setups for small 
time step sizes �t < 10−2 h . For larger time steps in the range of (0.05 h) to (0.5 h) the 
forward Euler method shows a larger relative error for all experimental setups except the 
second one with the adhering cells. This is due to the loss of monotonicity and stability 
in the cell trajectories for these time step sizes, as discussed in the previous section. This 
means that the backward Euler method is able to achieve relative error values of the order 
of 10−1 with larger time step sizes than the forward Euler method. This raises the ques-
tion whether the backward Euler method can be beneficial if cell trajectories need to be 
resolved with only moderate accuracy, i.e. when a relative error of (5–10%) is acceptable.
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