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Background
Pseudogenes (Ψgs) are abundant and ubiquitous protein-coding gene copies that are 
originally derived from functional genes [1]. These have been widely known as “junk” 
DNA for many years [2]. However, nowadays there is evidence of a handful of func-
tional Ψgs [3–7]. For instance, some can interfere with their parental counterparts in 
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tumorigenesis by retaining or gaining protein coding properties [7–9]. Cheetham et al. 
[10] has recently compiled a list of such functional Ψgs.

Depending on their mechanism of origin, Ψgs can be classified in three major classes: 
unitary, unprocessed and processed. Unitary Ψgs are derived from an ancestral protein-
coding gene that has lost its protein-coding potential due to spontaneous mutations [11, 
12]. While the unprocessed Ψgs originate from gene duplications that accumulate muta-
tions, preventing their translation. On the other hand, processed pseudogenes (PΨgs), 
arise from the reverse transcription (retrotransposition) and integration of a processed 
mRNA into a new genomic location [13]. PΨgs lack the 5′ promoter sequence as well as 
any introns, however, they exhibit a 3′ polyA tail and duplications of varying length at 
its insertion site [14]. Recently, a new group of PΨgs have been identified in human and 
mouse, which lack the 3′ end poly-A tail and are derived by retrotranscription of circular 
RNAs (circRNA) [15].

PΨgs, are the most abundant type of Ψgs in the human genome with an estimated 
amount between ~ 8000 and 14,112 [11, 16–18]. As for today, GENCODE [12], the refer-
ence annotation for the human and mouse genomes, has annotated 10,822 human PΨgs 
(Release 37, GRCh38.p13) [19].

Processed pseudogenes and cancer

Next-generation sequencing has contributed to the discovery of a large number of PΨgs 
and further studies have confirmed their involvement in the development, progression 
and prognosis of certain diseases, including cancer. A comprehensive list of PΨgs par-
ticipating in the pathogenesis of different diseases has been compiled by Chen et al. [20]. 
Moreover, the detection of the transcribed PΨgs has demonstrated that certain PΨgs 
are expressed only in cancer samples, either in a specific cancer or in multiple cancers 
[21, 22]. For example, the ATP8A2-PΨg has been restricted to breast tumors with lumi-
nal histology showing a potential oncogenic nature [21]. In lung adenocarcinoma, the 
PTPN12-PΨg induces the removal of the MGA promoter, a likely tumor suppressor gene 
[23]. In gastric cancer, POU5F1B, a PΨg adjacent to MYC, is a prognostic marker [24], 
while in prostate cancer, the fusion of the KLKP1-PΨg and KJK4 gene may be a potential 
biomarker in routine screening [25, 26].

Several PΨg integrations have been also identified, however no clear function nor 
correlation to disease has been yet understood. For instance, the SMAD4-PΨg is a con-
founding element in quantitative results and increases erroneous variant calls. Besides, 
the integration of the SMAD4-PΨg in the SCAI gene has been corroborated in heredi-
tary cancer-predisposition cases [27], and while SCAI is characterized to have sup-
pressive effect on tumor cell invasiveness, it has not been determined whether SCAI 
expression is hindered by the SMAD4-PΨg [28].

Detection of processed pseudogenes

Ψgs were often discovered as by-product of gene sequencing or PCR experiments. 
With the advent of whole genome sequencing projects, computational approaches 
have aided in their identification and annotation, relying on the specific features of 
the Ψgs, such as level of sequence homology and completeness relative to a parent 
gene, lack of introns, ratio of non-synonymous to synonymous substitution rates 
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(KA/KS), occurrence of polyadenine tail and the  existence of frame disruptions, 
among others [29]. In eukaryotic genomes, some methods rely on homology-based 
approaches and these include in-house pipelines within genome-wide surveys [16, 
30] and tools such as PseudoPipe [31], retroFinder [17] and PPFINDER [32], which 
unfortunately are not publicly available or are based on deprecated tools. Another 
type of algorithms relies on the information from mapped reads. The bioinformatics 
method developed by Cook et al. [23] detects somatically acquired Ψgs by aligning 
paired-end sequencing data to the genome and the transcriptome, nevertheless it is 
not publicly available. More recently, sideRETRO [33] was developed as a tool that 
focuses on the detection of de novo somatic and polymorphic insertions of PΨgs 
using a reference genome as well as a reference for the transcriptome. It applies a 
density-based clustering non-parametric algorithm and compiles the results in VCF 
format.

Today it is common that sequencing data analyses are performed by tech savvy 
staff, resulting in the use of formats that are burdensome to handle by researchers 
with basic computational skills. To aid in the prediction and interpretation of novel 
PΨg candidates, we present PΨFinder (P-psy-finder), a bioinformatics pipeline that 
rapidly screens alignments of DNA sequencing data to detect such events. It creates 
a simple table that can be sorted and filtered in any spreadsheet program, as well as 
graphical representations that besides providing a visual confirmation of the candi-
dates, can be used to guide the experimental validation and the characterization of 
the genomic arrangement of such candidates. In addition, PΨFinder also provides 
information about known PΨgs found in the analyzed samples and can be used with 
any organism from whose genome is available.

Implementation
PΨFinder overview

PΨFinder aims to detect PΨgs within DNA sequencing data and predict their inser-
tion sites. PΨfinder is written in python (3.6) [34] and requires STAR (2.7.7a) [35], 
SAMtools [36] (1.11), BEDTools [37] (v2.30.0) and R [38] (4.0.3).

The overall workflow is shown in Fig.  1A. For a given organism, PΨFinder takes 
fastq files as input and aligns them to the corresponding reference genome using 
STAR, a splice-aware aligner [35], alternatively alignment files can be supplied as 
input. To provide evidence of PΨgs in the sample, spliced reads (SR) across known 
exon-exon junctions are selected and clustered (Fig.  1B). To identify the insertion 
sites of the PΨg candidates, the pipeline extracts two pieces of information from 
the alignment files: (1) chimeric read pairs (CPs), pairs that are aligned in differ-
ent chromosomes or at larger distances than expected, and (2) chimeric reads (CRs), 
soft-clipped reads (reads that align to two different locations) (Fig.  1C). The over-
lap between the PΨg candidates, CPs and CRs determine the PΨg’s insertion site. 
As output, PΨFinder provides summary reports in text and html formats as well as 
visualization of the predicted insertion sites (Additional file 1). Individual PΨgs and 
their insertion sites can be plotted either in linear or circular format (Fig. 1A). As a 
complementary result, PΨFinder also provides a list of detected known PΨgs.
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Results
Screening for PΨgs in blood samples using PΨFinder

To demonstrate the use of PΨFinder, we scanned DNA sequencing data from 218 
human blood samples. These samples were initially sequenced and analyzed (data not 
shown) using a custom-designed panel that included genes associated with hereditary 
colorectal cancer (Additional file  2, Additional file  3: Table  S1). The comprehensive 
panel covers 28 genes and their promoter regions [39]. As a complementary analy-
sis, these samples were scanned with PΨFinder using the human genome (hg19) as 
reference.

We detected a total of 423 PΨgs distributed across 209 samples. The predictions 
included PΨgs of only seven parent genes: BMPR1A, CBX3, DHFR, HNRNPC, POLE, 
PTEN and SMAD4 (Table  1). PΨFinder detected only one PΨg in 34% of the posi-
tive samples, while 2 or more PΨgs were predicted in the rest of them (Additional 
file  3: Table  S2). In terms of their genomic insertion site, the majority of the PΨgs 
were found either in intronic (54%) or intergenic (45%) regions, while only 1% had 
evidence of being inserted within an exon (BMPR1A-PΨg in 6 samples and PTEN-
PΨg in 2 samples). The most common PΨgs detected were CBX3-PΨg and BMPR1A-
PΨg, found in 180 and 155 samples, respectively. PTEN-PΨg and DHFR-PΨg were 
detected in 51 and 29 samples, respectively, while 6 samples contained HNRNPC-
PΨg. POLE-PΨg and SMAD4-PΨg were found in one sample each.

The detection of the insertion sites of the novel PΨgs, relies on CPs and CRs, and 
while having both as evidence is not essential (one suffices to narrow down the inser-
tion region), nevertheless, they do strengthen the accuracy of the predicted inser-
tion site (Additional file  3: Table  S4). In most of the insertion sites detected, only 
CPs (66.3%) or CRs (25.2%) gave supporting evidence, while a small percentage 
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aligned using STAR. The resulting BAM file (input as default) is annotated with known PΨgs. Spliced reads, 
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(8.5%) had support from both CPs and CRs. Among these well supported inser-
tion sites we found (1) CBX3-PΨg located within the second intron of C15ORF57 
(chr15:40854180–40854180, in 119 samples), (2) HNRNPC-PΨg detected in the 
intergenic region between LINC02541 and MARCKS (chr6:114017523–114017528, 
in 3 samples), (3) BMPR1A-PΨg inserted in the intergenic region between PCGF5 
and HECTD2 (chr10:93083258–93083258, in 1 sample) and (4) SMAD4-PΨg located 
within intron 18 of SCAI (chr9:127732713–127732715, in 1 sample).

To validate these results, we selected PΨgs that besides having evidence from both CPs 
and CRs, they were inserted within an exon or an intronic region. This could provide 
evidence of a disease-causing mutation if the coding region of the disturbed gene were 
altered. CBX3-PΨg and SMAD4-PΨg complied with these criteria and were selected 
to experimentally determine their insertions sites using Sanger sequencing (Additional 
file 2).

The ubiquitous CBX3‑PΨg is reversed inserted in second intron of C15ORF57

From RNA-seq data of lymphoblast tissue, CBX3 has shown evidence to be expressed as 
a chimera with C15ORF57 [40, 41]. This chimera has also been detected in multiple non-
diseased tissues (tonsils, placenta, liver, skeletal muscle, adrenal gland and skin) from the 
Genotype Tissue Expression (GTEx) dataset [42] as well as in hepatocellular carcinoma 
[41] and glioblastoma [43]. In this study we present the DNA breakpoints of CBX3 and 
C15ORF57 as predicted with PΨFinder (Fig. 2A). The experimental validation showed 
an unknown insertion (ATT​TTT​TTT​TTT​AAAGA) and duplicated nucleotides (TCA​
GGA​AATAT) in one of the breakpoints, while no aberrations were seen in the other 
breakpoint. CBX3-PΨg was found to be reversed inserted, aligning to the same read-
ing orientation as C15ORF57. This makes the transcription of this fusion gene possi-
ble (Fig. 2B). The fact that CBX3-PΨg is recurrent (found in 82.6% of the samples) may 
suggest that it might have an effect in the predisposition to colorectal cancer develop-
ment. However, in previous studies the CBX3-C15ORF57 fusion was not only found 

Table 1  Summary of identified processed pseudogene candidates across all samples analyzed

a Note that the sum of the predicted PΨg-insertion sites across different regions may vary from the total amount of samples, 
since one predicted PΨg may be predicted to have several insertion sites
b CP and CR stand for Chimeric Pair and Chimeric Read respectively. CP–CR denotes evidence from both Chimeric Pairs and 
Chimeric Reads supporting the insertion site, while the columns CP and CR denote only one type of chimeric evidence
c Selected PΨgs for experimental validation

Predicted PΨg Number of samples 
predicted to harbor the PΨg 
(N = 218)

Number of predicted PΨg-insertion sites, according to 
its insert site locationa

Exonic Intronic Intergenic

CP-CRb CP CR CP-CR CP CR CP-CR CP CR

CBX3c 180 (82.6%) 0 0 0 123 3 59 0 0 0

BMPR1A 155 (71.1%) 0 5 1 0 321 99 1 320 134

PTEN 51 (23.4%) 0 1 1 0 131 27 0 151 39

DHFR 29 (13.3%) 0 0 0 0 39 8 0 17 6

HNRNPC 6 (2.8%) 0 0 0 0 0 0 3 1 2

POLE 1 (0.5%) 0 0 0 0 2 0 0 1 1

SMAD4c 1 (0.5%) 0 0 0 1 0 0 0 1 0
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in cancerous tissues, but also in normal or noncancerous samples [41, 42]. Although, 
experimental validations are needed, for example silencing the fusion through decreased 
cell proliferation and cell motility in specific cell populations, one might suggest that the 
expression level of this fusion gene might have an impact in cancer development.

The well‑known insertion site of the SMAD4‑PΨg within the last intron of SCAI

Deleterious mutations in SMAD4 have been shown to result in pancreatic cancer [44], 
juvenile polyposis syndrome [45], hereditary hemorrhagic telangiectasia syndrome [46] 
and Myhre syndrome [47]. The presence of the SMAD4-PΨg has interfered with diag-
nostic analyses based on clinical sequencing applications, creating false-positives results 
in 0.24–0.26% of the cases [27, 28]. Thus, its identification is crucial to reduce this con-
founding effect. We validated the breakpoints of SMAD4 and SCAI as predicted with 
PΨFinder (Fig. 3A). In one of the breakpoints, we identified a deletion of three nucleo-
tides (GTC), while in the other breakpoint a polyA-tail and a duplication of four nucleo-
tides (TTTC) were confirmed [28] (Fig. 3B). The SCAI gene, might therefore lead to an 
upregulation of downstream genes involved in cancer development. The impact on the 
effect of the integration of SMAD4 on the disruption of the function of SCAI needs to be 
further experimentally evaluated.

Detection level and accuracy

Sequencing depth plays an important role in any kind of computational predictions. 
To establish the detection level of PΨFinder, the four samples used for experimental 
validation were downsampled at 0.1, 0.5, 1.0, 2.5, 5.0 and 7.0 M paired reads, using 
seqtk (1.0) [48] (Additional file  3: Table  S3). The resulting analysis with PΨFinder, 
determined that predictions obtained from samples with a sequencing depth of 5 M 
reads, an average coverage of at least 144X and including both CPs and CRs, can be 
deemed as true positive PΨg-insertion sites (Additional file 3: Table S4). Insertion site 

chr7:26240831-26253227

chr15:40854180-40854180

C15ORF57

CBX3

A B
Reading direc�on Reading direc�onReading direc�on

Ex 4 Ex 3 Ex 2Ex 5Ex 6 + UTR3 Ex 1

Chr7: 26.241.365 (c.-110)Chr7: 26.252.965 (c.*1137)

CBX3 processed pseudogene

Chr15:40.854.190 Chr15:40.854.180

PCR 1

ATTTTTTTTTTTAAAGA
Unknown inser�on 

PCR 2

C15ORF57 intron 2 C15ORF57 intron 2

TCAGGAAATAT
Duplicated
nucleo�des

TCAGGAAATAT

Chr15:40.854.162

AGGGTCTGAAAATGTGT

Chr15:40.854.180

TTTTTAAAATAAAATGGCTAACAAGAGGCA

Chr15:40.854.219

GGCCCTCCGCGCCTACAGCTCAAGCCACATCCGAAG

Chr7:26.241.400

AATATA[T/A]AACTATTTATTAACCAC

Fig. 2  Experimental validation of CBX3 processed pseudogene identified with PΨFinder. A Circos plot 
showing the coverage over CBX3 and its insertion site in C15ORF57 for sample113. The outer heatmap 
displays the coverage over the entire CBX3 parent gene (only exons are depicted), darker color indicates 
higher coverage. The inner histogram shows the coverage over the exon-exon junctions, suggesting the 
presence of a PΨg. The red outmost histogram displays the coverage across the predicted insertion site in 
SCAI, shown by the arrow. B DNA sequence over the breakpoints of CBX3-PΨg inserted in intron 2 of the 
C15ORF57 gene. Genomic coordinates refer to the human reference genome build hg19. Red arrows point 
out the actual breakpoints. Sequence for breakpoint 1 (PCR 1) includes an unknown insertion (ATT​TTT​TTT​
TTT​AAAGA) and duplicated nucleotides (TCA​GGA​AATAT). Sequence for breakpoint 2 (PCR2) without any 
aberrations. CBX3-PΨg is reversed inserted on the minus strand, its parent gene is read from the plus strand, 
in the same reading orientation than the CBX3 gene (see Additional file 2 for further details)
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predictions based on samples with 2.5 M reads and an average coverage between 72 
and 128X, start to lose evidence from either CPs or CRs. Thus, at this sequencing 
depth or “gray-zone” area, we recommend to further inspect the resulting predic-
tions. Samples with 1 M sequencing reads or less and an average coverage of less than 
52X over the panel, are outside the detection level of PΨFinder. Although we cannot 
entirely dismiss these predictions, they should be treated with caution. From the 218 
colorectal cancer samples analyzed in this work, only one sample is within the “gray 
zone” with an average coverage of 120.71X (Additional file 3: Table S1), all others lie 
above the confidence prediction level (Fig.  4A). Considering this and the positive 
experimental validations all PΨgs detected that have supporting evidence from both, 
CPs and CRs, are most likely to be true.

To investigate the overall performance of PΨFinder we simulated 117 samples, each 
with a different PΨg inserted in a random position within the genome (Additional file 3: 
Table S5). An in-house script based on wgsim (0.3.0) [49] was developed defining the 
simulated error rate (2%) of the sequencing reads as well as their outer distance (500) 
and read length (90 bp). All samples contained 5 M simulated reads, yielding to a 98.8% 
of mapped reads with a mean coverage of 473X. These samples were analyzed with 
PΨFinder and sideRETRO (both with default values). The performance of both tools is 
remarkably similar (Fig. 4B) and their running time, while analyzing the simulated data, 
was in average one and two minutes per sample, respectively. Nevertheless, an advantage 
of using PΨFinder is the graphical visualization that it produces (Additional file 1) which 
aids in the confirmation of the predictions as well as in their experimental validation 
(Figs. 2, 3). Although the use of standard formats must be encouraged, e.g. sideRETRO 
using VCF files to report their results, these formats are still not easy to examine by 
researchers with basic computational skills, thus the html report and simple tabular for-
mat that PΨFinder generates is more convenient and user-friendly. Moreover, our tool 
reports known PΨgs that are found during the analysis.
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Fig. 3  Experimental validation of SMAD4 processed pseudogene identified with PΨFinder. A Circos plot 
showing the coverage over SMAD4 and its insertion site in SCAI for sample220. The outer heatmap displays 
the coverage over the entire SMAD4 parent gene (only exons are depicted), darker color indicates higher 
coverage. The inner histogram shows the coverage over the exon-exon junctions, suggesting the presence of 
a PΨg. The red outmost histogram displays the coverage across the predicted insertion site in SCAI, shown by 
the arrow. B DNA sequence over the breakpoints of SMAD4-PΨg inserted in intron 18 of SCAI gene. Genomic 
coordinates refer to human reference genome build hg19. Red arrows point out the actual breakpoints. 
Sequence for breakpoint 1 (PCR 1) includes a deletion of three nucleotides (GTC). Sequence for breakpoint 
2 (PCR2) includes a poly A-tail and duplication of four nucleotides (TTTC). The SMAD4-PΨg is inserted in the 
minus strand in the same reading orientation as its parent gene in the opposite reading orientation than the 
SCAI gene (see Additional file 2 for further details)
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Conclusions
PΨFinder is a tool that can detect novel PΨgs from DNA sequencing data and deter-
mine their location in the genome. Here we demonstrated its application by scanning 
218 DNA blood samples, from patients suspected of an inherited form of colon can-
cer, and identified 423 PΨgs from seven parent genes.

Among the predicted PΨgs, we identified the ubiquitous CBX3-PΨg, which has 
been shown to form a chimeric transcript with C15ORF57 [40] and has been associ-
ated to glioblastoma [43] and hepatocellular cancer [41]. We validated its insertion 
site within intron 18 of C15ORF57 and showed that CBX3-PΨg is reversed inserted. 
Although further expression and functional analyses are required, it may be likely 
that CBX3-C15ORF57 could also be involved in the development of colorectal cancer.

We also detected SMAD4 and validated its insertion site within the second intron 
of SCAI. SMAD4-PΨg is a known confounding element in the mutation analysis of 
next generation sequencing data in patients with juvenile polyposis syndrome or 
combined/juvenile polyposis/hereditary hemorrhagic telangiectasia [27]. Thus, it is 
important its identification to determine its relevance.

PΨFinder is a tool whose comprehensive and user-friendly results, can aid in the 
identification of PΨgs and complement any mutational screening in the identification 
of occurring mutations during cancer development and other diseases.
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TP, true positives; TN, true negatives; FP, false positives; FN, false negatives; F1 score, harmonic mean of the 
precision and sensitivity; FDR, false discovery rate; TPR, true positive rate; PPV, positive prediction value



Page 9 of 11Abrahamsson et al. BMC Bioinformatics           (2022) 23:59 	

Availability and requirements

Project name: Novel processed pseudogenes detection tool.
Project home page: https://​github.​com/​bcfgo​thenb​urg/​SSF.
Operating system(s): Linux, Mac OS.
Programming language: Python (3.6), bash.
Other requirements: STAR (2.7.7a), SAMtools (1.11), BEDTools (v2.30.0), R (4.0.3).
License: GNU General Public License, version 3.0 (GPLv3).
Any restrictions to use by non-academics: None (except the ones stated in GPLv3).

Abbreviations
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pairs; CR: Chimeric reads.
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