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Background
The compartmentalization of molecules in the cytoplasm is critical for efficient 
and precise biochemical reactions in eukaryotic cells [42]. Studies on cellular com-
partments have traditionally been focused on membrane-bound organelles such as 
endoplasmic reticulum. However, membrane-less organelles, also called biomolecu-
lar condensates, have recently been recognized to compartmentalize cellular space 
through liquid–liquid phase separation (LLPS) [4, 15]. More and more studies suggest 
that many cellular metabolic processes are regulated by LLPS, so are some intractable 
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diseases [30] such as ALS (amyotrophic lateral sclerosis) and AD (Alzheimer disease) 
[3]. Notably, several proteins are observed to form liquid-like membrane-less assem-
blies both in vitro and in vivo [7, 11, 15, 20, 35]. Studies also indicate that the LLPS 
of proteins and the formation of biomolecular condensates may be regulated by RNA 
[45].

LLPS in biology is deemed to be fundamentally driven by multivalent interactions 
between molecules, which can occur in proteins between multiple folded domains or are 
mediated by intrinsically disordered regions (IDRs). Generally, phase separation-related 
proteins can be categorized as scaffolds that drive LLPS or as clients that integrate into 
the condensates formed by scaffolds [10]. Although tremendous progress has been 
made in understanding protein LLPS, the knowledge of prevalence and distribution of 
phase separation proteins (PSPs), or specifically “scaffolds”, is still lacking. Development 
of computational methods to predict PSPs is therefore of great importance for deeper 
understanding the biological function of LLPS.

A recent review summarized a range of first-generation PSP prediction tools [39]. Each 
of these tools is based on specific protein features that are deemed to be driving forces 
behind LLPS. Specifically, PScore is based on the expected number of long-range, planar 
sp2 pi–pi contacts [38], the DDX4-like method is based on similarities in sequence com-
position and residue spacing to DDX4 [24], PLAAC is based on prion-like domains [2], 
LARKS is based on low-complexity aromatic-rich kinked segments [14], R + Y is based 
on the proportion of arginine and tyrosine, as well as features of FET family proteins 
[40], and CatGranule is based on the composition of amino acids that is responsible for 
granule formation [5]. Recently, FUS-LIKE PSPs were predicted using a hidden Markov 
model (HMM) that considered prion-like domains, disordered regions, arginine rich 
domains, RNA recognition motifs (RRM), and other features [25]. This tool, PSPer, has 
successfully predicted 22 experimentally studied FUS-LIKE proteins [40]. However, all 
these methods were based on small samples and specific features, limiting the scopes of 
their applications. Thus, large data-based prediction tools with more general application 
scopes are urgently needed.

An extremely powerful method for predicting protein function is machine learning. 
Prediction models can be trained by integrating aspects of protein features, including 
physical or chemical properties of residues or sequence context, as descriptors or vec-
tors. Yet, development of PSP prediction tools using machine learning has been ham-
pered by a lack of accumulated experimentally studied PSPs data. The publication of new 
PSP databases [21, 43, 44] is laying the groundwork for the creation of more general PSP 
prediction tools. A particularly promising example is the LLPS database (LLPSDB) [17], 
which is curated from published experiment results. Each entry in the database includes 
information about whether the protein (alone, with DNA/RNA, or with other proteins) 
undergoes phase separation under a specific in vitro experiment condition.

In this study, we developed a sequence-based machine learning PSP prediction tool 
(PSPredictor), based on data from LLPSDB. This new tool uses sequence information to 
make direct and more general predictions about proteins undergoing LLPS. Our model 
achieved a tenfold cross-validation training accuracy of 94.71% and a prediction accu-
racy of 92.50% on an external test set. PSPredictor also performed much better than the 
reported first-generation PSP prediction tools in identifying new PSPs.
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Implementation
Dataset construction for PSP prediction

The LLPSDB is a valuable resource for constructing data-driven machine learning mod-
els [17], because it records the detailed information about proteins undergoing LLPS 
in specific experimental conditions. For model training, we selected the sequences 
from the LLPSDB as positive dataset (see Transparent methods). We obtained a total 
of 353 protein sequences and selected 293 protein sequences from the initial version of 
LLPSDB as a positive training dataset P1 for primary model construction. We used the 
remaining 60 protein sequences from final release version of LLPSDB as an external test 
dataset (T1+). Then we used all 353 protein sequences (dataset P) as the positive train-
ing dataset to construct the final model for the PSPredictor tool.

As LLPS is deemed to be driven by multivalent interactions between multiple folded 
domains or disordered domains, we used the PDB databank to select single-domain 
proteins with full-length and solved three-dimensional (3D)-structures. A total of 5258 
protein sequences were screened as the negative training dataset (N1). Due to the imbal-
ance issue of the dataset, we conducted undersampling to selected samples from N1 for 
model training by random sampling to ensure the scientificalness and rationality of the 
research. The undersampling is operated by different ratio to learn the best composition 
to construct the predictor in this scenario.

Methods
All methods could be found in the accompanying Transparent Methods in Additional 
file 1.

Results
Development of the PSP prediction tool—PSPredictor

To train the primary model and identify which model performed best, we systematically 
combined three categories of variables. These categories included:

(1)	 During the undersampling stage, ratios between positive and negative training sam-
ples are 1:1, 1:2 and 1:5;

(2)	 Selected protein coding methods (evolutionary word2vec (w2v), Li’s method 
(LQL)) [18, 22];

(3)	 Machine learning algorithms (K-Nearest Neighbor (KNN), Supported Vector 
Machine (SVM), Random Forest (RF), Logistic Regression (LR), Decision Tree 
(DT), Gradient Boosting Decision Tree (GBDT), Naive Bayes (NB)).

Combining these variables resulted in a total of 42 (3 × 2 × 7) models. Based on the 
evaluation of the statistical indexes of Accuracy, F1, Precision, Sensitivity, Specificity 
and MCC, the best model (model 1) was selected (All models’ training results can be 
found in Additional file 2: Table S1) and the significant differences between model 1 
and others have been assessed by paired t-test (p value < 0.05). The model 1 is w2v 
coded, trained by GBDT, and the ratio between positive and negative samples is 1:1. It 
achieved a tenfold cross-validation training accuracy of 94.71% ± 2.54% (the training 
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statistical index values are shown in Table 1). As for different model with same sample 
ratio and feature descriptor, the best algorithm to predict the LLP is GBDT, and, the 
w2v is proved to be better than LQL with same sample ratio and machine learning 
algorithm.

Because the negative samples were selected from dataset N1 by random sampling, 
we independently repeated the training process for three times, all the training results 
were similar (Additional file 2: Table S2). Additional details about the construction of 
training datasets, protein coding methods, machine learning algorithms, and defini-
tion of statistical indexes can be found in the Transparent methods.

We selected the first trained best model (model 1) as the primary model to conduct 
predicting on the external dataset (dataset T1+). 95% proteins in T1+ were identi-
fied as PSPs by model 1. For 13 protein sequences in T1+ that share less than 30% 
sequence similarity with those in P1, 11 of them were predicted as PSPs by model 1. 
We also used dataset N1, excluding the sequences in the negative training dataset, as 
an external negative test set to avoid the risk of over-fitting, it is found that the pre-
diction accuracy was 92.50% and the Brier score loss is found as 0.0917.

We compared our testing results with two published first-generation PSP prediction 
tools, PScore [38] and CatGranule [5], which performed best among the 7 first-gen-
eration methods on a benchmark dataset [39], as well as PSPer [25] for the prediction 
of dataset T1+. Figure 1 shows the relationships between percent recall and total per-
centage of whole proteins accepted at given thresholds for PScore, CatGranule, PSPer, 
and our model 1. Obviously, our model 1 is superior to other models in dataset T1+ 
prediction.

Table 1  The evaluation of the best model (model 1) for PSPs prediction

a Data are represented as mean ± SD

Accuracya F1a Precisiona Sensitivitya Specificitya MCCa

0.95 ± 0.03 0.92 ± 0.01 0.95 ± 0.03 0.94 ± 0.04 0.96 ± 0.05 0.90 ± 0.05

Fig. 1  Relationship between percent recall and total percentage of human proteins accepted at given 
thresholds, for Model 0 and three best first generation prediction tools
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We combined dataset P1 and T1+ together as a full positive training dataset (P), and 
used the same negative dataset and parameters of model 1 to train a model, that is, 
PSPredictor as our final PSP prediction model.

Analysis of scaffolds, regulators, clients in DrLLPS, RNA granule and P‑body forming 

proteins

Proteins involved in LLPS can be categorized as scaffolds and clients. Scaffolds are 
defined as the drivers of LLPS, whereas clients have been discovered to coalescence with 
scaffolds in experimental conditions. A recently published database, DrLLPS [23] added 
another category of LLPS-related protein, called regulators. Regulators were defined 
as regulating LLPS behaviors of scaffolds by various mechanisms, such as post-trans-
lational modification. However, these categories of proteins sometimes are overlapped, 
meaning that individual protein may act as a scaffold, regulator or client, depending on 
the context [1]. We used PSPredictor to estimate real PSPs, defined here as proteins that 
can undergo LLPS independently or with DNA/RNA. At a high threshold (1.8%), PSPre-
dictor predicted that 32.7% were PSPs, whereas only 6% regulators and 3.92% clients are 
predicted as PSPs. Also, the proportions of PSPs predicted by PSPredictor are higher 
than those predicted by PScore (Fig. 2).

It is also unknown whether some of the proteins, which are the core components 
in stress granules or P-body condensates can undergo LLPS independently. Recently, 
Youn et al. published a comprehensive database of proteins related to the formation 
of stress granules and P-body condensates. Each protein (4385 sequences total) was 
assigned to a tier of 1–4, according to the degree of confidence for whether the pro-
tein localized in stress granules or P-bodies [44]. We analyzed these proteins using 
PSPredictor and compared results for each tier with results obtained using reported 
PSP prediction tools (Fig. 3A). We also calculated the number of predicted PSPs that 
overlapped between any two tools (Fig. 3B). For all the prediction tools, the propor-
tion of predicted PSPs ranked as tier 1 > tier 2 > tier 3 > tier 4, which is consistent with 
the degree of confidence assigned by Youn et  al. PSPredictor predicted more PSPs 
than other tools and had the most overlapped number of PSPs with those predicted 
by other tools. For all the proteins in the database reported by Youn et al., PSPredic-
tor indicated that 10.37% of proteins in stress granules or P-bodies may spontane-
ously undergo LLPS, compared to other tools that gave an estimation of ~ 3–4%.

Fig. 2  Fraction of proteins in each category (scaffold, regulator or client) predicted as PSPs by PSPredictor or 
PScore
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These results emphasize that only a small proportion of proteins spontaneously 
forming condensates [1, 25] as scaffolds, and a large proportion of proteins in the 
RNA granules might participate in the phase separated condensates as clients.

Scanning the human genome for potential PSP

Human proteins in the top 1.8% (high confidential threshold) of the human proteome 
predicted by PSPredictor are regarded as consolidated PSPs. We performed gene 
ontology (GO) term enrichment analysis on these predicted PSPs. Terms with EASE 
score < 0.1 are shown in Additional file 1: Table S3 (see Additional Information). Most 
of the GO terms that were identified by first-generation PSP prediction tools [39], 
are also enriched in our predicted consolidated PSPs. These terms included “cytoplas-
mic stress granule”, “intracellular ribonucleoprotein complex”, etc. Comparing with 
the first-generation tools, nucleus associated PSPs are more likely to be identified by 
PSPredictor. The human PSPs predicted by PSPredictor are available at https://​github.​
com/​pkumdl/​PSPre​dictor.

When we clustered GO terms with a similar biological context, we observed 7 clusters 
with high enrichment scores (Additional file 1: Table S4) such as proteins in the mRNA 
processing, mRNA splicing, mRNA processing cluster, which is agreeing with the find-
ing of recent research that the concerning features of mRNA regulate and influence the 

Fig. 3  A Fraction of proteins in each tier group predicted as PSPs by first generation prediction tools and 
PSPredictor. B The number of predicted PSPs that overlapped between two prediction tools

https://github.com/pkumdl/PSPredictor
https://github.com/pkumdl/PSPredictor
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LLPS characteristics [29]. Corresponding to the clustering results, it has been demon-
strated that multiple zinc-binding sites on specific protein are involved in the LLPS-pro-
moting effect [33]. The DNA-Binding and RNA-binding proteins related to liquid–liquid 
phase separation has been widely discussed as well [13, 32], suggesting that PSPredictor 
results can provide the clue of functional studies for newly predicted PSPs.

PSPredictor webserver

We constructed a web server for online PSPredictor computation (http://​www.​pkumdl.​
cn/​PSPre​dictor). Through this portal, users can upload their protein sequences and pre-
dict if they are PSPs or not. For the query sequences, the NCBI blast tool [8] is embed-
ded to search for similar sequences collected in LLPSDB, which can further link to 
LLPSDB for more information about the phase behavior and biological function of the 
related proteins. Additional file 1: Figure S1 shows the main page and an example of the 
computational output of the web server.

Discussion
GBDT is an efficient machine learning algorithm for PSP prediction

We tested seven machine learning algorithms: SVM, KNN, RF, LR, DT, GBDT and NB 
(see Transparent methods in Additional file  1), on their ability to predict PSPs when 
combined with two types of encoding methods. Most of our best models were obtained 
by training with GBDT, a powerful and widely used supervised machine learning algo-
rithms. GBDT integrates gradient boosting and decision trees and is capable of both lin-
ear and nonlinear data classification, regression, and prediction. GBDT can generalize 
and combine weak learners into a single, strong learner and has produced good results 
in biological data mining compared to other machine learning algorithms [16, 19, 27, 34, 
41]. Our research is another successful application of GBDT in biology. We did not test 
other deep learning algorithms due to the limited size of the current dataset. This could 
be tested in the future with increasing data size.

W2v captures PSP sequence features and performs well in PSP prediction

W2v is a natural language processing technique by which words are embedded in vec-
tors through the training of contexts. They could also embed residues, protein and 
chemicals into vectors as inputs for model training without requiring artificial feature 
design or expert knowledge. It had been successfully used to predict HLA binding pro-
teins, antimicrobial peptides and drug targets [12, 31, 34, 36].

W2v is developed on basic of Neural Network Language Model [6]. In order to 
improve the computing speed of traditional method, the nonlinear hidden layer in the 
feedforward feedback neural network is removed, and the middle embedding layer is 
directly connected to the output layer. W2v includes two learning algorithms, namely 
continuous bag-of-word (CBOW) and skip-gram algorithms. Figure 4 shows the model 
architectures of CBOW and Skip-gram. CBOW uses a Huffman tree to maximize the 
conditional log-likelihood, whereas the skip-gram model minimizes the log-likelihood 
of sampled negative instances. In this work, Skip-gram model with window size 8, and 
hierarchical softmax were recruited. We downloaded the entire protein sequences from 
swiss-prot, and broke the original sequences into 3 residue-length windows overlapped 

http://www.pkumdl.cn/PSPredictor
http://www.pkumdl.cn/PSPredictor


Page 8 of 13Chu et al. BMC Bioinformatics           (2022) 23:72 

kmers. The dimension was set to 200. We used w2v program in genism python NLP 
package [28] (https://​radim​rehur​ek.​com/​gensim/) to train and compute the embedding 
vectors.

In order to further ensure that w2v could capture the information of protein sequence 
pattern, not the amino acid composition, we add the position encoding operation to use 
the order the sequences. In this paper, we adopt Vaswani’ s method [37] to use sine and 
cosine functions of different frequencies as follows:

where pos is the position and i is the dimension, PE is relative positional encoding result. 
Each dimension of the positional encoding corresponds to a sinusoid, and, the wave-
lengths form a geometric progression from 2π to 10000 · 2π . For any offset k, PEpos+k 
could be represented as a linear function of PEpos.

By adopting this method, the componential and sequential information the protein 
could be including in the embedding vector, simultaneously.

To further validate the effectiveness of our method, we transformed the protein 
sequences into samples with variables of 20 kinds of amino acid content and sequence 
length. With such a total of 21-dimensional input variables, we constructed model Com-
Len and conducted the PSPs predicting, and the corresponding results are shown in 
Table 2. Obviously, the accuracy of Com-Len is 87.44% which is far less than the model 
1 (significant different is assessed by paired t-test with p < 0.0001). Furthermore, we con-
ducted random shuffling on each protein sequence in dataset T1+ for 100 times, respec-
tively (the Shuffled Dataset including 60 × 100 = 6000 generated sequences), and then 
predicted the liquid–liquid phase behavior for each of them through model 1 (with ratio 
of negative and positive samples is 1, and, GBDT predictor). 80.30% ± 4.53% of the shuf-
fled sequences are predicted to be PSPs, that means, the model works to capture the 
composition of the PSPs, which is close to the accuracy of Com-Len predictor (as shown 
in Table 2). It also illustrates besides the composition of amino acids in protein sequence, 
our model could also capture the sequence pattern as well.

PE(pos,2i) = sin
(

pos/100002i/dmodel

)

PE(pos,2i+1) = cos
(

pos/100002i/dmodel

)

Fig. 4  The model architectures of CBOW (A) and Skip-gram (B)

https://radimrehurek.com/gensim/
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In order to visualize the embedding space of PSPs, we reduced the dimensionality of 
the protein-space of the training datasets using principle component analysis (PCA). 
The first two dimensions explained 70% of the varieties (1st: 59%, 2nd: 11%). We then 
generated the two-dimensional (2D) scatter plot for PSPs and non-PSPs (as shown in 
Fig. 4, the distribution patterns of the other two repeat trainings with different negative 
samples are shown in Additional file  1: Fig. S2). It could be seen that PSPs and non-
PSPs were separated well in 2D w2v space after PCA, indicating that w2v could capture 
sequence features of PSPs (Fig. 5).

Datasets used for training PSPredictor

For our positive training dataset, we used the PSPs in LLPSDB that can form LLPS inde-
pendently or with DNA/RNA, whereas the negative training dataset contained single-
domain proteins with full-length, solved 3D structures. To rule out the possibility that 
our model is not a kind of IDRs prediction model, we compared the prediction scores 
for proteins in the dataset T1+ and IDPs from Disprot. We found significant differences 
(p < 0.01) between the scores of two protein groups, and only 31% of the proteins in the 
IDP dataset were predicted to be PSPs (see Transparent methods). These results indicate 
that PSPredictor is not an IDRs prediction model. As the positive dataset includes both 
multi-domain proteins such as FUS [26], TDP-43 [9], and short cleaved single domain 
proteins (such as FUS RGG domain) or designed repeated peptides (such as ( R)20), all 
these incorporated protein features imply PSPredictor would be more general for the 
prediction of PSPs than other reported tools which are specific feature-based.

Table 2  The evaluation of the Com-Len model for PSPs prediction

a Data are represented as mean ± SD

Accuracya F1a Precisiona Sensitivitya Specificitya MCCa

0.87 ± 0.04 0.87 ± 0.04 0.92 ± 0.04 0.81 ± 0.06 0.93 ± 0.04 0.76 ± 0.07

Fig. 5  2D vector projection of PSPs and non-PSPs by PCA
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Limitations of the study and perspectives for future PSP prediction

We have shown that the data in the LLPSDB make it possible to develop a universal PSP 
prediction model that is not restricted to a few specific protein domains. Previously, the 
limited availability of experimental data dictated that most first-generation PSP predic-
tion tools were dependent on specific features. As PSP data accumulates, we expect that 
predictive tool like PSPredictor will cover more PSP space with highly accurate predic-
tions. Other data-demanding algorithms, like various deep learning methods, could be 
employed in appropriate situations in the future. Currently, PSPredictor and first-gen-
eration prediction tools could be used to predict driver proteins, whether PSP client 
proteins need specialized prediction tools or generalized tools can be developed need 
further investigation.

Generally speaking, all proteins can undergo LLPS in correct conditions. In our posi-
tive dataset, we only included PSPs that form LLPS in near physiological conditions 
without considering their environmental differences. With more data available, experi-
mental conditions may be integrated in future training processes, so that PSP can be 
predicted for various temperature, salt, pH, and crowding conditions. Another chal-
lenge is to predict PSP mutants that inhibit or prevent LLPS. Due to the high level of 
sequence similarity, it is difficult for sequence that based prediction tools to differentiate 
them. Besides, current PSPredictor is not considering PTMs, therefore it is not suitable 
for identifying the regulation of PTMs now. More data and sophisticated model may be 
required for all the above kinds of prediction.

Conclusions
In this work, adopt the evolutionary word2vec and Machine Learning algorithm for 
PSPs predicting. By cross-validation and comparison experiment, it demonstrated that 
the proposed PSPredictor could identify the componential and sequential information 
at the same time. PSPredictor identifies novel scaffold proteins for stress granules and 
predicts PSPs candidates in the human genome for further study. And, the accessible 
PSPredictor web server provides valuable information for potential PSPs recognition.

Availability and requirements

Project name: Prediction of liquid–liquid phase separating proteins using machine 
learning (PSPredictor)
Project home page: http://​www.​pkumdl.​cn/​PSPre​dictor
Operating system(s): Win, Mac and Linux
Programming language: Python, PHP
Other requirements: Apache 2.2.15
License: Academic Free License
Any restrictions to use by non-academics: license needed.

Abbreviations
LLPS: The liquid–liquid phase separation; PSPs: Phase separation proteins; LLPSDB: A database of proteins undergoing 
liquid–liquid phase separation in vitro (please see details in http://​bio-​comp.​org.​cn/​llpsdb/); PSPredictor: The proposed 
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