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Background
For the past few decades, there has been an explosive growth of protein sequences in 
public databases [1, 2]. However, the progress of protein function analysis is relatively 
slow, due to the costly and time-consuming biological experiments. To accelerate the 
studies of protein function, researchers have developed a variety of machine learning 
methods based on the known data in large databases [3, 4]. They have achieved good 
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results in function-related prediction tasks based on protein sequences, such as pro-
tein subcellular localization [22–24], protein structural characteristics prediction [28, 
29], and protein–protein interaction prediction [30, 31]. Especially, with the rise of deep 
neural networks, traditional feature extraction methods have been largely replaced by 
sequence encoding schemes, like the pre-trained word embeddings techniques [5, 6], 
which produce dense continuous vectors and obtain much better performance than dis-
crete features [7–9].

Protein sequence classification has widely utilized the technologies of text categori-
zation from natural language processing [41]. Benefitting from deep learning models 
and word embedding methods, text categorization has achieved great progress, which 
also brings opportunities for improving the performance of protein classification tasks. 
However, there are inherent difficulties to adapt the word embedding techniques from 
natural language processing to protein sequence representation. For one thing, there are 
no defined words in amino acid sequences, while the pre-training of embedding vectors 
mostly relies on language modeling, e.g., next word prediction. For another thing, pro-
tein sequences have a much smaller alphabet but are quite longer than natural language 
sentences, which brings new challenges to learning models.

To improve the learning performance of machine learning methods, pre-training is a 
very effective strategy. Pre-training was first proposed in the computer vision field and 
achieved good results. In recent years, it has been widely used in various tasks of natu-
ral language processing. The pre-trained models often have fast convergence speed and 
good generalization performance, especially for the tasks with limited training data. The 
existing pre-training models are mainly unsupervised models, like ELMo [10] and BERT 
[11], which are computation intensive. For instance, SeqVec [26] introduces the lan-
guage model ELMo to represent amino acid sequences as embedding vectors to obtain 
the biophysical properties of proteins; ProtTrans [27] uses various transformer mod-
els taken from natural language processing to provide the pre-trained model for amino 
acid sequences. Both the two methods have a high demand for computation resources. 
Alternatively, as the protein sequence-based classification tasks share some common 
sequence features, the pre-training can leverage a large-scale labeled dataset and trans-
fer the knowledge to other small-data problems [35, 36].

Based on this idea, we propose a supervised pre-training platform, ProtPlat. We per-
form a large-scale pre-training task, protein family classification, to automatically extract 
the effective information from the protein sequences. Benefiting from the large-scale 
Pfam database [2] and the FastText library [12], ProtPlat has sufficient data for pre-train-
ing word embeddings and a highly efficient classification procedure. Furthermore, the 
pre-trained model can be applied to various protein classification tasks. We implement a 
web service, which allows users to upload their training and test data. The training data 
is used to fine-tune the pre-trained model, and the prediction results on the test data are 
provided on the website. We evaluate the performance of the platform on three down-
stream protein classification tasks with different data scales, namely the identification of 
type III secreted effectors, the prediction of protein subcellular localization, and the rec-
ognition of signal peptides. The experimental results show that the platform not only has 
a high response speed but also improves the accuracy of all these tasks. It can be used as 
a general platform to improve the task of protein sequence classification.
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Materials
As a large-scale corpus is required for pre-training, we use the Pfam database [2], which 
is a comprehensive collection of protein families, including over 34 million protein 
sequences. The family label is the training target. As there are too many labels (17,929 
labels in version 32.0, 2019), to avoid issues caused by an extremely imbalanced data dis-
tribution (as shown in Table 1), we remove the families whose samples are less than 500, 
resulting in 7249 protein families with 32,853,084 sequences in our corpus.

To assess the performance of the pre-training platform, we experiment with three 
downstream classification tasks, as described in the following.

Task I: Identification of type III secreted effectors The type III secretion system (TTSS) 
is related to the secretion of virulence factors of many Gram-negative pathogens. The 
effector proteins of the type III secretion system (T3SEs) are directly secreted from 
bacterial cells into host cells, and then play roles in disease progression and immune 
response suppression. Identifying the type III secreted effectors can help reveal the 
mechanism of TTSS. However, the prediction of T3SEs is a particularly challenging job 
due to the lack of conserved motif or secretion signal, and the existing methods mainly 
utilize statistical characteristics of amino acid sequences. Here, we adopt the same data-
set as WEDeepT3 [13], including 525 training samples (241 effectors and 284 non-effec-
tors) and 138 test samples. The sequence identity is below 40%. Data statistics are shown 
in Table 2.

Task II: Prediction of subcellular localization The location of a protein in a cell is closely 
related to its function. Only in a suitable subcellular location can a protein perform its 
function correctly. Computational prediction of protein localization in cells has been 
a hot topic in the field of bioinformatics. Most of the existing tools are based on pro-
tein sequences and machine learning methods [23–25, 42, 43]. We use a classic bench-
mark set, BaCeILo [14], including proteins from animals, fungi, and plants, located at 
four subcellular compartments, i.e., nucleus, cytoplasm, mitochondrion, and secretory 
pathway. Data statistics are shown in Table  3. Besides, we also use the latest dataset 
that is used in DeepLoc [4], including 13,858 protein sequences located at 10 subcel-
lular compartments, i.e., nucleus, cytoplasm, extracellular, mitochondrion, membrane, 

Table 1  Numbers of protein families with different numbers of sequences in Pfam

# protein sequence # protein families

< 100 5474

< 200 7433

< 300 8775

< 500 10,523

≥ 500 7249

Table 2  Dataset of type III secreted effectors

Dataset T3SE non-T3SE Total

Train # 241 284 525

Test # 46 92 138
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endoplasmic, plastid, Golgi, lysosome, and peroxisome. The data statistics are shown 
in Additional file 1: Table S1.

Task III: Recognition of signal peptides Signal peptides are usually located at the N-ter-
minals of protein sequences and generally 5–30 amino acids in length. The main func-
tion of signal peptides is to promote the secretion of proteins outside the cell or localize 
them to certain organelles, so the identification of signal peptides can provide clues for 
revealing protein functions. We consider two types of signal peptides, i.e., Sec substrates 
cleaved by SPase I (Sec/SPI) and others using the SignalP 5.0 dataset [15]. The proteins 
are from Eukarya, Archaea, Gram-positive bacteria, and Gram-negative bacteria. Data 
statistics are shown in Table 4.

Methods
Data preparation

Protein sequence segmentation

For text categorization tasks, word features are widely used in the classifiers. Similarly, 
features are extracted from short peptides (i.e., k-mers) for protein sequence classifica-
tion. The quality of word segmentation may have a substantial impact on the accuracy 
of protein sequence classification. Therefore, the preprocessing step mainly focuses on 
the segmentation of protein sequences into k-mers. As there is neither a dictionary nor 
word boundaries in biological sequences, it is difficult to segment out k-mers with spe-
cific semantic meaning. Instead, the protein sequences are often simply segmented into 
fragments of fixed length. Two segmentation methods are described in the following.

Non-overlapping segmentation In the field of bioinformatics, biological sequences are 
often segmented into fixed-length k-mers for feature extraction [7, 33, 34, 39]. Normally, 

Table 3  Datasets of protein subcellular localization*

*cy denotes cytoplasm, mi denotes mitochondrion, nu denotes nucleus, and sp denotes secretory pathway

Dataset cy mi nu Sp Total

Animals_train 302 153 803 632 1890

Animals_test 137 35 363 172 707

Fungi_train 181 177 589 72 1019

Fungi_test 30 11 122 16 179

Plants_train 52 57 60 35 204

Plants_test 6 10 61 6 83

Table 4  Datasets of signal peptides

Dataset Sec/SPI Others Total

Archaea_train 10 45 55

Archaea_test 50 132 182

Eukaryotes_train 2404 7409 9813

Eukaryotes_test 210 7247 7457

Gram-negative_train 419 1126 1545

Gram-negative_test 90 693 783

Gram-positive_train 164 370 534

Gram-positive_test 25 364 389
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k is less than or equal to 5 and cannot be too large. The reason is that, as k increases, the 
k-mer space will increase exponentially, which leads to extremely high dimensionality 
and difficulties for the classification methods [13, 32–34].

The advantage of the k-mer segmentation method is that it is simple and convenient. 
Each k-mer contains not only the information of single amino acids but also the informa-
tion of their surrounding context. However, the shortcoming of the k-mers segmentation 
method is also obvious, i.e., it only considers the k-mers with fixed length. To alleviate 
this limitation, here we consider the word space including all words whose length is less 
than or equal to k. Take the protein sequence “MASPAAERKS” as an example, when k 
is set to 3, the set of words of this sequence is {M, A, S, P, E, R, K, MA, SP, AA, ER, KS, 
MAS, PAA, ERK}.

Overlapping segmentation Using non-overlapping segmentation, a little shift on the 
starting site of segmentation may lead to very different segmented words. To avoid 
such uncertainty, the overlapping segmentation method has also been widely used. This 
method adopts a sliding window to segment out k-mers with a stride of 1. In this way, 
all the substrings of length k in the sequences are considered, which has a larger feature 
space than non-overlapping segmentation and may lead to redundant information. For 
the protein sequence "MASPAAERKS", when k is still set to 3, the word set becomes {M, 
A, S, P, E, R, K, MA, AS, SP, PA, AA, AE, ER, RK, KS, MAS, ASP, SPA, PAA, AAE, AER, 
ERK, RKS}. The overlapping k-mer segmentation method can preserve more sequence 
information than non-overlapping segmentation.

To fully utilize the sequence information, we adopt the overlapping segmentation in 
ProtPlat. We compare the model performance of using these two segmentation meth-
ods. Results are discussed in Sect. 4.4.1.

Processing of the Pfam database

We use a large-scale corpus, the Pfam database, to perform the supervised pre-training. 
The construction of Pfam database consists of the following steps (shown in Fig. 1):

	(i)	 Download a total of 17,772 protein families and 34,353,433 sequences in the Pfam 
database of the version 32.0 released in 2019.

	(ii)	 Extract label and sequence for each protein.
	(iii)	 Construct a dataset including 7249 protein families and 32,853,084 sequences by 

deleting the protein families with less than 500 samples.

ProtPlat model design

To describe the working principle of the ProtPlat model, we define the following 
notations.
C : The size of the feature space, i.e., the number of k-mers used for classification.
m : The dimension of the embedding representations.
p : The dimension of hidden layer.
n : The number of labels.
V ∈ R

p∗m : Input weight matrix.
U ∈ R

n∗p : Output weight matrix.
The workflow of the ProtPlat model can be formulated in the following.
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Let (x(1), x(2), . . . , x(C))ǫRm be the input vectors. Pass them through a fully con-
nected layer to get the embedding vectors,

Get the averaged embedding vector, ĥǫRp

Then pass a fully connected layer to generate a score vector, zǫRn

Convert the score vector into the probability distribution of the label, ŷǫRn

The main structure of ProtPlat is a three-layer neural network, as shown in Fig. 2. The 
input is a C ×m-dimensional matrix, which consists of the vectors for words with length 
less than or equal to k in protein sequences. For instance, when k is set to 3, the input 
covers all amino acids, 2-mer and 3-mer features. The embedding vector of a k-mer is 
the average of the embedding vectors of the k amino acid vectors that it contains.

(3.1)h(1) = V × x(1), h(2) = V × x(2), . . . , h(C) = V × x(C)ǫRp

(3.2)ĥ =

∑
i ∈ {1, 2, . . . ,C}hi

C
.

(3.3)z = U × ĥ

(3.4)ŷ = softmax(z)

Fig. 1  The data collection and filtering process of the Pfam database
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An important mechanism in the classification model is the hierarchical softmax func-
tion, which uses a binary tree to represent all categories. Each leaf node in the tree is 
a category, which can effectively ensure the efficient classification of a large number 
of labels. Hierarchical softmax is built based on Huffman coding [40], and the label is 
coded, which can greatly reduce the number of prediction targets of the model. The 
embedding representation of protein sequences in the model is a hidden variable, which 
can be reused. This architecture is similar to the CBow model [16], except that the cen-
tral word in this model is replaced by a sequence label.

The two‑stage training procedure for downstream tasks

To apply ProtPlat to downstream tasks, we perform a two-stage training procedure.

(i)	Pre-training

As described in Sect. 3.1, using the protein sequences and family labels in Pfam, we 
train the ProtPlat model. The input vectors for single amino acids are randomly initial-
ized and the vector for a k-mer is the average of the k amino acid vectors that it contains. 
The output is the Pfam family labels. After training, we save the vector h(i) of each amino 
acid as its embedding representation, which is used as the input vector (i.e., x(i) ) for the 
downstream tasks.

	(ii)	 Fine-tuning

The fine-tuning stage has almost the same training process as the pre-training. The dif-
ferences lie in the input and output, where the input is pre-trained embedding vectors, 
and the output is the labels for the downstream classification task.

Web server

We implement the ProtPlat platform as a web service (https://​compb​io.​sjtu.​edu.​cn/​
protp​lat) that is accessible to the public. The web server interface is shown in Fig. 3. 
The background model of the web server has been pre-trained via the family clas-
sification task base on the Pfam database. Users can upload their own training and 

Fig. 2  Model architecture of ProtPlat. The k-mer embeddings are fed into the neural network and learned by 
the hidden layers. The output label is yielded by a hierarchy Softmax function

https://compbio.sjtu.edu.cn/protplat
https://compbio.sjtu.edu.cn/protplat
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test sets to the server. The system will fine-tune the pre-trained model by using the 
uploaded training data and yield prediction results for the test data. After waiting for 
a while, the prediction results will be displayed on the web page. Besides, users can 
also download the embedding vectors of amino acids pre-trained by the platform (in 
the Download Tab).

In many protein classification problems, the training set is too small to support the 
learning of good representations from input data. Since many protein classification 
problems share common features extracted from their amino acid sequences, the small-
data tasks can benefit a lot from the two-stage training strategy.

Experimental results
Experimental settings and evaluation metrics

For both the pre-training and fine-tuning, we randomly extract 20% of the training data 
to form the validation set. We select the best hyperparameters based on the model per-
formance on the validation set. Table 5 shows the hyperparameter settings for the pre-
training phase in ProtPlat. Note that the value of k is determined in the pre-training 
phase and remains unchanged in the downstream tasks. For each downstream task, the 
number of epochs and learning rate are tuned on its validation set.

Fig. 3  The web server interface of ProtPlat

Table 5  Hyperparameter settings for pre-training in ProtPlat

Hyperparameter Value

k 3

Epoch 70

Learning rate 0.15

Dim. of embeddings 100

Dim. of hidden layer 100
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To assess the performance of the model, we use four evaluation metrics in binary clas-
sification downstream tasks, including accuracy (ACC), F1 score, precision (Pre), and 
recall (Rec). They are formulated as follows.

where TP, TN, FP, and FN denote the numbers of true positive, true negative, false 
positive, and false negative, respectively. As for the multi-class problems, the F1 is 
defined as follows,

where TPi , FPi , and FNi denote the numbers of true positive, false positive, and false 
negative for the i-th class, respectively.

Performance of the pre‑training

Here we compare the models with and without pre-training. The model with pre-train-
ing uses pre-trained embedding vectors as the initial input, while the model without 
pre-training uses one-hot encoding vectors as the initial input and randomly initializes 
the input weights. We compare their performance on 9 datasets, including the T3SE 
dataset, three subcellular localization datasets (plants, fungi, and animals from BaCeILo 
[14] and the DeepLoc dataset [4]), and four signal peptide datasets (archaea, eukaryotes, 
Gram-positive, and Gram-negative). The results are shown in Fig.  4. As can be seen, 
pre-training can improve the prediction accuracy on all these datasets. The F1 value is 
increased by 0.03–0.08. Moreover, we perform a statistical significance analysis on the 
performance difference. For each dataset of the downstream tasks, we run the models 
with and without pre-training for 30 times, respectively. The p-values of the pair-wise 
t-test are listed in Additional file 1: Table S2 and S4. For all the 8 downstream tasks, the 
p-values are much less than 0.01, indicating that the pre-trained model is significantly 
superior to the model without pre-training.

(4.1)ACC =
TP + TN

TP + TN + FP + FN
,

(4.2)F1 =
2 ∗ TP

2 ∗ TP + FP + FN
,

(4.3)Pre =
TP

TP + FP
,

(4.4)Rec =
TP

TP + FN
,

(4.5)Pre =

∑
TPi∑

TPi +
∑

FPi

,where i is the index of the category

(4.6)Rec =

∑
TPi∑

TPi +
∑

FNi

, where i is the index of the category

(4.7)F1 =
2 ∗ Pre ∗ Rec

Pre + Rec
,
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Comparison of ProtPlat with the existing methods on three downstream tasks

Task I: identification of type III secreted effectors

Identification of type III secreted effectors is a binary classification problem, i.e., 
T3SE and non-T3SE. To evaluate the performance of ProtPlat, we compare it with 
the existing representative methods, including WEDeepT3 [13], BPBAac [17], Effec-
tiveT3 [18], T3_MM [19], DeepT3 [20], Bastion3 [21] and BEAN 2.0 [22]. The results 
of ProtPlat obtained on the test set of WEDeepT3 are shown in Table  6. As can be 
seen, ProtPlat has achieved the best performance. Compared with the second-best 
model WEDeepT3, the F1 value of the pre-trained ProtPlat model has increased by 
0.128, and the total accuracy has increased by 0.021, which confirms the classification 
performance of the pre-training platform. Since F1 score is threshold-dependent, we 
compute the F-max metric (shown in Additional file 1: Table S6). The F1 scores under 
different thresholds are shown in Additional file 1: Figure S1.

The accuracy and F1 scores of the baseline methods are extracted from [13]. All the 
methods are evaluated on the same test set.

Fig. 4  F1 score comparison between models with and without pre-training

Table 6  Performance comparison for the prediction of type III secreted effectors

Model ACC​ F1 score

ProtPlat 0.833 0.833
WEDeepT3 0.812 0.705

BPBAac 0.609 0.339

EffectiveT3 0.696 0.512

T3_MM 0.718 0.581

DeepT3 0.594 0.486

Bastion3 0.739 0.673

BEAN 2.0 0.761 0.692
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Task II: prediction of protein subcellular location

For protein subcellular localization, we use the dataset in BaCeILo [14] and compare 
with Euk-mPLoc [23], LOCTree [24], BaCeILo [14], and YLoc [25]. The prediction per-
formance is evaluated by accuracy and F1 score. The F-max metric and F1 scores under 
different thresholds are shown in Additional file 1: Table S6 and Figure S1. For all the 
three datasets (plants, fungi, and animals), ProtPlat achieves competitive performance. 
Especially on the Fungi dataset, ProtPlat outperforms other models by a large margin 
(both F1 and accuracy are increased by over 10%) (Table 7), indicating that small data-
sets may benefit more from the pre-training. Note that the training sets of the baseline 
models are different [25], and many of the baseline models are more general predictors, 
which can predict more than 4 locations, like YLoc-HighRes, YLoc + , MultiLoc2-High-
Res, WoLF PSORT, Euk-mPLoc, and LOCTree. Thus, they may perform worse than the 
predictors specifically trained for these four locations. The accuracy and F1 scores of the 
baseline methods are extracted from YLoc [25].

It is worth noting that almost all the baseline methods utilize information from multi-
ple sources as input features, including some kinds of domain knowledge, such as protein 
functional domain and Gene Ontology. By contrast, ProtPlat uses sequence information 
and the protein family labels in Pfam, which are general information for proteins and not 
specific to prediction tasks, while it can obtain comparable or even better results than 
the baseline methods.

The comparison results suggest the powerful learning ability of the pre-training plat-
form, which would be very useful when domain knowledge is scarce.

We also compare ProtPlat with the state-of-the-art methods on the DeepLoc dataset. 
The accuracy of ProtPlat is much lower than DeepLoc (results shown in Additional file 1: 
Table S3). The reason is mainly due to the imbalanced distribution of the DeepLoc data-
set. As described in Sect. 2 (Task II), there are 10 classes in this dataset, and the largest 
class has 4043 samples while the smallest one has only 154 samples (shown in Additional 
file 1: Table S1). The DeepLoc adopts a cost matrix-based method to mitigate the effect 
of class imbalance, while there is no specific operation in our model for dealing with 
this issue. The other two methods, LocTree2 [44] and YLoc [25], also perform better 
than ProtPlat, as both utilize some domain knowledge. Besides the sequence features, 

Table 7  Performance comparison for protein subcellular location prediction

Model Animals Fungi Plants

ACC​ F1 ACC​ F1 ACC​ F1

Euk-mPLoc 0.61 0.54 0.6 0.56 0.46 0.37

WoLF PSORT 0.7 0.67 0.5 0.51 0.57 0.46

LOCTree 0.62 0.58 0.47 0.43 0.7 0.58

BaCeILo 0.64 0.66 0.57 0.6 0.69 0.56

MultiLoc2-HighRes 0.68 0.71 0.53 0.58 0.62 0.54

MultiLoc2-LowRes 0.73 0.76 0.6 0.61 0.76 0.64

YLoc +  0.58 0.67 0.48 0.51 0.58 0.49

YLoc-HighRes 0.74 0.69 0.56 0.51 0.58 0.54

YLoc-LowRes 0.79 0.75 0.56 0.61 0.71 0.58

ProtPlat 0.66 0.66 0.71 0.71 0.72 0.72
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i.e., amino acid composition and pseudo composition, YLoc also uses the PROSITE 
motifs and GO terms from the homologs of the query protein. LocTree2’s input includes 
sequences as well as their profiles searched via PSI-BLAST [45], and it incorporates sim-
ilarities among subcellular locations in the design of SVM classifiers.

Task III: signal peptide prediction

For the recognition of signal peptides, we perform binary classification and compare 
ProtPlat with 16 baseline methods mentioned in SignalP 5.0 [15]. The prediction perfor-
mance is evaluated by precision, recall, and F1. Results are shown in Table 8. The F-max 
metric and F1 scores under different thresholds are shown in Additional file 1: Table S6 
and Figure S1. For the Archaea and Gram-negative datasets, ProtPlat has the highest 
F1 scores. In general, the performance of ProtPlat is comparable to SignalP 5.0, which 
uses hand-crafted features and specific architecture for recognizing signals, and higher 
than all the other 15 baselines. For Eukaryotes dataset, the precision and recall values of 
ProtPlat are closer to SignalP 5.0 and higher than those of other baselines. For Gram-
negative dataset, the result of ProtPlat is close to that of SignalP 5.0, where the precision 
value is significantly higher than other baselines and the recall value is also higher. For 
the Gram-positive dataset, ProtPlat achieves comprehensively better performance, and 
the precision is significantly higher than other baselines.

Ablation studies on ProtPlat

Comparison of the two segmentation methods

We experiment with both the non-overlapping and overlapping segmentation methods. 
The results on the three downstream tasks are shown in Table 9. The model settings are 

Table 8  Performance comparison of signal peptide prediction

*Pre denotes precision and Rec denotes recall. The precision and recall of the baseline methods are extracted from SignalP 
5.0 [15]

Model Archaea Eukaryotes Gram-negative Gram-positive

Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

SignalP 5.0 0.771 0.660 0.711 0.671 0.729 0.699 0.742 0.733 0.737 0.600 0.840 0.700
DeepSig – – – 0.604 0.624 0.614 0.131 0.600 0.215 0.073 0.760 0.133

LipoP 0.484 0.480 0.482 0.159 0.343 0.217 0.327 0.733 0.452 0.153 0.600 0.244

Philius 0.425 0.580 0.491 0.151 0.619 0.243 0.106 0.700 0.184 0.054 0.600 0.099

Phobius 0.395 0.540 0.456 0.226 0.667 0.338 0.098 0.644 0.170 0.054 0.600 0.099

PolyPhobius 0.395 0.560 0.463 0.176 0.681 0.280 0.097 0.644 0.169 0.060 0.680 0.110

PrediSi – – – 0.273 0.652 0.385 0.144 0.722 0.240 0.062 0.640 0.113

PRED-LIPO 0.455 0.480 0.467 0.069 0.095 0.080 0.212 0.467 0.292 0.216 0.760 0.336

PRED-SIGNAL 0.489 0.800 0.607 0.066 0.224 0.102 0.076 0.444 0.130 0.060 0.680 0.110

PRED-TAT​ 0.493 0.580 0.533 0.080 0.410 0.134 0.125 0.711 0.213 0.082 0.720 0.147

Signal-3L 2.0 – – – 0.322 0.648 0.430 0.113 0.644 0.192 0.074 0.800 0.135

Signal-CF – – – 0.105 0.652 0.181 0.102 0.689 0.178 0.059 0.720 0.109

SOSUIsignal – – – 0.037 0.176 0.061 0.040 0.267 0.070 0.018 0.200 0.033

SPEPlip – – – 0.366 0.710 0.483 0.276 0.611 0.380 0.187 0.680 0.293

SPOCTOPUS – – – 0.120 0.390 0.184 0.067 0.467 0.117 0.056 0.640 0.103

TOPCONS2 0.366 0.480 0.415 0.107 0.371 0.166 0.081 0.544 0.141 0.022 0.240 0.040

ProtPlat 0.823 0.627 0.712 0.636 0.773 0.698 0.728 0.791 0.758 0.550 0.668 0.603
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the same. Different segmentation strategies lead to different input vectors. The results 
show that when using the overlapping segmentation, the embedding vectors pre-trained 
by the model lead to a better F1 score for all the tasks.

Investigation on the value of k

In ProtPlat, the value of k is set to 3, which is determined in the pre-training phase, 
i.e., based on the performance on the protein family classification task. To investigate 
whether it is a good choice for the downstream tasks, here we assess the model perfor-
mance under different values of k. Figure 5 shows the F1 scores for the downstream tasks 
when k is set to 1, 2, 3, 4, and 5, respectively, using the overlapping segmentation for pro-
tein sequences. The results show that the best performance is achieved when k is set to 
3 for all the tasks, suggesting that the protein sequence-based classification tasks share 
sequence features and the pre-training can transfer knowledge to other tasks. When k 
is set to 1, each amino acid is treated independently and contextual information (i.e., 
local sequence information) is not included, thus the performance is not good. When k 
is equal to or greater than 5, the accuracy drops because the k-mer space has extremely 

Table 9  Comparison of the F1 Scores between two segmentation methods

Dataset Non-overlapping segmentation Overlapping 
segmentation

T3SE 0.792 0.833
Animals 0.623 0.660
Fungi 0.688 0.709
Plants 0.671 0.723
Archaea 0.679 0.712
Eukaryotes 0.680 0.698
Gram-negative 0.713 0.758
Gram-positive 0.558 0.603

Fig. 5  Comparison of F1 scores obtained by ProtPlat with different values of k 
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high dimensionality, containing a lot of rare k-mers (with a very low frequency), which 
may lead to the overfitting issue.

Comparison with other pre‑trained protein representations

We compare ProtPlat with two state-of-the-art protein pre-training models, i.e., SeqVec 
[26] and ProtTrans [27], on all the downstream task datasets. The results are shown in 
Table 10. Besides, we perform a statistical significance analysis for the performance dif-
ferent of three pre-training methods shown in Additional file  1: Table  S5. We use the 
1024-dimensional pre-trained embedding vectors taken from SeqVec and the ProtAl-
bert model in ProtTrans as the input of ProtPlat.

As can be seen, ProtPlat achieves the best performance on two relatively small data-
sets, especially the Archaea dataset, which contains only 55 training samples. The reason 
is that the embedding vectors yielded by SeqVec and ProtTrans have a high dimen-
sionality (1024), which may result in the overfitting issue, while our model only uses 
100-dimensional embedding vectors.

Although ProtPlat seems to have little advantage in the comparison with SeqVec and 
ProtTrans regarding the prediction accuracy, ProtPlat is a lightweight, cost-effective, and 
highly efficient model. Different from SeqVec and ProtTrans, both of which are based 
on language modeling to perform large-scale unsupervised pretraining, ProtPlat adopts 
supervised learning, i.e., the protein family classification in Pfam, as the pretraining task. 
For ELMo-based SeqVec, it was trained for three weeks on 5 Nvidia Titan GPUs with 
12 GB memory each. As mentioned in Background, ProtTrans uses various transformer 
models, which were trained on a supercomputer with 936 nodes (total 5616 GPUs) and 
one TPU Pod (V3-512 or V3-1024). By contrast, ProtPlat takes only several CPU hours 
for pre-training. Therefore, it could also serve as an alternative pre-training model for 
protein-related prediction tasks, especially when the downstream task has very limited 
training samples.

Discussion
This study proposes a pre-training platform to address the contradiction between a large 
number of protein sequences and the small scale of training data for various protein 
classification problems. The advantages of ProtPlat are mainly two folds.

Table 10  Accuracy of different pre-trained representations

Dataset Training No. ProtPlat SeqVec ProtTrans

DeepLoc 11,085 0.537 0.565 0.582
T3SE 525 0.836 0.823 0.821

Animals 1890 0.665 0.685 0.694
Fungi 1010 0.706 0.727 0.742
Plants 204 0.718 0.741 0.738

Archaea 55 0.729 0.718 0.714

Eukaryotes 9813 0.695 0.721 0.738
Gram-negative 1545 0.755 0.772 0.782
Gram-positive 534 0.607 0.614 0.628
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	(i)	 Fast and lightweight. ProtPlat does not use evolutionary information in the process 
of training, but only uses sequence information for prediction. It is a simple model 
with a few training parameters and fast training speed. We can train ProtPlat for 
classifying half a million sentences among 312 K classes in less than a minute using 
a standard CPU without GPU support.

	(ii)	 Suitable for small datasets. ProtPlat model has especially good performance on 
small data sets. Since small data is usually insufficient for training, the pre-training 
procedure that provides a good initial model has a more obvious effect. Our exper-
imental results also show that the classification of small datasets benefits more 
from the platform.

A limitation of this study is that we only consider the protein-level classification tasks, 
while a lot of prediction tasks are at the residue-level, such as secondary structure predic-
tion and residue contact map prediction. Although the word embeddings learned in the 
system represent single amino acids or k-mers, the residue-level prediction has not been 
supported in the current version yet. One of our future works is to incorporate the residue-
level prediction function into our platform and make it more general for protein-related 
computation tasks.
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