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Introduction
In higher eukaryotes, chromosomes are packed into three dimensions (3Ds) and form 
complex structures [1]. Such 3D structure of chromosomes has recently been investi-
gated by chromosome conformation capture combined with high-throughput sequenc-
ing technique (Hi-C) at an unprecedented resolution [2–4]. Hi-C experiments revealed 
multiple levels of genome organization including compartments A/B [5] and topologi-
cally associating domains (TADs) [2, 3]. Most notably, TADs are relatively constant 
between different cell types and are highly conserved across species. Those TADs play 
central roles in key cell processes such as for the long-range regulation of genes by 
enhancers [4] or for the replication-timing regulation [6].
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Over the past years, tremendous efforts have been made to develop methods for TAD 
identification from Hi-C data [7]. The methods can be broadly classified into 4 catego-
ries: linear score, statistical model, clustering and network features [7]. The first methods 
split the genome into bins and define a linear score (insulation score) associated to each 
bin [2, 8–10]. The second methods rely on statistical models of the interaction distributions 
[11–13]. The third methods cluster regions of the genome [14–16]. The fourth methods 
consider the Hi-C data as a graph adjacency matrix and TADs as communities to detect 
[17–19]. However, very few methods were developed to detect differential TADs between 
experiments [20–22]. Moreover, few methods were also proposed to predict the impact of 
chromosomal rearrangement in reshaping TADs, and more generally the 3D genome [21, 
23–26].

We propose a versatile regression framework that generalizes the insulation score by esti-
mating a relative score and adding a sparsity constrain (“Sparse Insulation Model”, SIM), 
but also allows differential TAD analysis (“Differential Insulation Model”, DIM) and Hi-C 
data prediction after chromosomal rearrangement (“Prediction Insulation Model”, PIM). 
The proposed model provides a rigorous statistical framework for modeling the interac-
tion distribution, where model parameters represent sparse insulation scores that have an 
intuitive interpretation and are easy to visualize. Our model assumes additivity of insulation 
parameters as previously proposed by [24, 25, 27, 28]. By adding interaction terms into the 
model, the regression framework can naturally be used for differential TAD border identifi-
cation between two different Hi-C experiments. Moreover, the regression can predict Hi-C 
data in the case of chromosomal rearrangements such as deletion and inversion, thereby 
allowing to explore the deleterious impact of de novo enhancer-promoter interactions on 
genetic diseases and cancers.

Using recent high resolution human and mouse Hi-C data, we found that our approach 
ranked among the top TAD callers, when evaluated using external assessment designed not 
to favor any tool. Moreover, it identified new features of the genome we called TAD facilita-
tors, which were demonstrated to be biologically relevant. Our approach could also iden-
tify numerous novel TAD borders emerging during cortical neuron differentiation. Such 
borders were depleted in CTCF compared to embryonic stem cells and enriched in a large 
number of known neuronal transcription factors including NFATC1/3, NEUROD2, HiC1 
and Dmbx1. Lastly, our approach outperformed state-of-the-art algorithm PRISMR to pre-
dict Hi-C data after chromosomal rearrangement.

Materials and methods
Hi‑C data

We used publicly available Hi-C data of lymphoblastoid GM12878 and lung IMR90 cells 
from Gene Expression Omnibus (GEO) accession GSE63525 [9]. We also used publicly 
available Hi-C data of mouse embryonic stem (ES) and cortical neuron (CN) cells from 
GEO accession GSE96107 [29]. Hi-C data were binned at 25 and 50 kb resolutions and nor-
malized by matrix balancing [30].

Capture Hi‑C data

We used publicly available capture Hi-C data of wild-type (WT) and mutant distal 
limb buds of E11.5 mice from Gene Expression Omnibus (GEO) accession GSE92294 
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[23]. Hi-C data were binned at 10 kb resolution and normalized by matrix balancing 
[30].

ChIP‑seq data

We used publicly available binding peaks of 73 chromatin proteins (Rad21, CTCF, 
YY1, ZBTB33, MAZ, JUND, ZNF143, EZH2, ATF2, ATF3, BATF, BCL11A, BCL3, 
BCLAF1, BHLHE40, BRCA1, CEBPB, CFOS, CHD1, CHD2, CMYC, COREST, E2F4, 
EBF1, EGR1, ELF1, ELK1, FOXM1, GABP, IKZF1, IRF4, MAX, MEF2C, MTA3, MXI1, 
NFATC1, NFE2, NFIC, NFKB, NFYA, NFYB, NRF1, NRSF, P300, PAX5, PBX3, PML, 
POL2, POL3, POU2F2, RFX5, RUNX3, RXRA, SIN3A, SIX5, SMC3, SP1, SPI1, SRF, 
STAT1, STAT3, STAT5, TBLR1, TBP, TCF12, TCF3, TR4, USF1, USF2, WHIP, ZEB1, 
ZNF274, ZZZ3) of GM12878 cells from ENCODE [31]. We downloaded peaks that 
were uniformly processed (Uniform Peaks).

We also used publicly available CTCF ChIP-seq data of mouse embryonic stem (ES) 
and cortical neuron (CN) cells from GEO accession GSE96107 [29].

JASPAR motifs

To scan the mouse genome for motif occurrences, we used FIMO with default param-
eters (meme-suite.org). The motif position weight matrices were downloaded from 
JASPAR database (http://jaspar.genereg.net/).

TAD manual annotation

We used manual annotation of GM12878 TADs at 50 kb from Dali and Blanchette 
[32]. As previously described by Dali and Blanchette, TADs were manually traced on 
GM12878 Hi-C maps from the full data set at 50 kb resolution for regions 40-45 mb 
of 10 different, randomly chosen, chromosomes (chr2, chr3, chr4, chr5, chr6, chr7, 
chr12, chr18, chr20 and chr22). Briefly, interaction maps of the regions of interest 
were plotted using HiCplotter. In Adobe Illustrator, dotted squares were manually 
traced around visually identifiable TADs on the interaction map plots. Regions anno-
tated as TADs had the following properties: (i) sharp visual contrast between within 
and across TAD interaction frequencies, over the entire TAD region; (ii) minimum 
size of 250 kb. To give all tools an equal chance, Dali and Blanchette created a dense 
set of TAD annotations that included any identifiable TAD structure. For example, 
if two potential TADs were overlapping, both were retained, irrespective of whether 
one had stronger visual support than the other. TAD boundaries were allowed to 
overlap or be nested, as long as there is a clearly traceable square along the diagonal. 
Bed files with TAD ranges were manually created and used for tool comparison.

Since 29% of genomic bins could be considered as relevant TAD borders using this 
annotation, we considered as TAD borders those supported by at least two TADs that 
were manually identified.

Insulation score

For a bin i ∈ {1, ..., p} , the insulation score was defined as [8]:
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where Mi was the number of Hi-C counts that occurred across bin i (up to some dis-
tance) on the same chromosome.

Sparse insulation model (SIM)

We first removed the distance effect (polymer effect) from the normalized Hi-C counts 
using a generalized additive model with a negative binomial distribution:

Variable y denoted normalized Hi-C count for any pair of bins on the same chromo-
some. The log-distance variable d accounted for the background polymer effect. The 
local power law decay relation between distance and Hi-C count was modeled by regres-
sion spline [33]. We noted that if bias variables such as GC content, mappability and 
fragment length were added to the model [34], then the model could also handle unnor-
malized Hi-C data. Regression residuals (noted z) were then used as input for a linear 
model. Using residuals allowed us to then use best subset selection (L0 penalty) for 
which there is only linear model implementation in R (see as follows).

Then, a linear model called the “sparse insulation model” (SIM) was proposed to esti-
mate the insulating effects of genomic loci on long-range interactions:

Variable set X = {x1, ..., xp} represented the p insulation variables, one for each bin of 
the chromosome. For a bin i ∈ {1, ..., p} , the insulation variable xi was set to one when 
the bin lied in-between the two bins whose interaction counts were measured by Hi-C, 
and was set to zero otherwise. The corresponding βxi parameter value reflected the effect 
of the bin i on Hi-C counts. A negative beta value ( βxi < 0 ) revealed an insulation effect 
on long-range contacts. Conversely, a positive beta value ( βxi > 0 ) showed a facilitat-
ing effect on contacts. A null beta value ( βxi = 0 ) meant that the bin had no effect on 
contacts.

Best subset selection was used to select the best insulation variables when estimating 
the βX parameters by adding an L0 penalty:

as done using the L0Learn R package (https://cran.r-project.org/web/packages/
L0Learn). Parameter � was obtained by 10 fold cross-validation of the mean square error 
(L0Learn.cvfit function with default parameters).

Often the number of insulation variables was too big for L0Learn R package (>5000) 
and we had to prefilter the variables. For this purpose, we used lasso regression (glm-
net R package, https://cran.r-project.org/web/packages/glmnet/) and kept variables with 
|β̂xi | > 0.2 . This allowed to reduce the number of variables to few thousands for L0Learn 
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to work, while still keeping most relevant variables. We found that prefiltering yielded 
betas that were similar to the ones obtained without prefiltering (Additional file 1: Figure 
S1).

Differential insulation model (DIM)

The model could be extended to identify differential TAD borders between two differ-
ent Hi-C experiment matrices (e.g. between two conditions). For this purpose, we first 
ran SIM for each Hi-C experiment matrix independently. Only the union of bins with 
|β̂xi | > 0 from both SIMs were kept for differential analysis (we noted the new bin set 
S = {s1, ..., sq} ). To prevent bin uncertainty between experiments, only one bin was kept 
among two consecutive bins. Bins from S were then used to build a novel model for dif-
ferential analysis called the “differential insulation model” (DIM).

The differential insulation model was written as follows:

Variable e denoted the experiment from which the Hi-C count is measured. Variable sje 
was the interaction term between the insulation variable sj and the experiment variable 
e , computed as the product between both variables. For a bin j, a negative beta value 
( βsje < 0 ) revealed higher insulation effect on long-range contacts for the 2nd experi-
ment compared to the 1st experiment, while a positive value ( βsje > 0 ) meant lower 
insulation effect. A null value ( βsje = 0 ) showed no differential effect. Because the model 
used as input only bins previously identified by the sparse insulation model, there was 
no need to use any penalty for parameter estimation. Moreover, the absence of a penalty 
term allowed to estimate differential effects without bias.

Prediction insulation model (PIM)

The model could be modified to predict Hi-C data, which we called the “prediction insu-
lation model” (PIM). For this purpose, we modeled the Hi-C count by a generalized lin-
ear model (Poisson regression):

Here, since we didn’t need to identify sharply the borders with L0 penalty, we could use 
directly the Poisson regression. PIM could be used to predict Hi-C data after chromo-
somal rearrangement. For this purpose, PIM was first trained using wild-type Hi-C data 
(no rearrangement). Then, the distance variable ( d ) and the insulation variables ( X ) 
were modified in a way to account for the chromosomal rearrangement. In the case of 
a deletion, the distance variable values were shrunk by the length of the deletion (pro-
ducing a new distance variable noted d′ ), and all insulation variables spanning the dele-
tion were set to zero (producing new insulation variables X′ ). In the case of an inversion, 
bins spanning the inversion were flipped and the distance variable and insulation vari-
ables were recomputed accordingly. The new variables ( d′ and X′ ) together with the 
trained PIM model (with parameters β̂0 , β̂d and β̂X ) were used to predict Hi-C data after 
rearrangement:
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Results and discussion
Identification of TAD borders and facilitators

We proposed the sparse insulation model (SIM) to estimate the insulating/facilitat-
ing effects of genomic loci on long-range interactions (Fig. 1A). SIM required only one 
parameter, the maximal distance between two bins from the Hi-C matrix, which we set 
here to bin size ×10 in order to reduce computational burden. We illustrated the model 
with high-depth Hi-C data at 25 kb resolution from human IMR90 lung cells, whose 
TADs could be easily visualized. We plotted the example of a 10-Mb-long genomic 
region of chromosome 1 (Fig. 1B). We first computed the insulation score (IS) to identify 
loci of high insulation. The insulation score is a standard measure reflecting the aggre-
gate of interactions occurring across each interval. It is often used by experimentalists 
because of its simple and quantitative interpretation: the lower, the higher the insulation 
effect of the loci on overlapping contacts [8]. We observed peaks of negative IS, reflect-
ing the presence of TAD borders with varying strengths (Fig. 1C). Alternatively, IS also 
revealed regions facilitating long-range contacts (score above zero).

(7)log(E[y|d′,X′]) = β̂0 + β̂dd
′ + X′β̂X

Fig. 1  Illustration of the sparse insulation model (SIM) and identification of TAD borders and facilitators. A 
Schema representing the insulation effects modeled by SIM on long-range contacts between two bins (two 
loci), such as between an enhancer and a promoter. B Hi-C heatmap from IMR90 cells at 25 kb resolution. C 
Insulation score. D SIM beta (no penalty). E SIM beta (L0 penalty). F CTCF enrichment profile depending on 
border strength (beta). G DNA binding protein enrichment compared to background for several proteins 
at TAD borders identified by our model (negative betas) depending on protein abundance. H DNA binding 
protein enrichment compared to background for several proteins at TAD facilitators identified by our model 
(positive betas) depending on protein abundance
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Using SIM, we estimated instead sparse insulation scores (beta parameters). For a bin 
i, the βxi parameter has a nice and intuitive interpretation: it is the insulation score, after 
accounting for the insulating/facilitating effects of the other bins. If no penalty is used to 
learn beta parameters, the betas correspond to a relative score (Fig. 1D). Using this rela-
tive score, we observed sharp peaks instead of wide valleys with the standard IS which 
prevented accurate location of TAD borders. Moreover, if an L0 penalty is used, then the 
regression leads to a sparse estimation of the insulation score. This helped to identify the 
exact location of bins with insulating/facilitating effects (Fig.  1E), in contrast to IS. In 
SIM, a negative beta value ( βxi < 0 ) reveals an insulation effect on long-range contacts 
(the bin is an insulator). Conversely, a positive beta value ( βxi > 0 ) shows a facilitating 
effect on contacts (the bin is a facilitator). A null beta value ( βxi = 0 ) means that the bin 
has no effect on contacts.

In the genomic region, SIM could detect ten TAD borders ( β̂ < 0 ). Using SIM, TADs 
could be simply defined as regions in-between two consecutive TAD borders. Visual 
inspection of the Hi-C matrix clearly revealed that our TAD identification was rele-
vant (Fig. 1B). Moreover, SIM could identify TAD borders with varying strengths. We 
found three strong TAD borders ( β̂ < −2 ; red arrows), five moderate TAD borders 
( −1.2 < β̂ < −2 ; orange arrows) and two weak TAD borders ( β̂ ≈ −1.1 ; yellow arrows). 
Moreover, the model uncovered one region with facilitating effects ( β̂ > 0 ; blue arrow).

We then looked at the enrichment of the CTCF protein, a major 3D genome organ-
izer, at TAD borders over the whole genome depending on the beta value. Here, we 
used GM12878 Hi-C data for which there are ChIP-seq data for a very large number of 
proteins, which helped us to comprehensively assess the role of DNA-binding proteins 
(see bellow). Overall, we found a strong two-fold enrichment of CTCF at TAD borders 
(Fig.  1F). Moreover, we observed that stronger TAD borders presented higher CTCF 
enrichment (2-fold for β̂ < −0.5 ; 2.2-fold for β̂ < −1.5 ), meaning that border strength 
estimated by SIM scaled accordingly with CTCF presence. Then, we evaluated enrich-
ment for all available protein binding ChIP-seq data, and observed as previously shown 
the highest enrichments for CTCF, RAD21, SMC3, ZNF143, YY1 and POL2 (Fig. 1G) [2, 
35, 36]. SIM could also identify regions facilitating contacts e.g. regions with β̂ > 0 (we 
called “TAD facilitators”), unlike most TAD detection tools. IS could also detect facilita-
tors, but without accurate location, thereby preventing enrichment analysis. Using SIM, 
we found that lymphocyte transcription factors (TFs) BATF, EBF1, NFIC, RUNX3 and 
SPI1 were enriched at such facilitator regions (Fig. 1H). Such high enrichment revealed 
that TAD facilitators were indeed biologically meaningful regions.

Thus, we could conclude that SIM had an intuitive interpretation in terms of insu-
lating/facilitating quantitative effects, which could also sharply identify TAD borders 
unlike the insulation score. Moreover, our model could accurately identify a novel class 
of 3D elements that we called TAD facilitators, which were highly enriched in cell spe-
cific TFs.

Performance and comparison with state‑of‑the‑art tools

SIM was very accurate to identify TAD borders. We compared it to 7 other algorithms 
including Armatus, Arrowhead, DomainCaller, TADbit, TADtree, TopDom, HiCseg 
using human GM12878 Hi-C data as from [32] (Fig. 2). At both 25 kb and 50 kb, SIM 
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identified a small number of TAD borders (2691 and 2711, respectively), such as HiC-
Seg (2835 and 2835, respectively) and TopDom (2738 and 2568, respectively) (Fig. 2A). 
Conversely, Armatus identified much more TAD borders (7567 and 4265, respectively) 
(Fig.  2A). Overall, we found that the number of borders identified by SIM (as well as 
HiCseg and TopDom) was only slightly impacted by Hi-C data resolution, unlike for the 
other algorithms. We also compared the TAD borders identified by SIM for different 
normalizations of the Hi-C data (Knight-Ruiz (KR) [30], iterative correction and eigen-
vector decomposition (ICE) [37] and square root vanilla coverage (VC SQRT) [38]), 
and globally found similar results at 50 kb resolution (Additional file 1: Figure S2). We 
then compared TAD border prediction concordance with manual annotation of TADs 
at 50 kb from [32] (Fig. 2B). These manually annotated TADs represented an external 
assessment which was designed not to favor any tool. We found that 58.5% of borders 
predicted by SIM were also found by manual annotation, which ranked first SIM. More-
over, SIM was able to detect 24.2% of manually annotated borders. In comparison, the 
large numbers of TAD borders detected by Armatus (>4000 at 50 kb) or TADbit (>3500 
at 50 kb) were proportionally less confirmed by manual annotation ( 34.6% and 46.9% , 
respectively).

We then assessed TAD border prediction concordance between the different tools. 
At 50 kb, 82.8% of borders detected by SIM were also identified by the other tools, and 
35.2% of other tools’ borders were called by SIM, which was similar to the top tools, 
HiCSeg and TopDom (Fig. 2C). At 25 kb, 76.5% of borders detected by SIM were also 

Fig. 2  Comparison with existing TAD calling methods using GM12878 Hi-C dataset. A Number of TAD 
borders called by each method (50 kb resolution). B TAD border prediction concordance with manual 
annotation from [32] (50 kb). C TAD border prediction concordance between methods (50 kb). D TAD border 
prediction concordance between methods (25 kb)
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identified by the other tools, and 21.4% of other tools’ borders were called by SIM, which 
was similar to HiCSeg, TopDom and DomainCaller (Fig. 2D). Thus, SIM ranked among 
the best tools to predict TAD border. Meanwhile, SIM was relatively fast and memory 
efficient. For chromosome 1 with 25 kb resolution and considering a maximal distance 
of 250 kb, SIM ran in only 151 seconds for one core and around 6.9 Gb.

Identification of novel borders during cell differentiation

The 3D genome is dynamic, especially during the developmental process, and global 
reorganization was previously reported during differentiation [29]. However, very few 
methods were developed for differential analysis of TADs [20, 22]. Using our versatile 
regression framework, we could easily implement differential TAD analysis in order to 
identify novel TAD borders, or alternatively depleted TAD borders, during cell differ-
entiation. For this purpose, interaction terms were added in the model to account for 
differential insulation effects depending on the cell type. We called this model the dif-
ferential insulation model (DIM). The corresponding interaction betas were then used to 
assess differential TAD border strength.

To illustrate differential analysis, we studied mouse embryonic stem cells (ESs) differ-
entiation into cortical neurons (CNs) using ultra-deep coverage Hi-C, where novel TAD 
borders were shown to colocalize with developmental genes that were activated [29]. We 
first focused on a 5-Mb-long genomic region of chromosome 18 around the develop-
mental gene Zfp608. In ES cells, we observed a big TAD in the middle of the Hi-C map 
(Fig. 3A, C). In CN cells, this big TAD was split into two new TADs separated by a novel 
border located at 55 Mb overlapping the gene Zfp608 (Fig. 3B, D). Using the two Hi-C 
maps, DIM accordingly identified a strong and significant differential TAD border at 55 
Mb ( β̂ ≈ −1.8 , p < 10−70 ; blue arrow; Fig. 3E), reflecting TAD split during differenti-
ation. Moreover, DIM could also reveal less obvious differences in border strength. In 
particular, DIM detected two smaller differential TAD borders ( β̂ < 1.2 , p < 10−8 ; red 
arrows), which corresponded to borders present in ES cells and lost in CN cells.

We then ran differential analysis by DIM genome-wide. We observed a higher num-
ber of TAD borders after differentiation (fold-change = 1.1; Fig. 3F, left), meaning that 
new TADs were created after differentiation. If we only considered strong TAD borders, 
we observed an even larger number of TAD borders after differentiation (fold-change 
= 1.51 for abs(beta)> 1 ; fold-change = 2.82 for abs(beta) > 1.5 ). Moreover, the abso-
lute values of DIM betas in CN were significantly higher than in ES (fold-change = 
1.11, p-value = 0.01; Fig. 3G), suggesting that those new TADs were particularly strong 
and insulated. We then compared CTCF enrichment at CN-specific borders and ES-
specific borders (Fig. 3H). We found that although CTCF was very enriched at ES bor-
ders (fold-change = 1.64), it was far less enriched at CN borders (fold-change = 1.07), 
suggesting that the novel TAD borders were maintained by other factors than CTCF. 
It was previously showed that novel TAD borders located to neural transcription fac-
tors Pax6, NeuroD2, and Tbr1 [29]. However, their analysis was limited by available 
ChIP-seq data. Here, instead, we systematically assessed the enrichment of 579 protein 
binding DNA motifs at novel CN borders (Fig. 3I). We found a tremendous amount of 
motifs enriched at novel borders. All enriched motifs were known neural TFs, including 
Foxd3, NFATC3, NEUROD2, HiC1, Dmbx1, Hmx2 and NFATC1. This result suggested 
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that chromatin was reorganized due to not only Pax6, NeuroD2, and Tbr1, but also to 
numerous other TFs involved in neural differentiation. In comparison, ES borders were 
strongly enriched in known stem cell TFs, such as Hoxb5, EMX2, PAX4. Thus, we could 
conclude that cell type specific TFs played a major role in reshaping the genome in 3D 
during differentiation.

Predictions of Hi‑C data after chromosomal rearrangements

Our versatile regression framework could also be used to faithfully model the 3D genome 
and predict Hi-C data. In particular, predicting the effects of chromosomal rearrange-
ment on 3D genome is an important challenge, since 3D genome alteration can impact 
essential cellular processes such as enhancer-promoter transcriptional regulation. How-
ever, until now, only few methods were developed for this task. Hence, we assessed the 
ability of the model to predict Hi-C data after chromosomal rearrangement. In this case, 
we called this model the prediction insulation model (PIM). For this purpose, PIM was 
trained on wild-type (WT) Hi-C data, producing a model with parameters β̂0 , β̂d and 
β̂X . Then, in the PIM model, the distance variable ( d ) and the insulation variables ( X ) 
were modified in a way to account for the chromosomal rearrangement. For instance, in 
the case of a deletion, the distance variable values were shrunk by the length of the dele-
tion (producing a new distance variable noted d′ ), and all insulation variables spanning 

Fig. 3  Differential analysis of TAD borders with the Differential Insulation Model (DIM). A Hi-C heatmap 
in mouse embryonic stem (ES) cells. B Corresponding Hi-C heatmap in cortical neuron (CN) cells. C 
Identification of TAD borders in ES cells (spase insulation model beta is plotted). D Identification of TAD 
borders in CN cells (spase insulation model beta is plotted). E Identification of differential TAD borders (DIM 
beta is plotted). For each beta, an adjusted p-value is plotted to show significance. F Number of cell-type 
specific borders, for varying differential border strengths. G Absolute value of beta between CN specific 
borders and ES specific borders. H CTCF enrichment at CN specific borders compared to ES specific borders. 
I DNA-binding protein motif enrichment (fold-change) at CN specific borders. J DNA-binding protein motif 
enrichment (fold-change) at ES specific borders



Page 11 of 14Mourad ﻿BMC Bioinformatics           (2022) 23:82 	

the deletion were set to zero (producing new insulation variables X′ ). The new variables 
together with the trained PIM model were used to predict Hi-C after deletion.

PIM prediction accuracy was assessed using 10 kb resolution capture Hi-C experiments 
performed in E11.5 limb buds from WT and mutant mouses with a deletion or an inver-
sion [23]. For the DelB/DelB mutant (homozygous deletion), we found very accurate Hi-C 
data predictions as compared to observed data in the mutation mouse (Fig.  4A). Most 
notably, PIM was able to finely model the distance effect, the numerous TADs, but also 
the complex hierarchies of TADs. Prediction accuracy was very high as measured by Pear-
son correlation between log-counts r = 0.882 and Spearman correlation between counts 
rs = 0.879 (Fig. 4A). In comparison, the state-of-the-art model PRIMSR achieved compa-
rable performance in terms of Pearson and Spearson correlations ( r = 0.821 , rs = 0.895 ; 
Fig.  4B). But, when distance effect was removed using stratum adjusted correlation in 
order to only capture the biological variability, PIM performed better than PRISMR (PIM: 

Fig. 4  Prediction insulation model (PIM) predicts rearranged 3D genome with high accurary and comparison 
with PRISMR using mouse data from [23]. Models were trained using wild-type Hi-C data to predict 
rearranged Hi-C data (for PRISMR, we used predictions provided by the authors). A PIM prediction for DelB/
DelB genotype and comparison with observed data. B PRISMR prediction for DelB/DelB genotype. C PIM 
prediction for DelBs/DelBs genotype and comparison with observed data. D PRISMR prediction for DelBs/
DelBs genotype. E PIM prediction for InvF/InvF genotype and comparison with observed data. F PRISMR 
prediction for InvF/InvF genotype
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r′ = 0.883 and PRISMR: r′ = 0.582 ; Fig. 4A, B), reflecting its better ability to model bio-
logical variability underlying TADs and sub-TADs. We next compared PIM and PRIMSR 
using other mouse mutants. For the DelBs/DelBs mutant, we also found that PIM and 
PRISMR achieved similar performance in term of r and rs (PIM: r = 0.857 , rs = 0.842 ; 
PRISMR: r = 0.832 , rs = 0.897 ; Fig. 4C, D), but PIM predictions compared favorably in 
term of biological variability with r′ (PIM: r = 0.845 ; PRISMR: r = 0.671 ; Fig.  4C, D). 
Lastly, we predicted data for an inversion (InvF/InvF). As for deletions, we found that PIM 
yielded better predictions than PRISMR in term of biological variability with r′.

Conclusion
In this article, we propose a versatile regression framework for Hi-C data analyses. Our 
framework was designed for TAD identification (SIM model), but also differential analy-
sis (DIM model) and Hi-C data predictions after chromosomal rearrangement (PIM 
model). First, SIM accurately detected TAD borders in a quantitative manner, and was 
ranked among the top TAD callers when comparing with state-of-the-art methods on an 
unbiased dataset. Moreover, SIM also identified a novel class of elements we called facil-
itators which facilitated long-range contacts as opposed to borders, and were shown to 
be associated with specific transcription factors. Second, DIM identified novel borders 
during neuronal differentiation. Such novel borders were particularly enriched for other 
factors than CTCF, in particular, numerous transcriptional factors specific to neurons 
including Foxd3, NFATC3, NEUROD2, HiC1, Dmbx1, Hmx2 and NFATC1. In compari-
son, ES specific borders were enriched in stem cell TFs. Third, PIM accurately predicted 
rearranged 3D genome in mouse mutants, when trained with wild-type Hi-C data. Such 
approach is very promising to assess the impact of chromosomal rearrangements on the 
3D genome. Moreover, PIM compared favorably with state-of-the-art PRISMR in terms 
of biological variability captured by Hi-C data.

There are several limitations of the proposed framework. First, the proposed frame-
work is designed for the analysis of bulk Hi-C data, i.e. data from a population of cells. 
However, single-cell experiments are getting widely used in 3D genome studies, and 
necessitate the development of new tools. The proposed framework must be further 
extended for data that are too sparse, which is the case for single cell data. The use of 
an empirical Bayes approach to estimate regression betas across cells might be a elegant 
solution for this purpose. Second, the same framework can be further extended for other 
Hi-C data analysis tasks. For instance, the regression can be used to infer frequently 
interacting regions (FIREs) and differential FIREs from Hi-C data [39]. Third, variable 
selection for the SIM model is based on best subset selection using L0Learn R package. 
However, one problem is that L0Learn cannot work with more than 5000 variables on 
a standard computer, and for the largest chromosomes, prefiltering is done using lasso 
regression and a threshold of |β̂xi | > 0.2 to sufficiently reduce the number of variables 
for processing. However, this prefiltering might affect best subset selection. Other pre-
filtering approaches not relying on an arbitrary thresholding can be used instead. For 
instance, knockoff can be used for removing unnecessary variables while controlling 
the false discovery rate (FDR) [40]. Alternatively, bootstrap stability investigation can be 
used [41]. Fourth, SIM is methodologically similar to other TAD callers based on the 
computation of a linear score such as TopDom [10] or those based on statistical models 
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of the interaction distributions such as HiCseg [11]. We thus expect SIM to call similar 
TAD borders (performances between SIM, TopDom and HiCseg were similar, Fig.  2). 
But SIM is very different from other TAD callers based on clustering [14–16] or graphs 
[17–19], and thus SIM is more likely to miss those TADs. Fifth, compared to other TAD 
callers, SIM is conservative for the detection of TAD borders, meaning that fewer but 
correct TADs were called rather than many TADs including a few false positives. This 
stringency is related to the use of best subset selection. The use of other variable selec-
tion procedures could be investigated to assess if more TAD borders could be identified.
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