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Abstract 

Background:  A typical Copy Number Variations (CNVs) detection process based on 
the depth of coverage in the Whole Exome Sequencing (WES) data consists of several 
steps: (I) calculating the depth of coverage in sequencing regions, (II) quality control, 
(III) normalizing the depth of coverage, (IV) calling CNVs. Previous tools performed one 
normalization process for each chromosome—all the coverage depths in the sequenc-
ing regions from a given chromosome were normalized in a single run.

Methods:  Herein, we present the new CNVind tool for calling CNVs, where the nor-
malization process is conducted separately for each of the sequencing regions. The 
total number of normalizations is equal to the number of sequencing regions in the 
investigated dataset. For example, when analyzing a dataset composed of n sequenc-
ing regions, CNVind performs n independent depth of coverage normalizations. Before 
each normalization, the application selects the k most correlated sequencing regions 
with the depth of coverage Pearson’s Correlation as distance metric. Then, the resulting 
subgroup of k + 1 sequencing regions is normalized, the results of all n independent 
normalizations are combined; finally, the segmentation and CNV calling process is 
performed on the resultant dataset.

Results and conclusions:  We used WES data from the 1000 Genomes project to 
evaluate the impact of independent normalization on CNV calling performance and 
compared the results with state-of-the-art tools: CODEX and exomeCopy. The results 
proved that independent normalization allows to improve the rare CNVs detection 
specificity significantly. For example, for the investigated dataset, we reduced the 
number of FP calls from over 15,000 to around 5000 while maintaining a constant 
number of TP calls equal to about 150 CNVs. However, independent normalization of 
each sequencing region is a computationally expensive process, therefore our pipeline 
is customized and can be easily run in the cloud computing environment, on the com-
puter cluster, or the single CPU server. To our knowledge, the presented application is 
the first attempt to implement an innovative approach to independent normalization 
of the depth of WES data coverage.
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Background
Copy Number Variation (CNV) has been identified as a major cause of structural 
variation in the genome, involving both duplications and deletions of sequences [1–
3]. Recently, strong rare CNV associations with four major disease categories, 
including autoimmune, cardio-metabolic, oncologic, and neurological/psychiatric 
diseases, have been uncovered [4]. Despite the great importance of detecting CNVs, 
especially rare events, the current CNVs detection tools are characterized by insuf-
ficient performance and unsatisfactory classification metrics [5–8].

There are many applications for CNVs detection in Whole Exome Sequencing 
(WES) data. Many of them use depth of coverage [9]. Applications that use coverage 
depths typically process data in a few steps: (i) counting coverage in the sequenc-
ing regions, (ii) quality control, (iii) normalization, (iv) segmentation and CNVs 
calling [10].

The most important step in detecting CNVs based on WES depth of coverage is 
the normalization process, which estimates the ,,perfect” coverage table when there 
are no CNVs in investigated samples. The goal of obtaining the ,,perfect” coverage 
table is to eliminate the various sources of biases; the algorithms used for this task 
are different in other applications. For example, the CODEX [11] and CODEX2 [12] 
tool adopt a robust iterative maximum-likelihood algorithm based on the WES 
depth of coverage and exon-wise GC content; the ExomeDepth  [13] tool uses the 
robust beta-binomial logistic model, the CANOES  [14] application—the negative 
binomial distribution, the EXCAVATOR [15] application adopts a median normali-
zation approach for bias removal.

There are also normalization methods that divide the investigated samples into 
groups. For example, in the  [16] paper, we presented that dividing investigated 
samples based on the correlation between them could improve the resultant set 
of detected CNVs. What is more, tools like CANOES  [14], ExomeDepth  [13] and 
CLAMMS  [17] select for each tested sample a set of reference samples (the most 
correlated) that will be used for background modeling.

The common element of all CNVs detection tools is the normalization process that 
occurs once for the entire group of sequencing regions, e.g., in the CODEX applica-
tion for all sequencing regions from a given chromosome all samples set. Herein, we 
present a completely new approach to the process of normalizing the depth of cov-
erage in sequencing regions. In the presented approach for each sequencing region, 
the k most correlated sequencing regions are chosen, then the resultant set com-
posed of k + 1 sequencing regions is normalized. Thus normalization is performed 
for each sequencing region independently; the CNVind application implementing 
the algorithm is available online https://​github.​com/​wkusm​irek/​CNVind.

Implementation
In this section, we present the main data processing pipeline implemented in the 
CNVind tool. Herein, we presented the workflow of our approach, a detailed 
description of the processes for calculating the depth of coverage, independent read 
depth normalization, and CNV calling.

https://github.com/wkusmirek/CNVind
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Workflow

The workflow of the CNVind tool is presented in Fig.  1. Briefly, the data process-
ing begins by calculating the depth of coverage on each sequencing region. The result 
of this process is a raw depth of coverage table, where consecutive samples are in col-
umns (number of columns is equal to the number of BAM files specified by the user), 
in rows—successive sequencing regions (the coordinates of the start and the end of the 
sequencing region are set by the user at the beginning of the application run). Numerical 
values of the raw depth of coverage table depict the number of DNA reads mapped in a 
given sequencing region for specified sample. Then, the quality control process is car-
ried out on the resulting raw depth of coverage table. This process is designed to remove 
anomalies in samples and sequencing regions. For example, sequencing regions with a 
very small or very large median depth of coverage, caused by biases of the target capture 
probes [18], are removed from further analyzes.

Then independent normalization of the depth of coverage in the sequencing region 
is performed—for each sequencing region, the k most correlated other sequencing 
regions are matched. The normalization module normalizes the resulting subgroups of 

Fig. 1  Workflow of the CNVind tool. The first step in data processing in the proposed approach is mapping 
the DNA reads to the sequencing regions of the reference genome. The mapping result is a matrix of 
numbers describing the depth of coverage in a given sequencing region. Then, quality control process is 
applied. After that, for each of the sequencing regions, a set of other sequencing regions is selected to model 
the background, in our experiments, we examined the selection of the (I) k most correlated, and (II) k random 
sequencing regions. As a result of this process, n (n depicts the number of sequencing regions in the input 
dataset) subsets of sequencing regions are created, each subset contains k + 1 sequencing regions. Then, 
each of the n subsets is normalized; from each normalized depth of coverage dataset, the single sequencing 
region currently under consideration is extracted. Finally, normalized results for individual sequencing regions 
are combined into a single, normalized matrix; based on the normalized matrix of the coverage depths, 
raw coverage depths, and coordinates of the sequencing regions, the process of segmentation and CNVs 
calling is applied. The result of the entire process is the set of detected CNVs. It is worth noting that the 
normalization process in the proposed approach takes place n times for k + 1 sequencing regions. In contrast, 
in the CODEX application, the normalization process occurs only once, taking into account the entire set of 
sequencing regions. Moreover, the process of independently normalizing each sequencing region along 
with the background modeling subset could be time-consuming so that this step can be performed by the 
presented CNVind application in a cloud computing environment, on a computer cluster, or a single server.
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sequencing regions; the results are combined into one table containing a normalized 
depth of coverage values. Finally, the resultant set of CNVs is detected based on the raw 
and normalized depth of coverage tables. The subsequent steps of the data processing 
listed here are described in detail later in this work.

Depth of coverage calculations

The first step of CNVs detection is to calculate the depth of coverage in sequencing 
regions from the input BAM files. There are many applications for calculating the depth 
of coverage, such as: SeQuiLa-cov [19], samtools depth [20], bedtools genomecov [21], 
GATK DepthOfCoverage [22], sambamba [23], mosdepth [24]. These applications dif-
fer in the degree of parallelization of computations and the approach to counting the 
DNA reads mapped in a given sequencing region. For example, the ,,pileup” approach 
is implemented in samtools, GATK and sambamba, while the bedtools, mosdepth and 
SeQuiLa-cov tools use ,,events” approach. The ,,pileup” approach iterates through each 
nucleotide at every read in a BAM file while ,,events” approach uses only the start and 
end positions of the DNA reads. It follows that both methods lead to the same depth 
of coverage, but the ,,events” approach is much less time-consuming. Despite the men-
tioned differences, there is no differences in the degree of parallelization, the computa-
tion time largely depends on the implementation of the tool, which was compared in 
the [19] paper. What is more, other tools implement another set of filters to determine 
whether a given DNA read is counted as correctly mapped or not. Different filters in dif-
ferent tools can significantly affect the numerical values representing the depth of cover-
age in a given sequencing region.

To overcome this issue, the CNVind application provides a default module for calcu-
lating the depth of coverage in sequencing regions. However, this module can be easily 
replaced—a ready-made raw depth of coverage table can be provided at the input of the 
CNVind application. This table can be prepared using different applications to calculate 
the depth of coverage with different values of the parameters filtering the DNA reads. 
We believe this approach allows for a maximum level of flexibility in terms of calculating 
the depth of coverage in sequencing regions.

Read depth normalization

Next, we carried out the process of normalizing the depth of coverage. The proposed 
approach follows fork-join [25] processing model with each sequencing region being 
processed separately (possibly in parallel) and combining many outputs into the final 
normalized depth of coverage table. Operations performed on a single sequencing 
region include selecting the background modeling set composed of the k most correlated 
sequencing regions, followed by normalization producing a list of normalized depth of 
coverage values for a considered sequencing region. The union of all partial results cre-
ates the final normalized depth of coverage table for the whole input sequencing regions 
set.

The single normalization process is applied on the set of sequencing regions composed 
of k + 1 sequencing regions (k depicts the number of background modeling sequencing 
regions, +1 results from adding single investigated sequencing region to the background 
modeling set). In the CNVind tool for normalization, we used the normalization module 
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implemented in the CODEX tool [11]. Briefly, the approach uses a Poisson log-linear 
model including terms that specifically remove biases due to exon length, GC content, 
capture, amplification efficiency, and latent systematic artifacts. The most likely model 
parameters are estimated based on maximum likelihood estimation (MLE) [26, 27].

The aspect that distinguishes CNVind applications from other state-of-the-art appli-
cations is the approach to the normalization process. Previous tools have only per-
formed one normalization on the entire set of sequencing regions available, e.g. on all 
sequencing regions from a given chromosome. The presented approach is innovative, 
for each sequencing region a set of k most strongly correlated other sequencing regions 
is selected, the resulting subgroups are normalized, the results are combined into the 
resulting normalized depth of coverage table. The k-nearest neighbors [28] algorithm 
with the depth of coverage Pearson’s Correlation as distance metric is used to determine 
k strongly correlated sequencing regions.

CNVs calling

After the depth of coverage normalization step, a CNVs calling is performed. The pro-
cess is iteratively performed for subsequent samples based on the raw and normalized 
depth of coverage values. If the normalized number of reads (the predicted number of 
reads in the absence of CNV) is much greater than the raw number of mapped reads, 
then deletion is likely to be present in that sequencing region. On the other hand, if the 
value of the normalized depth of coverage is significantly smaller than the raw value of 
the coverage depth, then there is a probable duplication in the given sequencing region. 
Thus, we have a ratio of raw coverage depth to normalized coverage depth for each 
sequencing region in a given sample. For ratios greater than 1, there is a duplication 
probability, for coefficients less than 1—a deletion probability. Finally, based on the men-
tioned ratios and the distances between sequencing regions, some of them are merged 
to avoid a large number of very small CNVs. For this purpose, the CNVind application 
implements the circular binary segmentation algorithm [29].

Application architecture

The CNVind tool consists of four independent modules responsible for: (I) calculating 
depth of coverage, (II) removing some sequencing regions and samples in quality control 
process, (III) selecting k mostly correlated sequencing regions and normalization, (IV) 
segmentation and CNVs calling. Each of the mentioned modules is built and deployed 
as a separate docker [30] image that can be run both on a local computer, on a com-
puter cluster or in a cloud computing environment. In order to speed up the calculations 
during the step of independent selection of the k most correlated sequencing regions 
and normalization of the depth of coverage, the calculations can be parallelized using 
the Kubernetes [31] container orchestration tool. Kubernetes (K8s) is an open-source 
system for management, scaling and deployment of containerized applications. In the 
CNVind tool Kubernetes, for each sequencing region, calls a docker instance which pro-
cesses and normalizes the data for a given sequencing region. After the calculations are 
finished and the results are saved, Kubernetes releases the resource, appointing a new 
docker for the next sequencing region. Depending on the available resources, Kuber-
netes can run several dockers at the same time allowing for almost linear time scalability. 
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An additional advantage of using Kubernetes is portability—it can be installed and run 
on Amazon Web Services (AWS), Microsoft Azure, the Google Cloud Platform (GCP), 
or in on-premise installations.

At this point it should be mentioned that the most time-consuming stage of data pro-
cessing in the CNVind application is the normalization of the depth and coverage. The 
input of this process is composed of two tables: (I) table with the raw depth of coverage 
values, (II) table with description of sequencing region coordinates. The sizes of both 
tables are not large, table (I) in our study for the entire chromosome 1 was 54 MB, and 
29 MB for chromosome 11, table (II) is the size of a 7 MB. The normalization process 
is independent between regions, each region can be processed in parallel by a different 
docker/pod. After completing the docker/pod calculations, it creates a result file with 
normalized depth and coverage values for a given sequencing region. The input files are 
accessed through a shared directory—when running calculations on a computer cluster, 
depending on the cluster, the input files should be placed in a directory that is visible 
from all nodes—for example, for Kubernetes on the Microsoft Azure computing cloud, 
Storage Class structure and Persistent Volume Claim should be created, and then the 
input files should be placed in the appropriate directory. This way, each pod run under 
Persistent Volume Claim can access input files from Storage Class, there is only a single 
instance of the input file for all running pods. Similarly, after the computations are com-
pleted for the normalization results, each pod creates a result file with normalized values 
of the coverage depth for a given sequencing region. The results file is saved to the same 
Storage Class. When all pods finish their calculations, the resulting files are merged into 
a single file with a normalized coverage table. The duration of access to the input data 
and saving the results is negligibly small.

Results
This section describes the experiment results and CNVs detected by the CNVind tool 
presented in the paper. To evaluate the results, we compared the detected set of CNVs 
with the CNVs set golden record provided by 1000 Genomes Consortium [32] gener-
ated based on the Whole Genome Sequencing (WGS) data. In conducted evaluation 
process all CNVs sets were categorized based on: (I) frequency: rare (frequency≤1%), 
common (frequency>1%) CNVs and (II) length: short (encompassing 1 or 2 exons) and 
long (encompassing more than 2 exons) CNVs. Moreover, in the diagrams presenting 
the results of the evaluation process there is also the group ,,all”, which means all CNVs, 
that is, for the length filter: ,,all” = ,,short” + ,,long”, and for the frequency division: ,,all” 
= ,,rare” + ,,common”. We compared the performance of the presented CNVind tool 
with state-of-the-art CNVs detection applications: CODEX ver. 1.22 and exomeCopy 
ver. 1.36.

Benchmark dataset

We tested the performance of the CNVind tool on a public dataset consisting of 861 
samples from 1000 Genomes Project [32]. The investigated sample set consisted of 444 
females and 417 males, including 205 samples from Europe, 276 samples from Africa, 
313 samples from Asia, and 67 samples from America. To reduce the computation 
time, we considered chromosome 11 only. However, we repeated the entire analysis for 



Page 7 of 16Kuśmirek and Nowak ﻿BMC Bioinformatics           (2022) 23:85 	

chromosome 1 to assess the potential impact of chromosomal variability on the final 
results (the results presented in the Additional file 1).

Before the experiments, we carried out the quality control process to remove sequenc-
ing regions that did not pass the quality filters. In this process, we removed all sequenc-
ing regions (I) with GC content below 20% or greater than 80%, (II) with mappability 
factor below 0.9, (III) with median read depth across all samples below 20 or greater 
than 4000, and (IV) shorter than 20 bp or longer than 2000 bp. All previously mentioned 
filters and threshold values were transferred from the standard quality control process 
implemented in the CODEX tool. As a result of the quality control process, 2273 out of 
20106 sequencing regions for chromosome 1 and 966 out of 10565 sequencing regions 
from chromosome 11 were removed.

Correlation between sequencing regions

After the quality control process, we calculated the correlation between sequenc-
ing regions based on the depth of coverage across all investigated samples. The results 
proved that the correlation between the sequencing regions is not uniform—for each 
sequencing region, different sequencing regions can be designated either very strongly 
or very weakly correlated. The graphical representation of the depth of coverage across 
all investigated samples correlation between the different sequencing regions is pre-
sented in Fig. 2.

Performance evaluation

Firstly, we examined how the number of neighbors in the knn algorithm affects the 
CNVs detection process results. The obtained results (Fig. 3a) present a very positive 

Fig. 2  Correlation between depth of coverage in sequencing regions of benchmark dataset (chromosome 
11). The figure presents the results of a multidimensional scaling [36] of the covariance matrix of the read 
count data for the 9599 investigated sequencing regions onto a two-dimensional plane. Each of the dots in 
the figure represents a sequencing region, the distance between the dots represents the correlation between 
the depth of coverage of the given sequencing regions. It is worth noticing that there is no clear division into 
groups; all sequencing regions constitute a relatively uniform and compact group of points. The figure was 
prepared by R’s cmdscale function.



Page 8 of 16Kuśmirek and Nowak ﻿BMC Bioinformatics           (2022) 23:85 

Fig. 3  Effect of the size of the set of sequencing regions which models background on the number of 
CNVs detected by the CNVind tool. It is worth paying attention to the characteristics of rare CNVs in the 
knn algorithm. As the background modeling set is reduced (to a value equal to 100), the FP number drops 
drastically while the TP number remains stable. What is more, in both methods of selecting the sequencing 
regions (knn and random) that model the background, the small size of the background-modeling dataset 
leads to a decrease in the number of TP and FP calls in all CNVs subgroups.
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impact of the independent normalization process on the resulting set of rare CNVs 
detected—as the number of sequencing regions in the background-modeling data-
set decreases, the number of FP calls decreases. In contrast, the number of TP calls 
remains constant. The only exception is a tiny number of sequencing regions in the 
background-modeling dataset (less than 100), then for rare CNVs, both the number of 
FP calls and TP calls decreases. For common CNVs, the number of detected CNVs—
both TP and FP—decreases as the number of sequencing regions in the background-
modeling dataset decreases. To sum up this part of results, the value of k should not 
be too small (with too low a value of k, the group of normalized sequencing regions is 
small, so the normalization uncertainty is large) or too large (with a large value of the 
parameter k, the group of normalized sequencing regions is large, the normalization 
itself gives an exact results).

Secondly, we compared the knn algorithm with the random selection of sequencing 
regions that model the background, and the results are presented in Fig. 3b. For the ran-
dom method, the number of detected CNVs that are TP and FP is constant, regardless 
of the number of background-modeling sequencing regions. The only exception to this 
rule is the small set of background-modeling sequencing regions—here, both TP and FP 
numbers decrease as the background-modeling set decreases in size.

Thirdly, we checked whether other similarity metrics between the sequenc-
ing regions would yield better results. For this purpose, we tested three measures 
of similarity between the sequencing regions: (I) GC content, (II) the length of the 
sequencing region, and (III) the mean depth of coverage in the sequencing region. 
The obtained results are presented in Fig. 4. The results obtained presented that tak-
ing the three mentioned metrics to measure the similarity between the sequencing 
regions did not improve the results. Moreover, the obtained results are very similar to 
the random selection of the k most similar background modeling sequencing regions. 
This fact concludes that the depth of coverage Pearson’s Correlation as distance met-
ric is the best metric to determine k strongly correlated sequencing regions.

Lastly, we examined how the number of neighbors in the knn and random algorithm 
affects the results’ precision and sensitivity; the results are presented in Fig.  5. The 
diagram proves that as the value of k decreases in the knn algorithm for rare CNVs, 
the precision increases, while the sensitivity remains constant. Only for a very small 
value of k (below 100) the sensitivity for rare CNVs also decreases. The diagram also 
shows that changing the value of k for the random algorithm does not significantly 
affect the sensitivity and precision of rare CNVs detection process. The only excep-
tion is a very small k value where the detection sensitivity of rare CNVs decreases.

What is more, we compared the two previously presented methods of selecting back-
ground-modeling sequencing regions (knn and random) with the methods implemented 
in the CODEX and exomeCopy tools. There is only single normalization for all sequenc-
ing regions from a given chromosome. The results of our experiment are presented in 
Fig. 6. The diagram presents that the results for the CODEX and CNVind with the ran-
dom method for rare CNVs are almost identical (middle row of the graphs). However, 
the CNVind with knn approach for rare calls significantly reduces FP events compared 
to the CODEX method keeping a stable number of TP calls. What is more, the CNVind 
application allows for better results also than the exomeCopy tool.
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Fig. 4  Results for knn algorithm with another metrics of similarity between sequencing regions. In the 
diagram, we presented the results for other metrics of similarity between sequencing regions: a GC content, 
b the length of the sequencing region, and c the mean depth of coverage in the sequencing regions. 
The obtained results are very similar to the random selection of the k most similar background modeling 
sequencing regions
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Computation time

Finally, we examined and compared the computation time of the presented approach; the 
results of the experiment are presented in Fig. 7. The presented approach is significantly 
slower than the implementation of the CODEX and exomeCopy—in our approach, nor-
malization occurs independently for each sequencing region. In the original implementa-
tion of the CODEX and exomeCopy application, normalization is performed only once for 
all sequencing regions from a given chromosome. However, the process of independent 
normalization can be easily parallelized, and the presented pipeline is adapted to be used in 
a parallel manner in the cloud computing environment or on the computer cluster.

Discussion
In this paper, we presented the CNVind tool, the new application for calling CNVs 
based on the depth of coverage in WES data. The main innovation of the pre-
sented approach is the parallelized process of the independent depth of coverage 

Fig. 5  Effect of the size of the set of sequencing regions which models background on the results’ sensitivity 
and precision. a, b relate to the selection of the k most correlated sequencing regions, c, d k random 
sequencing regions. Additionally, b, d the improvement of individual results relative to the baseline, i.e. all 
sequencing regions are normalized simultaneously. It is worth paying attention to the fact that reducing the 
value of k in the knn algorithm to a value equal to 100 (b) allowed for a 3-fold improvement in precision while 
maintaining a constant level of sensitivity for rare CNVs
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normalization of each sequencing region. This stage is time-consuming, but the pro-
posed pipeline is implemented in such a way that the application can be run on a 
computer cluster or in a cloud computing environment—the degree of parallelization 
depends on the available computing resources. In particular, the application can be 
run in the Kubernetes system, each pod normalizes the depth of coverage in a differ-
ent sequencing region, only single instance of input files is stored on the cluster in 
a properly created Storage Class object with access via the Persistent Volume Claim 
structure. The same Storage Class represents the place where the results of the pods 
computations are stored.

Fig. 6  Comparison of the results obtained by the CODEX, exomeCopy, and CNVind applications (in knn and 
random modes). The diagram presents a comparison of the CODEX, exomeCopy, and CNVind tools. We ran 
the CNVind tool in two modes: (I) knn (independent normalization of each sequencing region with the other 
k most correlated sequencing regions), (II) random (independent normalization of each sequencing region 
with the other k random sequencing regions). In the diagram, the k value for the knn and random algorithms 
is equal to 100. It is worth noting that for rare CNVs (middle row of the diagram), the CNVind application with 
knn algorithm is the best-evaluated tool for detecting CNV events, and the results obtained from the CODEX 
tool and the CNVind application with random algorithm are almost identical—the dots on the diagram 
nearly match. Moreover, the normalization module from the CODEX application has been implemented 
in the CNVind application; therefore, the CNVind application with the k parameter equal to the number of 
sequencing regions in the chromosome (minus the currently considered sequencing region) gives the same 
set of CNVs. Thus, by comparing the results obtained by the CNVind and CODEX applications, we can see 
how the independent normalization described in the presented paper positively influences the resulting set 
of detected CNVs
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The main advantage of the presented application is the ability to improve the detec-
tion results of rare CNVs. In the experiments presented in the study, we showed that the 
use of the CNVind application allowed for a three-fold reduction in the number of rare 
FPs in relation to the results obtained from the original CODEX application. What is 
more, the significant reduction in the number of FPs did not reduce the number of rare 
TPs detected. Moreover, the paper presents the results for chromosome 11, additional 
results of the same experiments on chromosome 1 presented in Additional file 1 showed 
that this regularity is also maintained for another set of input data.

There are two main disadvantages of the proposed approach. Firstly, the normaliza-
tion of the sequencing regions is independent, which results in a longer computation 
time than one normalization of all sequencing regions simultaneously. This disadvan-
tage is solved by the maximum dispersion of computations and adapting the applica-
tion to computing in the cloud computing environment. Secondly, for the application to 
function properly, there must be a sufficiently large number of sequencing regions that 
are currently explored. In the presented application, the k most correlated sequencing 

Fig. 7  Comparison of the depth of coverage normalization computation times for the CNVind application 
on a single machine with multiple cores and in Microsoft Azure cloud. The diagram presents the changes 
in the computation time for the CNVind tool in the Microsoft Azure cloud and on a single machine with 
multiple cores. The comparison showed that as the degree of parallelization increases, the computation 
time decreases linearly. As the degree of parallelization of calculations in the case of (I) the single machine 
with multiple cores, we assume the number of Docker images working in parallel, and (II) in the case of the 
Microsoft Azure cloud—the number of pods working in parallel. For comparison, the computation time for 
the baseline version of the CODEX and exomeCopy tool (only a single normalization process occurs for all 
sequencing regions) is equal to 14 min 38 s and 12 min 52 s, respectively.
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regions are selected for each sequencing region, which models the background. There-
fore, it is important that the set of sequencing regions from which the final background 
modeling subset is selected should be large enough. For example, in this article, we pre-
sented the results for the analysis of WES data from chromosome 1 and chromosome 
11, which contained the 20106 and 10565 regions of sequencing, respectively.

One of the main directions of the application development is the addition of a module 
that would automatically select the k parameter, i.e., the number of the most correlated 
sequencing regions used for background modeling during independent normalization. 
In the article, we present the research results for k assuming values in the range 50 to 
500. However, the optimal value of k depends on the investigated data set. The planned 
approach to the effective determination of the value of k will be based on the approach 
presented in the Ximmer [33] tool. The mentioned application simulates artificial CNVs 
and implants them into the input data set. Then, it selects the parameters for triggering 
the application so that the sensitivity and specificity of the detection of artificial, simu-
lated CNVs are as high as possible. In our approach, we plan to do the same, optimizing 
the value of the k parameter; we plan to use the algorithm implemented in the SECNVs 
[34] and Bamgineer [35] tools for artificial CNVs simulations.

Conclusions
The presence of rare CNVs causes many genetic diseases. However, detection methods 
for rare CNVs based on the depth of coverage of WES data are still unsatisfactory, mainly 
due to the presence of a very high number of false positives calls in the resulting CNVs 
dataset. Herein, we presented the new CNVind tool with the independent method of 
normalizing the depth of coverage in sequencing regions, which significantly improves 
the resulting set of detected CNVs, especially rare CNVs.
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mean depth of coverage in the sequencing region; Fig. S4. Effectof the size of the set of sequencing regions which 
models backgroundon the results’ sensitivity and precision; Fig. S5. Comparison ofthe results obtained by the CODEX, 
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