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Background
As next-generation sequencing technologies are becoming more affordable and faster, 
millions of protein sequences are derived within a very short time [1]. Although bio-
logical and molecular experiments are the gold standard for annotating proteins with 
their functions, these experiments are low throughput and also resource-demanding [2]. 
Thus, experimentally verified functional annotation of proteins is far behind the number 
of sequenced proteins.

Many computational approaches have been developed to annotate proteins. These 
approaches try to infer the function of an unknown protein by comparing it with refer-
ence proteins having known functions. Two protein sequences can easily be compared 
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using local sequence alignment, but the task becomes difficult when the sequences are 
distantly related. To solve this problem, protein sequences with similar biomolecular 
functions are put together in a family, so that their shared features can be computation-
ally more easily identified and modeled. Most of the computational methods perform 
well for proteins that have moderate to high similarity with reference proteins of known 
function. However, these methods do not perform well for the so-called twilight-zone 
proteins [3, 4], which are remote homologs with low sequence similarity to reference 
proteins of known function. Even though this difficulty was identified more than two 
decades ago, recent approaches still cannot produce good enough results comparable 
to that of high-similarity proteins. For example, INGA [5], a protein function predic-
tion tool, works only with sequences having 40% sequence identity or more; HHSearch 
[6] and LOMETS [7] both experimented against twilight zone sequences (identity < 20% 
for HHSerach and identity < 25% for LOMETS) to analyze performance, but the per-
formance reported by both methods is still a lot poorer compared to higher similarity 
region; QAUST [8] tried to address this problem using multiple information sources; 
etc. This implies that predicting function for twilight zone protein is still a difficult com-
putational problem.

Current protein family modeling methods can be roughly divided into three catego-
ries: sequence homology-based methods, alignment-free methods, and machine learn-
ing-based methods. These are briefly described below.

Sequence homology‑based methods

Protein sequence homology is the sequence similarity due to ancestry between pro-
teins. While protein sequences may change in the course of evolution, the homologous 
segments (i.e. the segments conserved by evolution) are responsible for bio-molecular 
function with some exceptions (i.e. in some cases homologous segments may be respon-
sible for different function) [9–11]. Many methods have been developed for detecting 
sequence similarity. The Smith–Waterman algorithm [12] based on dynamic program-
ming is one of the earliest and more fundamental methods. When used with an affine 
gap penalty, this algorithm has cubic time complexity with respect to sequence length 
and thus is inefficient for comparing a query protein sequence to a large database of ref-
erence sequences. So methods such as BLAST [13] use heuristics to selectively compare 
a test protein sequence to only a subset of reference sequences in the database, where 
the subset consists of reference sequences having a sufficient number of exact short sub-
string matches to the test sequence. Although pairwise sequence alignment provides 
valuable information, it is still a difficult task to accurately predict protein functions 
from these alignments. Hence, approaches that model an entire protein family based on 
multiple sequence alignment of the family were introduced. The pHMM (profile Hid-
den Markov Model) [14] is a very successful example of these, and the popular protein 
family database Pfam [15] uses pHMM to model the families. Other methods based on 
sequence alignment information include GOtcha [16] which uses term-specific proba-
bilities to predict proteins from sequence alignment, GOblet [17] which provides differ-
ent databases to choose and align sequences with a user-specified threshold to annotate 
unknown sequence, and OntoBlast [18] which provides a weighted list of sequences of a 
similar function using BLAST search.
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Alignment‑free methods

Researchers have also developed alignment-free methods to annotate protein sequences. 
One of the approaches is to use word frequency of amino acids in the sequences as fea-
tures to model the families [19]. Another strategy that uses oligomer distances as fea-
tures along with remote homology detection, shows better performance than some 
alignment-based methods [20]. There are also many methods that use additional infor-
mation, such as protein-protein interaction data, to annotate proteins [21–23].

Machine learning‑based method

Predicting protein function only from protein sequences, without using any other type 
of information is challenging. Many machine learning-based methods have been devel-
oped in this regard. One such example is SVM-Prot [24], where structural and residue 
properties such as amino acid decomposition, hydrophobicity, polarity, etc. of a protein 
constitute the feature vector to train an SVM classifier. A more interesting example is 
SVM-Fisher [25] which couples an iterative profile HMM training scheme to an SVM, 
where the vector of profile HMM gradients of a protein is used as the feature vector for 
training the SVM. A refinement of this, with much better performance, is SVM-pairwise 
[26], where given a reference set of protein sequences, the vector of pairwise sequence 
similarity scores of a protein to each of the reference proteins is instead used as the fea-
ture vector for training SVM classifiers for each protein family. Besides SVM, k-nearest 
neighbour (e.g. MS-kNN [27]), gradient tree boosting (e.g. PredSAV [28]) and other 
machine learning methods have also been used. Another popular method, CATH Fun-
Fam [29], uses structure and sequence information to predict function domains. Along 
with these, the Continuous Assessment of Functional Annotation (CAFA) [30] com-
petition also introduces many different function prediction methods to predict Gene 
Ontology [31] terms. Most of the top methods in the competition are based on machine-
learning and show great performance. A few examples of top methods from CAFA [30] 
are GOLabeler [32], PANNZER [33], INGA [5], FunFam [34], etc.

More recently, deep learning methods have been used for protein function prediction. 
An example is ProLanGO [35], which treats protein function prediction as a language 
translation problem, where a protein is mapped to a sequence of words in a “protein 
language” ProLan, and then translated to a “protein function language” GOLan using 
three layers of specially trained recurrent neural networks (RNNs). UDSMProt [36] is 
another recent method, which uses similar language modeling task with a pre-trained 
RNN model, and can be applied for enzyme class prediction, gene ontology prediction 
and fold detection from unlabeled protein sequence. An example which appears to have 
a much more impressive performance in protein family prediction is DeepFam [37], 
which uses a convolutional neural network (CNN) to extract high-level features from 
amino acid sequence.

Limitations of the current approaches

Sequence homology-based methods suffered from two shortcomings. The first is that 
sequence alignment is too inefficient for comparing a query protein sequence to a large 
database of reference sequences. The second is that, when heuristics are used to select a 
small subset of the database, as in BLAST, there is a large reduction in sensitivity, as test 
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sequences that are remote homologs to reference sequences in that database often do 
not have sufficient numbers of exact short matches to these reference sequences.

Alignment-free methods also have their shortcomings. Firstly, these methods typically 
require exact matches of k-mers, but remote homologs may not have many of these; this 
affects sensitivity. Secondly, alignment-free methods do not take into account the order 
of k-mers in the protein sequences; this loses biological information and affects specific-
ity. Thirdly, finding the optimal value of k for k-mer based methods is another challenge. 
In general, alignment-free methods do not perform as well as alignment-based methods.

Although machine learning-based methods provide good results, they have weak-
nesses. For example, in SVM-Pairwise, the size of the feature vector is the number of 
reference protein sequences, which is a very large number. This puts severe demand on 
memory size during training and for storing the models of each protein family. It is also 
time-consuming to generate the feature vector of a query sequence, which makes the 
prediction slower. Moreover, totally novel query sequences and query sequences that 
are very different in length from the reference sequences require special treatment. 
For DeepFam, which is a multi-class classifier, the number of classes is fixed and each 
query sequence must be assigned to one of these classes. If a query sequence is from a 
new family, DeepFam [37] will wrongly force it to one of the trained classes. And in the 
case of ProLanGO [35], the protein sequences are modeled using a machine translation 
model which is popularly used for natural languages. But protein sequences differ from 
a natural language in many aspects. Moreover, in general, deep learning models have a 
large number of parameters to fit. Protein families with fewer training sequences cannot 
be modeled well using deep learning.

Other than these methods, some methods use information from different sources and 
combine them to make a final prediction for protein functions. For example, QAUST 
[8] uses structure similarity, protein-protein interaction, and sequence information to 
determine protein functions; INGA [5] uses protein interaction networks, sequence 
similarity and domain assignments to make prediction; etc. Methods like GOLabeler 
[32] works with comparatively lower similarity sequences (having sequence identity of 
< 60% ), which may include twilight zone proteins along with sequences having decent 
enough similarity. QAUST [8] focuses on twilight zone proteins, but all the required 
information (such as PPI data) for this method may not be readily available for many 
query proteins, which can lead to a poor prediction outcome. Thus, a computational 
method that can improve prediction for twilight zone proteins with minimum informa-
tion provided, should be sought.

Our approach

We introduce here EnsembleFam, a protein family modeling approach inspired by SVM-
Pairwise. In SVM-Pairwise, for every protein sequence, its pairwise similarity scores 
to every reference protein sequence are used to form its feature vector; this makes the 
feature vector huge and time-consuming to produce. EnsembleFam differs from SVM-
Pairwise in two important ways. Firstly, instead of calculating pairwise similarity with 
all reference sequences, the similarity scores are calculated per protein family. Thus the 
size of the feature vector used by EnsembleFam is orders of magnitude smaller than that 
of SVM-Pairwise and is much more efficient to produce. Secondly, EnsembleFam trains 
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multiple SVM models for each family and makes a final prediction by ensembling indi-
vidual predictions. As a result, EnsembleFam is much more sensitive on twilight zone 
proteins, while being highly competitive on easier proteins. Lastly, especially when com-
pared to other machine learning methods, EnsembleFam has means for distinguish-
ing members of new unknown protein families from members of the reference protein 
families.

Results
Dataset

To assess the performance of EnsembleFam we used two datasets namely Clusters of 
Orthologous Groups of proteins (COG) dataset and G Protein-Coupled Receptor 
(GPCR) dataset. These two datasets are widely used and have different characteristics. 
Although the Pfam database [15] is one of the most popular protein family databases, it 
was not adopted for this study due to its bias towards the protein Hidden Markov Model 
(pHMM).

Clusters of orthologous groups of proteins dataset

COG is one of the most extensively used functional databases. We used the latest ver-
sion of the database which is made public in 2014 [38]. The protein family assignment 
in the COG database is done by pairwise sequence comparison in the whole-genome 
context. The functional annotation in this database should be reliable as the functional 
curation for clusters was done manually.

In the COG database different family consists of a different number of proteins which 
varies over a very high range. As we compare our method with DeepFam [37], we fil-
tered the database in the same way so that it can be compared with DeepFam. For this, 
the sequences longer than 1000 amino acids were filtered away as DeepFam requires a 
fixed length for all proteins. EnsembleFam can work with a variable length of proteins 
without any restrictions. There are in total 4655 protein families with 1,674,176 proteins 
after removing the longer sequences. Furthermore, the database is divided into three 
different subsets based on the minimum number of sequences in one family. The three 
thresholds used for this filtration are 100, 250, and 500. Therefore, the three sub-data-
bases are named as COG-500-1074, COG-250-1796, COG-100-2892. Here, COG-500-
1074 indicates the COG database where each family has a minimum of 500 members 
and the number of families in this subset is 1074. The detailed description of these three 
subsets can be found in Table 1. For each subset, we have used a 3-fold cross-validation 
to train and test the models.

Table 1  Detailed description of the three subsets of the COG database based on threshold number 
of members in each family

Name Min no. of members No. of families No. of proteins

COG-500-1074 500 1074 1,129,428

COG-250-1796 250 1796 1,389,595

COG-100-2892 100 2892 1,565,976
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G protein‑coupled receptor dataset

G protein-coupled receptor (GPCR) dataset is an important dataset for drug discov-
ery as well as protein family classification. It provides a hierarchical classification with 
family, subfamily and sub-subfamily label for GPCR proteins. In this research, we used 
one of the biggest GPCR dataset, GDS [39], which consists of 8, 222 protein sequences 
divided into 5 families, 38 sub-families and 86 sub-subfamilies.

Performance evaluation on COG dataset

In this part, we compare EnsembleFam with pHMM and DeepFam on the predictions of 
COG proteins.

Homology between training and test set

To run the experiment on our proposed approach, we use an independent test set, which 
is never used during any step of the training. For each dataset, we have divided the 
dataset into three equal splits and used two splits for training and one for the test. To 
show the independence of the test set, we try to find the homology between the train-
ing and test set. For each test sequence, we align them against the corresponding train-
ing sequences along with the pHMM seed sequences which we used to collect features. 
Then we collected the percentage of identity with any of those sequences using BLAST. 
We only collect a percentage of identity if the alignment length of the query sequence is 
greater than or equal to 100 residues, as a rule of thumb. In Fig. 1, we can see the average 
fraction of sequences in our test sets lying in different percentages of identity for COG 
dataset. For all the three datasets, more than 65% of test data fraction lie within an iden-
tity of less than or equal to 70% with the training set.

Although most of the test sequences have a considerable percentage of identity, we 
have a substantial amount of sequences with identity less than or equal to 40% . This por-
tion of the test set, known as the twilight zone, is relatively harder to predict than others 
because they have a very low identity to the training set. Almost 12% of the test set for all 
the three datasets are in this region.

Fig. 1  Homology between training and test set of COG dataset. The bars indicate the fraction of test data 
having identity less than or equal to the indicated value on the x-axis. For each fold of the dataset, the 
homology is calculated for test sequence against the training sequences and the seed sequences used to 
build pHMM feature models. For each identity percentage, the three different bars indicate the average of 
3-fold of the three different subsets of COG dataset
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Prediction accuracy for twilight zone proteins

One of the performance criteria we used to compare EnsembleFam with other methods, 
is prediction accuracy. In EnsembleFam, as we build one model for each family of each 
dataset (e.g. 1074 models for COG-500-1074 dataset), there can be multiple predicted 
labels for each test protein. To calculate the prediction accuracy we divided the test set 
in multiple subsets based on the number of predictions made by EnsembleFam.

Here we concentrate on the prediction accuracy of EnsembleFam in the twilight 
zone of the test set. We divided the twilight zone sequences into two regions, one 
where the percentage of identity is ≤ 30 and the other with the percentage of iden-
tity > 30 and ≤ 40 . The performance comparison of EnsembleFam with pHMM and 
DeepFam in these two regions is shown in Table 2. For each portion, the dataset is 
split into six subgroups based on prediction count. From Table  2, it is discernible 
that EnsembleFam prediction accuracy is almost 10–30% higher than other methods 

Table 2  Performance comparison of different methods on the twilight zone sequences, i.e. 
sequences having less than 40% identity is shown in this table

The best results are highlighted in bold font. The dataset is divided into six subgroups based on the number of predictions 
made by EnsembleFam. Using the column “predCount = 5” as an example, the accuracy in this table is computed as follows. 
For a protein, if EnsembleFam makes 5 function predictions for it, and one of these is correct, the protein is counted 
as correct in the column “predCount = 5”; if all 5 function predictions are incorrect, the protein is counted as a wrong 
prediction. For the same protein, regardless of how many function predictions are made by pHMM, as long as one of these 
is correct, the protein is counted as correct in the column “predCount = 5”; otherwise, the protein is counted as incorrect in 
the column. As for DeepFam, which makes exactly one prediction for each protein, the same protein is counted as correct in 
the column “predCount = 5” if and only if the sole DeepFam prediction for it is correct. All the accuracy value showed in the 
table is the average of 3-fold cross-validation

Dataset Method predCount 
= 1

predCount 
= 2

predCount 
= 3

predCount 
= 4

predCount 
= 5

predCount 
> 5

Identity: 0 < x ≤ 30

COG-500-
1074

Ensemble-
Fam

72.07 81.00 82.82 84.96 85.33 85.27

pHMM 69.54 73.75 55.51 70.62 70.85 73.55

DeepFam 57.14 54.52 49.90 46.92 43.64 35.94

COG-250-
1796

Ensemble-
Fam

72.84 77.07 81.02 82.14 84.66 86.45

pHMM 75.39 73.82 73.84 71.02 67.44 72.43

DeepFam 32.44 32.54 30.24 29.53 30.02 28.68

COG-100-
2892

Ensemble-
Fam

75.24 79.55 81.21 80.63 82.05 88.95

pHMM 63.44 59.69 53.45 48.16 47.42 57.57

DeepFam 27.30 26.13 25.54 27.62 24.83 25.36

Identity: 30 < x ≤ 40

COG-500-
1074

Ensemble-
Fam

90.96 94.51 95.88 96.16 97.08 97.84

pHMM 62.22 61.20 88.95 87.38 85.19 85.85

DeepFam 58.45 58.32 59.39 58.41 58.37 54.81

COG-250-
1796

Ensemble-
Fam

91.54 95.19 95.52 95.95 96.62 97.73

pHMM 63.05 89.41 89.05 87.74 84.82 83.69

DeepFam 47.09 48.38 50.12 51.09 50.73 48.78

COG-100-
2892

Ensemble-
Fam

92.92 95.23 96.04 96.35 96.81 97.99

pHMM 87.07 87.78 86.08 84.04 80.16 81.69

DeepFam 38.73 42.62 46.07 48.33 49.30 45.32
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in almost all cases. EnsembleFam outperforms all other methods and its prediction 
accuracy is more than 90% for all the subsets of COG dataset in the identity region 
30–40%. Detail comparison of prediction accuracy for the whole COG dataset is pro-
vided in Additional file 1.

According to biological insights [3] predicting sequences in the twilight zone is 
much harder than other sequences. But EnsembleFam solves this problem with much 
higher accuracy than DeepFam and pHMM on the reported dataset.

ROC AUC score

To assess the performance of EnsembleFam, we calculated the Receiver Operating 
Characteristic (ROC) curve as another evaluation criterion. To get the ROC curve, 
the true-positive rate (TPR) and the false-positive rate (FPR) is calculated by varying 
the threshold of a learned model. TPR (also known as sensitivity) and FPR are com-
puted using the following formula.

In the ROC curve, the learned threshold is varied to observe how the model 
evolves if we want higher TPR or lower FPR. A good model will give us the highest 
TPR and lowest FPR for different thresholds, resulting in an inverted L-shape ( Ŵ ) 
ROC curve. To compare the performance of EnsembleFam with that of pHMM and 
DeepFam, we have plotted the ROC curve of a few families from the COG-500-1074 
dataset in Fig. 2. From the figure, we can observe that the EnsembleFam curve is bet-
ter Ŵ-shaped than others, i.e. the predicting power of EnsembleFam is more robust. 
As the performance of all three methods is pretty high, we plot the curve for TPR 

TPR =
TP

P
=

True Positive

Total number of Positive

FPR =
FP

N
=

False Positive

Total number of Negative

Fig. 2  ROC curve for a few COG families from COG-500-1074 dataset. In each chart EnsmebleFam, DeepFam 
and pHMM are shown in different colors. It is clear that EnsembleFam performs better than other methods
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value 0.92 and higher to observe the clear difference. The ROC area under the curve 
(AUC) score is also calculated. The AUC scores for the four families of COG-500-
1074 shown in Fig. 2 is listed in Table 3. From the AUC scores, EnsembleFam is bet-
ter in all four families by a fair margin.

Determining the AUC score for each family helps us choose the best model. For 
each dataset we have over a thousand families in our test set; e.g., we have 1074 fam-
ilies in COG-500-1074. To compare the AUC score of each family for the three data-
sets, we have plotted the AUC scores in Fig. 3. In this figure, for each dataset, x-axis 
indicates the AUC score and y-axis indicates the number of families having equal or 
higher AUC scores indicated in x-axis. The best model will have an AUC score of 1.0 
for all the families, which will end up being a straight line at y = number of families . 
All three methods have a very high AUC score for most of the families, the real dif-
ference is observed when we look at the higher AUC value ( > 0.95 ). In Fig.  3, the 
number of families dropped for DeepFam and pHMM after reaching AUC score of 
0.99. Whereas, EnsembleFam in all the three figures sustains longer and provides a 
higher AUC score for almost all the families which are closer to 1.0. This indicates 
that the performance of EnsembleFam is much better than DeepFam and pHMM in 
terms of the ROC AUC score on COG dataset.

Table 3  ROC AUC score comparison of four families from COG-500-1074 dataset shown in Fig. 2

The best results are highlighted in bold font

COG family EnsembleFam pHMM DeepFam

COG 344 0.999887 0.993374 0.997536

COG 508 0.999897 0.983626 0.996149

COG 539 0.999303 0.992682 0.994334

COG 796 0.999084 0.994031 0.994851

Fig. 3  ROC AUC score comparison between EnsembleFam, DeepFam and pHMM on the three COG datasets. 
The x−axis shows the AUC score and the y−axis shows number of families in the respective dataset having 
AUC scores greater than or equal to the respective x value
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ROC AUC score for new families

In this section, we evaluate the performance of EnsembleFam on test examples 
from new families that are not used in training. In our three dataset COG-500-
1074, COG-250-1796, and COG-100-2892, the number of families is respectively 
1074, 1796, 2892. As we divided the dataset based on the number of sequences above 
a certain threshold, the COG-100-2892 dataset includes all the families of COG-500-
1074 and COG-250-1796. Therefore for this experiment, we used the test sequences 
from unique families of COG-100-2892 to test the models trained on COG-500-1074 
and COG-250-1796. The COG-500-1074 models are trained on 1074 families, thus 
there are 1818 (2892 – 1074 = 1818) new families in COG-100-2892 which were 
never used while training models for COG-500-1074. Similarly, for COG-250-1796 
models there are 1096 new families in COG-100-2892. We used the sequences of 
these families to test the performance of the models on new unknown family pro-
teins. As none of the sequences belong to any of the trained families, the models 
should predict them as negatives.

We measured the ROC AUC score to assess the performance of EnsembleFam, 
similar to the previous section. We plotted the number of families versus AUC score 
curve in Fig. 4. In our test sequences, all the samples are negative, but we need posi-
tive samples as well to calculate the ROC AUC score. For this, we included the posi-
tive test sequences of the respective family along with these negative test sequences 
from new families. From Fig. 4 we can see EnsembleFam AUC scores are close to 1.0 
for most of the families, whereas for pHMM the number of families drops after reach-
ing an AUC score of 0.99. It shows that EnsembleFam is more robust to samples from 
new unknown families than pHMM. In this experiment, we have not included Deep-
Fam as it cannot handle sequences outside of trained families. As DeepFam is a neural 
network-based multi-class classifier, it will always try to force the test sequence into 
one of the trained classes. But none of these sequences belong to any of the trained 
classes, i.e. DeepFam will end up predicting all of these novel sequences incorrectly. 
This is one of the drawbacks of DeepFam. Therefore, EnsembleFam is superior to both 
DeepFam and pHMM in this experiment as well.

Fig. 4  Test result of EnsembleFam and pHMM on new (unknown) family not used in training. For this, we 
used 1818 different families from COG-100-2892 to test the models of COG-500-1074, similarly 1096 different 
families for COG-250-1796. In the figure, x−axis indicates the ROC AUC score and the y−axis indicates 
number of families above that AUC score



Page 11 of 20Kabir and Wong ﻿BMC Bioinformatics           (2022) 23:90 	

Performance evaluation on GPCR dataset

GPCR is a hierarchically classified dataset divided into family, sub-family, and sub-
subfamily which is rather different from the COG dataset. For this dataset, we first 
build models for the leaf, i.e., sub-subfamilies; and then propagate the prediction to 
the roots, i.e., sub-family and family level, in a bottom-up approach. As the number of 
sequences in the GPCR dataset is much fewer compared to the COG dataset, we con-
ducted a 10-fold cross-validation experiment for this dataset. All the results reported 
here are the average of 10-fold cross-validation.

Prediction accuracy for twilight zone proteins

Similar to the COG dataset, we kept separate one portion of the data for the test 
and calculated homology with the training set. Due to hierarchical classification, we 
experimented with the sub-subfamilies and later propagated it to the upper level. As 
the number of sequences is quite small, there are only a few sequences in the twilight 
zone for this dataset. We have around 800 test proteins in each validation set, and 
only 4–5% of them belong to the twilight zone, i.e., have ≤ 40% identity with the train-
ing sequence. This only gives us around 30–40 sequences in the twilight zone.

For pHMM and EnsembleFam, we have one predictive model for each sub-subfam-
ily whereas, DeepFam provides only one multi-class model for all 86 sub-subfami-
lies. As such, there can be more than one predicted label for each sequence for both 
pHMM and EnsembleFam. In Table  4, the number of predictions made by pHMM 
and EnsembleFam can be found for proteins with identity > 30 and ≤ 40 . From 
Table 4, we can perceive that the number of predictions made by pHMM for a protein 
is around 50 (out of 86), which is approximately 60% of the total number of families. 
Although the correct class label may be included in these predictions, these predic-
tions might not be helpful for biologists. To make the prediction beneficial for biolo-
gists, we discarded the predictions where the prediction count is more than five, i.e., 
we consider those as wrong predictions while calculating the accuracy. The perfor-
mance comparison of EnsembleFam with pHMM and DeepFam presented in Table 5, 
demonstrates that EnsembleFam is better than other methods in correctly identify-
ing twilight zone proteins. Performance comparison for whole GPCR dataset can be 
found in Additional file 1.

Conclusions
EnsembleFam, a protein family modeling technique using an ensemble approach 
and sequence homology information, is presented in this study. Different pro-
tein families can be modeled using this approach even if they have only a few (10 
in this study) annotated proteins. Compared to  state-of-the-art methods, Ensemble-
Fam provides better prediction accuracy while resolving the disadvantages of those 
methods. EnsembleFam provides several beneficial characteristics. Firstly, Ensemble-
Fam is more accurate than sequence homology-based and alignment-free methods. 
EnsembleFam provides one model for each family which correctly identifies the huge 
number of negative examples without having lots of false positives. Notably, Ensem-
bleFam’s modeling technique is effective in correctly classifying proteins from the 
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twilight zone. To tackle the problem of the growing number of unidentified protein 
sequences from various genome projects, EnsembleFam, a fast and more accurate 
modeling technique, will be very useful.

Alongside the benefits of EnsembleFam, there are several issues that are left as future 
work. As we know, there are a lot of proteins which do not have any domains or families 
assigned to them. The Pfam database provides a set of such proteins, known as domains 
of unknown function (DUFs) [40]. We wish to conduct extensive experiments on such 
proteins to find possible domains for DUFs, and then later validate them experimentally 
as part of our future work. As described earlier, EnsembleFam provides more than one 
prediction for a considerable fraction of test sets. But the true label is included among 
these predictions in almost all cases. Compared to other methods where only one pre-
diction is made, EnsembleFam helps a biologist in identifying the correct label instead of 
the wrong one. Several approaches can be taken to identify a correct label from the mul-
tiple predictions like by aligning the query sequence with a few training sequences from 
the predicted classes. Two very popular and significant datasets, namely the COG data-
set and GPCR dataset have been used in this study. Although EnsembleFam has shown 
comparatively better performance in identifying twilight zone proteins, the experiments 
were only conducted for single-domain protein sequences. There exists a vast number of 
unidentified multi-domain protein sequences. The state-of-the-art method pHMM can 
handle multi-domain proteins but the accuracy and precision can be improved. Thus, to 
address this problem and to model protein families with multiple domains a new study 
is necessary.

Methods
In this study, we introduce EnsembleFam. EnsembleFam is a machine learning-based 
approach that uses three different Support Vector Machine (SVM) classifiers to infer the 
family of a protein from its sequence. In this approach, we build a single-class classifier 
for each family, i.e. a separate ensemble classifier for each family, which determines if an 
input sequence belongs to that corresponding family or not. EnsembleFam uses three 
different sets of features to train the three SVM classifiers. The features contain different 
similarity and dissimilarity measures among the families. From a raw protein sequence, 

Table 5  Prediction accuracy comparison of different methods on the twilight zone proteins

Best results are highlighted in bold font. For pHMM and EnsembleFam, we removed the predictions where the number of 
prediction is > 5 and considered them as wrong prediction. For others, where the number of prediction is ≤ 5 and the true 
label is included within the predicted one, we consider as correct. For DeepFam, as it only predicts one label, if the predicted 
label is the same as true label then we consider it as correct. EnsembleFam outperforms other two method in almost all 
cases

Method Sub-subfamily Sub-family Family
Identity: 0 < x ≤ 30

pHMM 5.51 11.76 39.80

DeepFam 5.53 16.88 61.44

EnsembleFam 30.92 45.15 65.45
Identity: 30 < x ≤ 40

pHMM 14.74 21.72 85.37
DeepFam 22.38 37.18 73.40

EnsembleFam 30.38 49.65 65.46
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respective features are collected using popular tools. These features are then passed to 
the three SVM classifiers to make predictions for each family and then a majority vot-
ing approach is taken to determine the final prediction for a sequence if it belongs to a 
certain family or not. We describe the architecture of EnsembleFam and how the models 
are trained in this section.

EnsembleFam

Architecture

To build a model for a specific family, we first use Basic Local Alignment Search Tool 
(BLAST) [13] and profile Hidden Markov Model (pHMM) [14] to collect different fea-
tures. These two tools use different techniques to calculate the sequence similarity of an 
input sequence to a given database of proteins of a family for which we want to build the 
model. We use these similarity scores of a family as a feature for our SVM classifiers. For 
each sequence, its similarity scores to all families are collected. That means each feature 
vector contains a score for each family indicating the similarity of the corresponding 
protein sequence with that family. For each protein family x, we divide the features into 
two categories: similarity and dissimilarity features.

•	 Similarity feature The sequence similarity score of a sequence to the family x is 
referred to as the similarity feature of the family x. A sequence that belongs to family 
x is expected to have a higher value for this similarity feature.

•	 Dissimilarity feature The sequence similarity of a sequence to families other than 
family x is referred to as the dissimilarity features of family x. A protein belonging to 
family x is expected to have lower values for the dissimilarity features of the family x.

This idea of using dissimilarity features along with the similarity features was implicit in 
SVM-pairwise [26]. Moreover, in SVM-pairwise, the features are collected for all pos-
sible pairs of the training sequences; i.e. for a given sequence, its similarity score to all 
members of its own family, and all members from the rest of families are calculated. In 
contrast, in EnsembleFam, for each sequence, only one similarity score is generated for 
each family, indicating its similarity to that family. Thus the size of an EnsembleFam fea-
ture vector is in the order of the number of protein families; this is much smaller than 
the size of an SVM-Pairwise feature vector which is in the order of the total number of 
reference proteins in all families.

We use both BLAST and pHMM to collect features from the sequences. The 
BLASTDB we use for BLAST is created from the training families (more details in 
Sect. Features) and provides both similarity and dissimilarity features for all families. For 
pHMM, we use predefined Hidden Markov Models (HMMs) from the Pfam database 
[15]. All these predefined HMM models mostly differ from our target protein families, 
but there might be a slight overlap between some protein families. As such, we name 
these features as pHMM features, which can be considered as a mixture of similarity and 
dissimilarity features. Once we have collected all the features, three base SVM classifiers 
are trained for each family using the following feature sets:
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•	 SVM model 1 Trained on pHMM features + similarity and dissimilarity features 
from BLAST

•	 SVM model 2 Trained on pHMM features + only similarity features from BLAST
•	 SVM model 3 Trained on only similarity features from BLAST

Note that, for each family, three such base classifiers are trained using the respective 
similarity and dissimilarity features of that family, which are used later to predict mem-
bers of that family. As a result, for each protein sequence, we get three predictions indi-
cating either the protein belongs to the respective family or not. A majority vote is then 
used to make the final ensemble prediction for that family.

Features

In EnsembleFam, BLAST and pHMM are used for generating similarity and dissimilarity 
features.

BLAST features Most of the features used to train our models are collected using 
BLAST. We use 10 reference sequence from each family (that we intend to build a model 
for) to create the BLAST database (BLASTDB). Let us assume we have N families in 
total, so our BLASTDB size will be 10N, i.e. each time a sequence is provided it will be 
compared against these 10N sequences. Each sequence is then run against the BLASTDB 
and the hits, scoring above a defined threshold, are reported in the BLAST output. From 
the BLAST output, we only consider one hit from one family, i.e. if a sequence hits mul-
tiple sequences of the same family we only consider the one with high scores and use 
it as the BLAST features for that family. By repeating this process, we collect BLAST 
features from all the families for each sequence. For each family (corresponding to a hit 
in BLAST output) we use three features to represent the similarity or dissimilarity of the 
given sequence to the respective family, which are: 

1	 Bit-score: The bit-score of an alignment is a normalized form of a raw alignment 
score. The raw alignment score is defined as the sum of substitution and gap scores 
along with the penalties [41]. Bit-scores are usually normalized using the scoring sys-
tem; therefore scores from different searches can be compared with each other. The 
higher the bit-score of an alignment the better, i.e. the given sequence is more similar 
to the one in the database.

2	 E-value: The e-value of an alignment is the expected number of hits, having an equal 
or better bit-score, that can be found by chance. Hence the lower the e-value the 
more significant the alignment is [41].

3	 Identity: The percentage of aligned positions of two sequences having the same resi-
due in the two sequences is known as identity [41]. Often in BLAST hits many of the 
sequences align with only a small portion of the sequence, as BLAST looks for local 
alignment. Some of these may have high scores and good e-values, yet they are not 
useful for our analysis as they have a low percentage of matches. In such a case, iden-
tity helps us differentiate between longer aligned sequences from the shorter one, 
which in turn helps us identify the correct member of the family.
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pHMM features: While gathering the BLAST features we create our own database and 
collect both similarity and dissimilarity features for our model. But for profile Hidden 
Markov Models (pHMMs) we do not build our own HMM models to collect features, 
rather we use some predefined models from the Pfam database [15]. For each pHMM, 
we take two features (which are quite similar to the BLAST features): 

1	 Bit-score: The bit-score in pHMM is somewhat similar to the one in BLAST. Here, 
bit-score is defined as log-odds ratio score of the likelihood of the profile HMM with 
respect to the likelihood of the null hypothesis [42]. So bit-score can be written as, 

2	 E-value: The definition of the e-value is similar to the one we have seen earlier. An 
e-value is the number of hits expected to achieve a certain bit-score or higher by 
chance [42].

Training the models

Once we have collected all the features from the training sequences using BLAST and 
pHMM, the next step is to train the SVM classifiers for each family. We use a different 
subset of the features to train different classifiers. Here we discuss the feature vector size 
for each model:

•	 SVM model 1 for family x : The first model is trained on all the features we collected 
using both BLAST and pHMM. For a single sequence, we get 3 features (bit-score, 
e-value, identity) from each family using BLAST. If we have N family in total, then we 
get a total of 3N features from BLAST. Similarly, for each sequence we get 2 features 
(bit-score, e-value), so in total 2M features from pHMM where M is the number of 
pHMM models. In total, the feature vector size is 2M + 3N  for the first model.

•	 SVM model 2 for family x : For the second model, we only use the similarity features 
from BLAST and pHMM features. For a single sequence, we only use the 3 features 
corresponding to the family x from BLAST and all the 2M features from pHMM. 
Hence, the feature vector size for this model is 2M + 3.

•	 SVM model 3 for family x : The third model is rather a simple and naive one com-
pared to the other two. For this, we only use the similarity features from BLAST 
to train the model. So we have only 3 features corresponding to family x for each 
sequence in this model. Although this is quite a simple model, it does pretty well in 
predicting members of the family x.

We have all the features that we require to train the models for our target protein fam-
ilies. Each base SVM classifier for a family in EnsembleFam is a single-class classifier. 
But when we build a single-class classifier, other than the target protein family, all other 
protein families form the negative class and we need to incorporate the negative exam-
ples to train our classifiers. If the total number of families is N and each family has at 
least d reference proteins, that means we will have approximately d × (N − 1) negative 

bit-score, S = log2
likelihood of pHMM

likelihood of null hypothesis
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examples and only d positive examples. For example, if N = 1000 and d = 200 then the 
count for negative examples would be approximately 200,000 compared to 200 positive 
examples, which creates a huge imbalance in our training data. To avoid such a scenario 
in EnsembleFam, we only use 10 instances from each negative family as our training 
data which reduces the number from 200,000 to only 10,000, i.e. 20 times smaller in this 
example. Here we assume each family has only 200 examples, whereas in real data we 
have more and the number of families also increases a lot. So, to train our SVM models 
we follow this rule to reduce the number of negative examples compared to positive. As 
we can see from the above example, the ratio between positive and negative examples is 
still huge, and each classifier can gain very high accuracy (more than 90% ) by just saying 
NO to all input. For our problem, it is more important to detect the positive examples, 
i.e., the member of a certain family than detecting the one who does not belong. For 
this reason, while training our SVM models we use a weighted classifier where a positive 
example is 9x the weight of a negative example. So the models try to classify the positive 
examples more correctly than the negative ones. Along with that, we have used linear 
kernel and squared hinge loss to train three base SVM classifiers (as mentioned above) 
for each family.

Ensemble prediction

We build one ensemble classifier for each family, which consists of three base SVM clas-
sifiers trained on a different subset of our feature set. Once we build all three base clas-
sifiers, the ensemble decision is taken by majority voting; i.e., if two or three of the SVM 
classifiers agree on a prediction then we provide that as our ensemble prediction for the 
input sequence. This can be defined as,

Here, Cj is the j-th classifier and x is the input sequence. The prediction ŷ is made by 
majority (plurality) voting of each base classifier.

The above formula (Eq. 1) gives us a prediction for each input for each protein fam-
ily, but we also need a score (or probability) for each prediction to calculate the area 
under the Receiver Operating Characteristic (ROC) curve. As the ensemble prediction 
is made by majority voting from the three base classifiers, the ensemble score is also cal-
culated using the same idea. We use the following formula to calculate probability score 
for EnsembleFam,

Here, pi ∈ [0, 1] : prediction probability of classifier i and qi ∈ [0, 1] : qi = (1− pi)

In Eq. 2, we use the formula to incorporate majority voting in our ensemble probability 
calculation. The equation gives a high probability if and only if at least two of the classi-
fiers provide high probability for the input sequence.

To test the performance of EnsembleFam, we used two different types of test set to 
better understand the outcome. The first type is for testing the performance of Ensem-
bleFam on trained protein families. For this first type of test set, a 3-fold cross-validation 
is used; i.e., out of the three equally divided subsets of the dataset, two are used for train-
ing and the other subset is used for testing the model. The second type is for testing 

(1)ŷ = mode{ C1(x), C2(x), C3(x)}

(2)Pr(ensemble) = (p1 p2 p3)+ (p1 p2 q3)+ (p1 q2 p3)+ (q1 p2 p3)
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the performance of EnsembleFam on completely unseen (novel) protein families. For 
this type of test sets, protein families which are never used for training and their mem-
ber proteins are used for testing. This second type of testing is necessary because, in a 
real deployment, EnsembleFam can be expected to encounter proteins from completely 
novel protein families.

Existing protein family modeling methods used for performance comparison

We have used pHMM and DeepFam methods to compare the performance of Ensem-
bleFam using different metrics like prediction accuracy, area under the ROC curve. In 
this section, we provide a brief explanation of these two methods.

Profile hidden Markov model (pHMM)

One of the most popularly used alignment-based method, profile Hidden Markov Model 
(pHMM), is used to compare the performance of EnsembleFam. To construct a pHMM 
model for a protein family, we first aligned the multiple sequences using Clustal Omega 
[43], and then these alignments are passed to HMMER [44] to build the model. In 
HMMER, hmmbuild is used to build the model and then hmmpress to index and com-
press it. Later, we used hmmscan to predict family for a given protein sequence based on 
e-value reported in the output. We used HMMER v3.2.1 with all the default parameters 
to construct the pHMMs for our evaluation.

DeepFam

DeepFam is a deep learning-based protein family modeling method recently introduced 
which reported a competitive performance with pHMM. We use this method to com-
pare the predictive performance of EnsembleFam. DeepFam builds a multi-class classi-
fier from the training data. DeepFam models are trained using graphics processing unit 
(GPU) from the training sequences with all the default parameters provided in the paper. 
For one dataset, one multi-class classifier is built using DeepFam, later these models are 
used to compare the performance.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​04626-w.

Additional file 1: Table S1. Prediction accuracy comparison of different methods on the whole COG test set. 
Table S2, S3, S4: Identity based performance for COG-500-1074, COG-250-1796 and COG-100-2892 dataset are 
shown respectively. Table S5: Prediction accuracy comparison of different methods on the whole GPCR test set. 
Figure S1: Homology between training and test set of GPCR. Table S6: Prediction accuracy comparison of different 
methods on the GPCR dataset based on identity.

Acknowledgements
Not applicable.

Authors’ contributions
MNK designed and implemented EnsembleFam, designed and conducted all the evaluation experiments, and wrote 
the manuscript. LW conceived the project and participated in refining EnsembleFam and designing its evaluation. All 
authors read and approved the final manuscript.

https://doi.org/10.1186/s12859-022-04626-w


Page 19 of 20Kabir and Wong ﻿BMC Bioinformatics           (2022) 23:90 	

Funding
This work is supported by the National Research Foundation, Prime Minister’s Office, Singapore under its Synthetic Biol-
ogy Research and Development Programme (Award No. SBP-P3). LW is also supported in part by a Kwan Im Thong Hood 
Cho Temple chair professorship.

Availability of data and materials
The datasets generated and/or analysed during the current study are available in the EnsembleFam repository, https://​
github.​com/​Neamu​lKabir/​Ensem​bleFam.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 11 June 2021   Accepted: 2 March 2022

References
	1.	 Cao R, Bhattacharya D, Hou J, Cheng J. DeepQA: improving the estimation of single protein model quality with 

deep belief networks. BMC Bioinform. 2016;17(1):495.
	2.	 Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Katta HY, Mojica A, Chen I-MA, Kyrpides NC, Reddy T. Genomes 

OnLine database (GOLD) v. 7: updates and new features. Nucleic Acids Res. 2019;47(D1):649–59.
	3.	 Chung SY, Subbiah S. A structural explanation for the twilight zone of protein sequence homology. Structure. 

1996;4(10):1123–7.
	4.	 Rost B. Twilight zone of protein sequence alignments. Protein Eng. 1999;12(2):85–94.
	5.	 Piovesan D, Giollo M, Leonardi E, Ferrari C, Tosatto SC. Inga: protein function prediction combining interaction 

networks, domain assignments and sequence similarity. Nucleic Acids Res. 2015;43(W1):134–40.
	6.	 Söding J. Protein homology detection by hmm-hmm comparison. Bioinformatics. 2005;21(7):951–60.
	7.	 Wu S, Zhang Y. Lomets: a local meta-threading-server for protein structure prediction. Nucleic Acids Res. 

2007;35(10):3375–82.
	8.	 Smaili FZ, Tian S, Roy A, Alazmi M, Arold ST, Mukherjee S, Hefty PS, Chen W, Gao X. QAUST: protein function predic-

tion using structure similarity, protein interaction, and functional motifs. Genomics Proteomics Bioinform. 2021;
	9.	 Roberts K, Alberts B, Johnson A, Walter P, Hunt T. Molecular biology of the cell. New York: Garland Sci. 2002;32(2).
	10.	 Koonin E, Galperin MY. Sequence-evolution-function: computational approaches in comparative genomics. 2002.
	11.	 Koonin EV. Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet. 2005;39:309–38.
	12.	 Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol. 1981;147(1):195–7.
	13.	 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
	14.	 Eddy SR. Profile hidden Markov models. Bioinformatics (Oxford, England). 1998;14(9):755–63.
	15.	 El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, et al. 

The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47(D1):427–32.
	16.	 Martin DM, Berriman M, Barton GJ. GOtcha: a new method for prediction of protein function assessed by the anno-

tation of seven genomes. BMC Bioinform. 2004;5(1):178.
	17.	 Groth D, Lehrach H, Hennig S. GOblet: a platform for gene ontology annotation of anonymous sequence data. 

Nucleic Acids Res. 2004;32(suppl-2):313–7.
	18.	 Zehetner G. OntoBlast function: from sequence similarities directly to potential functional annotations by ontology 

terms. Nucleic Acids Res. 2003;31(13):3799–803.
	19.	 Vinga S, Almeida J. Alignment-free sequence comparison-a review. Bioinformatics. 2003;19(4):513–23.
	20.	 Lingner T, Meinicke P. Remote homology detection based on oligomer distances. Bioinformatics. 

2006;22(18):2224–31.
	21.	 Deng M, Zhang K, Mehta S, Chen T, Sun F. Prediction of protein function using protein-protein interaction data. J 

Comput Biol. 2003;10(6):947–60.
	22.	 Letovsky S, Kasif S. Predicting protein function from protein/protein interaction data: a probabilistic approach. 

Bioinformatics. 2003;19(suppl-1):197–204.
	23.	 Chua HN, Sung W-K, Wong L. Exploiting indirect neighbours and topological weight to predict protein function 

from protein-protein interactions. Bioinformatics. 2006;22(13):1623–30.
	24.	 Cai C, Han L, Ji ZL, Chen X, Chen YZ. SVM-Prot: web-based support vector machine software for functional classifica-

tion of a protein from its primary sequence. Nucleic Acids Res. 2003;31(13):3692–7.
	25.	 Jaakkola TS, Diekhans M, Haussler D. Using the Fisher kernel method to detect remote protein homologies. ISMB. 

1999;99:149–58.
	26.	 Liao L, Noble WS. Combining pairwise sequence similarity and support vector machines for detecting remote 

protein evolutionary and structural relationships. J Comput Biol. 2003;10(6):857–68.

https://github.com/NeamulKabir/EnsembleFam
https://github.com/NeamulKabir/EnsembleFam


Page 20 of 20Kabir and Wong ﻿BMC Bioinformatics           (2022) 23:90 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	27.	 Lan L, Djuric N, Guo Y, Vucetic S. MS-k NN: protein function prediction by integrating multiple data sources. BMC 
Bioinform. 2013;14:8.

	28.	 Pan Y, Liu D, Deng L. Accurate prediction of functional effects for variants by combining gradient tree boosting with 
optimal neighborhood properties. PLoS ONE. 2017;12(6):0179314.

	29.	 Dawson NL, Lewis TE, Das S, Lees JG, Lee D, Ashford P, Orengo CA, Sillitoe I. Cath: an expanded resource to predict 
protein function through structure and sequence. Nucleic Acids Res. 2017;45(D1):289–95.

	30.	 Zhou N, Jiang Y, Bergquist TR, Lee AJ, Kacsoh BZ, Crocker AW, Lewis KA, Georghiou G, Nguyen HN, Hamid MN, et al. 
The cafa challenge reports improved protein function prediction and new functional annotations for hundreds of 
genes through experimental screens. Genome Biol. 2019;20(1):1–23.

	31.	 Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene 
ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9.

	32.	 You R, Zhang Z, Xiong Y, Sun F, Mamitsuka H, Zhu S. Golabeler: improving sequence-based large-scale protein func-
tion prediction by learning to rank. Bioinformatics. 2018;34(14):2465–73.

	33.	 Törönen P, Holm L. Pannzer-a practical tool for protein function prediction. Protein Sci. 2021;
	34.	 Scheibenreif L, Littmann M, Orengo C, Rost B. Funfam protein families improve residue level molecular function 

prediction. BMC Bioinform. 2019;20(1):1–9.
	35.	 Cao R, Freitas C, Chan L, Sun M, Jiang H, Chen Z. ProLanGO: protein function prediction using neural machine trans-

lation based on a recurrent neural network. Molecules. 2017;22(10):1732.
	36.	 Strodthoff N, Wagner P, Wenzel M, Samek W. Udsmprot: universal deep sequence models for protein classification. 

Bioinformatics. 2020;36(8):2401–9.
	37.	 Seo S, Oh M, Park Y, Kim S. DeepFam: deep learning based alignment-free method for protein family modeling and 

prediction. Bioinformatics. 2018;34(13):254–62.
	38.	 Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family 

annotation in the cog database. Nucleic Acids Res. 2015;43(D1):261–9.
	39.	 Davies MN, Secker A, Freitas AA, Mendao M, Timmis J, Flower DR. On the hierarchical classification of g protein-

coupled receptors. Bioinformatics. 2007;23(23):3113–8.
	40.	 Bateman A, Coggill P, Finn RD. Dufs: families in search of function. Acta Crystallogr Sect F Struct Biol Cryst Commun. 

2010;66(10):1148–52.
	41.	 Fassler J, Cooper P. BLAST glossary. BLAST® Help, 2011.
	42.	 Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 

2011;39(suppl-2):29–37.
	43.	 Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, et al. Fast, 

scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 
2011;7(1):539.

	44.	 Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. HMMER web server: 2018 update. Nucleic Acids Res. 
2018;46(W1):200–4.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	EnsembleFam: towards more accurate protein family prediction in the twilight zone
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Sequence homology-based methods
	Alignment-free methods
	Machine learning-based method
	Limitations of the current approaches
	Our approach

	Results
	Dataset
	Clusters of orthologous groups of proteins dataset
	G protein-coupled receptor dataset

	Performance evaluation on COG dataset
	Homology between training and test set
	Prediction accuracy for twilight zone proteins
	ROC AUC score
	ROC AUC score for new families

	Performance evaluation on GPCR dataset
	Prediction accuracy for twilight zone proteins


	Conclusions
	Methods
	EnsembleFam
	Architecture
	Features
	Training the models
	Ensemble prediction

	Existing protein family modeling methods used for performance comparison
	Profile hidden Markov model (pHMM)
	DeepFam


	Acknowledgements
	References


