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Introduction
Modeling the 3D structure of a protein from its sequence has been one of the most criti-
cal problems in biophysics and biochemistry [1, 2]. The knowledge of the 3D structure 
of a protein facilitates the discovery of novel ligands, function annotation, and protein 
engineering. Due to its importance, the community of computational protein scientists 
have been developing various prediction methods and assessed their performance in 
the large-scale blind tests, CASPs, which have continued for over two decades [2]. In 
CASP14, Deepmind demonstrated that their deep learning-based model, AlphaFold2 
(AF2), predicts the 3D structures of proteins from their sequences with extremely high 
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accuracy, comparable to experimental accuracy [3]. The source code of AF2 became 
publicly available recently, and many model structures of genes of biologically important 
organisms have been released [3].

The success of AF2 can be attributed to the accurate extraction of coevolutionary 
information from multiple sequence alignments (MSA). The idea of using coevolutionary 
information for contact prediction or structure modeling has been widely used [4–12]. 
However, previous attempts were not successful enough because coevolutionary signals 
in MSAs were not strong enough or too noisy. Various statistical mechanics-based mod-
els were proposed, but their accuracy, discriminating actual contacts from false contacts, 
was limited. In CASP13, AlphaFold and RaptorX used coevolutionary information from 
MSAs as input and predicted inter-residue distances [13–15]. They achieved significant 
improvements than previous CASPs, but their predictions were not accurate enough to 
obtain model structures comparable to experiments. Finally, in CASP14, with the help of 
the attention algorithm, truly accurate extraction of actual residue-residue contact sig-
nals from MSAs becomes available [3].

Despite this remarkable achievement of AF2, certain limitations remain for this tech-
nology to be widely accessible and used for further development. First, the source code 
for training AF2 is not open-sourced yet. In the first release of AF2, only the production, 
model generation, part of AF2, and the model parameters are open. Second, training the 
AF2 architecture is computationally expensive. It is reported that Deepmind used 128 
TPUv3 cores for approximately one week and four more days to train AF2. This amount 
of computational resources are not readily accessible for most academic groups. Thus, 
developing lighter and general models is still necessary.

To extract evolutionary information from MSAs, various protein language models 
have been proposed [16–22]. Rao et al. proposed the MSA transformer model, an unsu-
pervised protein language model using the MSA of a query sequence instead of a single 
query sequence. The model uses row and column attention of input MSAs and masked 
language modeling objectives. It is demonstrated that the model successfully predicted 
long-range contacts between residues. In addition, the model predicted other proper-
ties of proteins, such as secondary structure prediction and mutational effects, with high 
accuracy [20]. These results indicate that the MSA Transformer model extracts the char-
acteristics of proteins from their MSA profiles efficiently.

This study developed a new protein 3D structure prediction method, A-Prot, using 
MSA Transformer [22]. For a given MSA, we extracted evolutionary information with 
MSA Transformer. The extracted row attention map and input features were converted 
to a 2D residue-residue distance map and dihedral angle predictions. We benchmarked 
the 3D protein structure modeling performance using the FM/TBM-hard targets of 
CASP13 and 14 [23, 24]. The results show that A-Prot outperforms most top server 
groups of CASP13 and 14 in terms of long-range contact predictions and 3D protein 
structure modeling.

Methods
Overview

The overall pipeline of the proposed protein 3D structure prediction method is shown 
in Fig. 1. We mainly combine the works of the MSA Transformer [22] and the trRosetta 
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Fig. 1  Pipeline of the proposed protein 3D structure prediction method. Input an MSA to the MSA 
Transformer to extract MSA Features and row attention maps. Then, the MSA features corresponding to the 
query sequence and the row attention maps are combined to a 2D feature maps by a set of transformations. 
Next, the 2D feature maps are input to a Dilated ResNet after dimension reduction to output inter-residue 
geometries, which further input to the trRosetta Protein Structure Modeling to output a predicted protein 3D 
structure
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[25]. Given an MSA, it will input to the MSA Transformer to output MSA features and 
row attention maps. After a series of transformations like dimension reduction and con-
catenation etc., these two kinds of features will be transformed and combined into 2D 
feature maps, which is suitable for input to the trRosetta to finally output protein 3D 
structure.

The MSA Transformer used in this paper was an already pre-trained version that was 
learned from 26 million MSAs. It plays a role as a feature extractor that inputs an MSA 
and outputs its relative features.

trRosetta consists of a deep neural network part and protein structure modeling part. 
The deep neural network is modified to receive the MSA features from the MSA Trans-
former instead of the original manually engineered features generated by the statistic 
approach. Nevertheless, the protein structure modeling part remains the same.

Dataset and MSA generation

We used the procedure with MSA transformer to generate the MSAs of target sequences 
(Rao, Liu, et  al., 2021). The MSA of a query sequence was generated using Jackham-
mer [26], HHblits ver. 3.3.0, and HHsearch [27] together with the unicluster30_2017_10 
[28] and BFD [29] databases. If not specified, all training and test MSAs are used BFD. 
If the number of detected homologous sequences exceeds 256, up to 256 sequences 
were selected through diversity minimization [22]. The upper limit of the number 
of sequences was determined by the maximum size of GPU memory of the NVIDIA 
Quadro RTX 8000 GPU (48 GB) card.

To perform contact predictions, a customized non-redundant protein structure data-
base is compiled, and we named it PDB30. The PDB30 dataset consists of protein struc-
tures deposited in PDB before Apr-30–2018 whose resolution is higher than 2.5 A and 
sequence length is longer than 40 amino acids. Using 102,300 sequences that satisfy the 
condition, clustering analysis was performed using MMSeq2 [30] with a threshold of 
sequence identity of 30%, leading to 16,612 non-redundant sequences.

Network architecture

Let us define an input MSA as an r × c character matrix, where r and c are rows (num-
ber of sequences) and columns (sequence length) in the MSA, respectively. Through 
the token and position embedding of the MSA Transformer, the input MSA is embed-
ded into a r × c × 768 tensor which is the input and output of each attention block. The 
attention block is composed in the order of row attention layer, column attention layer, 
and feed-forward layer. A layer normalization operation is followed by each layer. And 
each attention layer has 12 attention heads. The MSA Transformer is a stack of 12 such 
attention blocks.

Two kinds of features were extracted from the MSA Transformer to construct 2D fea-
ture maps by a series of transformations. (1) One is the last attention block’s output, 
a r × c × 768 tensor; we named it MSA features (Fig.  1). Only features corresponding 
to the query sequence are selected, which is a 1× c × 768 tensor. Then, the dimension 
of this feature is reduced to 128 by an MLP (multi-layer perceptron) consist of 3 lin-
ear layers with neuron sizes 384, 192, 128. The dimension reduced 1D feature is then 
outer concatenated (redundantly expanding horizontally and vertically and then stacked 
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together) to form a query sequence feature of a c × c × 256 tensor. (2) The other one 
is row attention maps that are derived from each attention head of each row attention 
layer, totally 12× 12 = 144 attention maps stacked to shape in c × c × 144 . Then it is 
symmetrized by adding it to its transposed tensor to yield symmetrized row attention 
maps. The query sequence feature and the symmetrized row attention maps are con-
catenated in the feature map dimension to form a 2D feature map that is a c × c × 400 
tensor.

The dimension of the 2D feature maps afterward reduced to 64 by three convolu-
tional layers that consist of 256, 128, 64 kernels of size 1× 1 [31], where each convo-
lutional layer is followed by an instance normalization and a ReLU activation. Then 
this c × c × 64 tensor is input to the Dilated ResNet consist of 28 residual blocks [32], 
each having one instance normalization, two ReLU activations, and two convolutional 
layers each with 64 kernels of size 3× 3 . Dilation is applied to the convolutional lay-
ers cycle through the residual blocks with rates of 1, 2, 4. After the last residual block, 
there are four independent convolutional layers with 25, 13, 25, 37 kernels of size 1× 1 , 
each for predicting inter-residue geometries of θ ,ϕ,ω, d , respectively. Please refer to the 
reference [25] for more details about the inter-residue geometries as we used the same 
settings. Finally, the trRosetta Protein Structure Modeling module will predict and mod-
eling the protein 3D structure based on the inter-residue geometries information.

Training and inference

At the training stage, we fixed the parameters in the MSA Transformer. In contrast, 
parameters in the other deep neural networks were trained with a batch size of 16 with 
gradient accumulation steps, a learning rate of 1e − 3, using the RAdam optimizer [33], 
the categorical cross-entropy loss was calculated with equal weight for the four inter-res-
idue geometry objectives [25]. The ground truth values for the inter-residue geometries 
are all discretized into bins which have same number as corresponding convolutional 
kernels ( θ for 25 bins, ϕ for 13 bins, ω for 25 bins, d for 37 bins); each bin is treated as a 
classification label. The total model was trained end-to-end on an NVIDIA Quadro RTX 
8000 GPU (48 GB) for around 40 epochs which took about five days.

An MSA subsampling strategy is applied during training, not only for regarding as 
data augmentation to train a robust model, but also for preventing the GPU from run-
ning out of memory when filled with large MSA. We randomly select MSA rows, up to 
a maximum of 214/c , and down to a minimum of 16, though always including the query 
sequences in the first row. Large proteins of more than 1023 residues long were dis-
carded during training. We subsampled MSA with 256 sequences at the inference stage 
by adding the sequence with the lowest average hamming distance. We performed trRo-
setta protein structure modeling five times with the same input and selected the struc-
ture with the lowest energy for protein structure similarity measurement.

Results and discussion
Benchmarking contact prediction

First, we benchmarked the long-range contact prediction performance of A-Prot 
using the FM and FM/TBM targets of CASP13 [24]. The benchmark results show 
that the performance of our model outperforms that of the existing methods 
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(Table 1). We compared the precision of our model’s top L/5, L/2, long-range contact 
predictions (long-range: sequence separation of the residue pair ≥ 24) and the other 
existing methods. The performance measures of the other methods are adopted 
from the reference [34]. The top L/5, Top L/2, and L contact precisions of our model 
are 0.812, 0.710, and 0.562, which are higher than those of the other methods. For 
example, DeepDist, one of the state-of-the-art methods, predicted the top L/5, L/2, 
and L with precisions of 0.793, 0.661, and 0.517. Also, compared with AlphaFold 
predictions of CASP13, A-Prot predicted more accurately in all three measures by 
7–9%.

We also compared the contact prediction accuracy of A-Prot with MSA-Trans-
former, which is the baseline of A-Prot. The performance of long-range Top L and 
Top L/5 for supervised contact prediction on CASP13 FM targets were 0.546 and 
0.775 respectively (Rao, Meier, et al., 2021). The contact precision of Top L and Top 
L/5 for A-prot were 0.539 and 0.785, which is comparable to those of MSA Trans-
former (Additional file 1: Table S2). We also investigated the effect of a MSA to con-
tact prediction by predicting structures with the MSAs obtained without BFD and 
obtained with DeepMSA [35]. The assessment shows that not using BFD deteriorates 
the quality of models. The accuracies of Top L and Top L/5 contacts decreased by 
2.5% and 4.0%, respectively. When DeepMSA was used, the Top L and Top L/5 accu-
racies dropped by 3.9% and 2.0%, respectively. These results show that considering 
a gigantic meta-genome DB helps improve prediction quality, but not significantly.

To investigate how the number of residual blocks affects the prediction quality, 
ablation tests were performed by changing the number of the residual blocks (Addi-
tional file  1: Table  S4). We performed contact and structure prediction with 4, 16, 
28, and 40 residual blocks. The contact prediction results show that A-Prot calcu-
lations with 28 blocks resulted in the best contact prediction. Interestingly, using 
more blocks, 40, decreased contact prediction accuracy. Fewer residual blocks, 4 and 
16, led to significantly worse contact prediction results. In terms of model accuracy, 
A-Prot with 40 blocks resulted in the highest TMscore although contact predictions 
were most accurate with 28 blocks. These results show that A-Prot with 28 blocks is 
close to the optimal model considering both the prediction accuracy and computa-
tional cost.

Table 1  Contact Precision on CASP13 FM and FM/TBM targets corresponding to 43 domains (results 
are  adapted from DeepDist [34])

The highest score of each column is highlighted in bold

Group Top L Top L/2 Top L/5

TripletRes 0.451 0.587 0.700

AlphaFold 0.497 0.629 0.742

RaptorX-Contact 0.481 0.612 0.744

trRosetta 0.506 0.652 0.751

DeepDist 0.517 0.661 0.793

A-Prot (w BFD) 0.562 0.710 0.812
A-Prot (w/o BFD) 0.540 0.681 0.780
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Benchmark on model accuracy

In addition to contact prediction, we also compared the quality of protein models 
predicted by A-Prot with those submitted by the top-performing server groups of 
CASP14 (Table 2). The highest score of each column is highlighted in bold.First, we 
modeled the structures of 25 FM/TBM and TBM-hard targets of CASP14. The aver-
age TM-score and lDDT score of the models were compared with those of the fol-
lowing server groups: FEIG-S [36], BAKER-ROSETTASERVER [37], Zhang-Server, 
and QUARK [38]. The model structures of the other groups were downloaded from 
the archive of the CASP14 website, and TM-score and lDDT scores were recalculated 
with the crystal structures and domain information for a fair comparison.

A-Prot outperforms the other top server groups in terms of lDDT. Compared with 
BAKER- ROSETTASERVER and FEIG-S, A-Prot models are consistently more accu-
rate in both measures. The P-values show that A-Prot outperforms ROSETTASERVER 
and FEIG-S statistically significantly. These results show that the accuracy of A-Prot 
is comparable to or better than the top-performing server groups that participated in 
CASP14 [23]. In terms of TM-score, A-Prot is showing slightly worse results, 0.576, 
than Zhang-Server and QUARK, whose TM-scores are 0.595 and 0.588. However, the 
P-values show that the A-Prot results are not meaningfully different.

We also compared the performance of A-Prot with trRosetta [25] by modeling 
structures using trRosetta with the identical MSAs that we used for A-Prot (Table 3). 
The results show that A-Prot significantly outperforms trRosetta using the identical 
MSAs. In terms of dihedral angle predictions, A-Prot improved the correlation coef-
ficient between ground truth and predictions by 0.071 in average. In addition, A-Prot 
generated better models with higher TMscore and lDDT values than the trRosetta 
results. The average TMscore and lDDT enhanced by 0.048 and 0.042 respectively.

In contrast to MSA-Transformer or ROSETTA, A-Prot used the subsampling strat-
egy that minimizes the diversity of sequences to reduce the sizes of MSAs. For protein 

Table 2  The average TM-score and lDDT of the model structures of 25 CASP14 FM, FM/TBM, and 
TBM-hard domains

Server group TM-score P-value (TM-score) lDDT P-value (lDDT)

FEIG-S 0.461 0.0007 0.413 0.0172

BAKER-ROSETTASERVER 0.517 0.0391 0.455 0.2636

Zhang-Server 0.595 0.6684 0.489 0.8510

QUARK 0.588 0.6208 0.484 0.7408

A-Prot 0.576 – 0.499 –

Table 3  Performance of A-Prot and trRosetta using same MSA of ours on 25 CASP14 FM, FM/TBM, 
TBM-Hard domains. (Inter-residue distance and angles are measured using Pearson correlation 
between predicted bin indexes of max probability and ground truth, Top L for long range contact 
precision)

Method θ ϕ ω d Top L TMS lDDT

trRosetta 0.539 0.498 0.459 0.362 0.363 0.524 0.457

A-Prot 0.604 0.578 0.528 0.464 0.424 0.576 0.499
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language models, four subsampling strategies have been tested: random, diversity 
maximization, diversity minimization, and HHFilter to reduce the size of input MSAs 
while preserving prediction accuracies. It was shown that diversity maximizing per-
formed best for the supervised contact prediction [22]. On the contrary, trRosetta 
generates a MSA in a similar manner to the diversity minimizing approach [25]. Dur-
ing the development of A-Prot, we tried both diversity minimization and maximiza-
tion approaches. The prediction results show that diversity minimizing yields more 
accurate models than diversity maximization (Additional file  1: Table  S3). We pre-
dicted the structures of 43 domains of CASP13 FM, FM/TBM and 25 domains of 
CASP14 FM, FM/TBM and TBM-hard targets using MSAs subsampled with diver-
sity minimization and maximization. In average, the models generated with the MSAs 
obtained with diversity minimization have higher TM-scores, 0.658 and 0.555 for 
the CASP13 and CASP14 targets, than those with diversity maximization, 0.603 and 
0.532. Thus, we employed the diversity minimization approach for A-Prot.

A head‑to‑head comparison with ROSETTASERVER

Because A-Prot uses trRosetta for modeling structure at the final stage, we performed 
a head-to-head comparison of A-Prot models with the ROSETTASERVER mod-
els to identify improvement in residue-residue distance predictions (Fig.  2). In terms 
of TM-score, many predictions made by A-Prot are significantly better than BAKER-
ROSETTASERVER. For instance, the model qualities of five targets that were predicted 
to have TM-score less than 0.4 by ROSETTASERVER were improved higher than 0.4, 
corresponding to a correct fold prediction. Four highly accurate models are depicted in 
Fig. 3.

Similarly, in terms of the lDDT measure, prediction results of eight targets were 
improved significantly. On the contrary, only two targets deteriorated more than 0.05. 
Therefore, A-Prot predicts residue-residue distances and dihedral angles better than 
most server groups participated in CASP14 [2].

Fig. 2  TM-score and lDDT on CASP14 FM, FM/TBM and TBM-hard 25 domains compared with 
BAKER-ROSETTASERVER
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On the other hand, nearly all worse predictions by A-Prot deteriorated only by a small 
margin except the T1026-D1 target. For T1026-D1, A-Prot did not predict its correct 
fold. This incorrect prediction is attributed to an incomplete MSA. T1026-D1 is a pro-
tein consisting of a virus capsid (PDB ID: 6S44). Our sequence search procedure found 
only less than 30 sequences, which appear to be not enough to extract correct evolu-
tionary information. When T1026-D1 is modelled with the MSA of trRosetta containing 
more than 100 sequences, T1026-D1, a model with a similar TM-score is obtained. Thus, 
the failure of T1026-D1 suggests that having enough homologous sequences is critical in 
accurate 3D structure modeling using MSA-Transformer. In other words, a more exten-
sive sequence search may improve the model accuracy of A-Pro. Except for T1026-D1, 
the deviations of all worse predictions than ROSETTASERVER were less than 0.1 TM-
score, much smaller than the improvements.

Conclusion
In this study, we introduced a new protein structure prediction method, A-Prot, using 
MSA Transformer. Our benchmark results on the CASP13 TBM/FM and FM targets 
show that A-Prot predicts long-range residue-residue contacts more accurately than the 
existing methods. We also assessed the quality of protein structure models based on the 
predicted residue-residue distance information. The model generated by A-Prot is more 
accurate than most of the server groups that participated in CASP14. The average lDDT 
of A-Prot models is higher than that of all server group models. In terms of TM-score, 
our model is slightly worse than QUARK and Zhang-Server. These results show that our 
approach yields highly accurate residue-residue distance predictions.

Fig. 3  Model comparison of four high-quality CASP14 models generated from our method versus their 
native structures. Brown: native structure; Blue: model
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A-Prot requires less computational resources than the other state-of-the-art protein 
structure prediction models [2]. The source code of AlphaFold2 is only partially open 
[3]. Its model parameters are fixed, and only the structure modeling part is open. Thus, it 
is hard to tune AlphaFold2 for bespoken purposes. In addition, training the AlphaFold2 
architecture requires a significant amount of computational resources, which is not 
assessable for most academic groups. On the other hand, A-Prot can be trained with a 
single GPU card. In summary, A-Prot will open new possibilities for training novel deep-
learning-based models to predict various properties of proteins only using sequence 
information.

Abbreviations
MSA: Multiple sequence alignment; FM: Free modeling; TBM: Template-based modeling; RMSD: Root mean square 
deviation.
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