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Background
During the last 20  years, there have been major infection outbreaks that have caused 
significant morbidity, including ‘spill-over events’ where a coronavirus has entered the 
human population from an animal host. The SARS-CoV-2 virus has caused the COVID-
19 pandemic, with > 185 million individuals infected and > 4 million deaths across > 215 
countries [1]. The small size of the viral genome (~ 30 kbp) allows for rapid and high 
throughput sequencing within health systems. The resulting data is being shared in the 
public domain (e.g. NCBI and GISAID), with large and growing numbers of genome 
sequences available (> 2 million) [2]. Phylogenetic analysis of sequence variation can 
provide insights into the spread and evolution of the virus, and a temporal analysis can 
reveal mutations that might affect diagnostic efficacy and lead to vaccine escape. Poten-
tial transmission networks to inform infection control can be revealed through match-
ing genomes, and clade-defining mutations can be found. The detection of amino-acid 
changes leading to increased virus fitness, maintained by sweeps increasing mutation 
frequencies (“positive selection”), can reveal sites that are functionally important. Impor-
tant genotype–phenotype associations (e.g., for virulence) may be identified through 
finding signatures of convergent evolution, where the causal mutation occurs indepen-
dently in unrelated branches of the phylogenetic tree. Despite there being available tools 
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for the online visualisation of SARS-CoV-2 virus genetic diversity [2, 3] and selection 
analysis [4], timely phylogenetic analysis is computationally difficult with large numbers 
of sequenced isolates. Further, infection control sequencing hubs urgently need bioinfor-
matic pipelines to accurately process sequence data into mutations, providing insights 
into local circulating viruses and to inform on importation and diagnostic robustness. 
To enable the processing of sequencing data, we have designed command-line and web-
server tools (“COVID-Profiler”) to automate the analysis, visualisation and profiling of 
SARS-CoV-2, thereby assisting COVID-19 control decision making.

Implementation
The COVID-Profiler command-line tool has a number of functions, including variant 
characterisation, isolate profiling, primer design and evaluation, and phylogenetic analy-
sis. For profiling, fastq files (compressed with gzip or uncompressed) are trimmed using 
trimmomatic [5] and aligned against the reference genome (NC_045512) using bwa-
mem software [6]. Variant calling is performed using bcftools software [7]. User-defined 
depth thresholds can filter out variants. Remaining variants are annotated with their 
functional effect (e.g., gene, amino acid change) using a combination of bcftools csq 
and custom scripts, which account for the ribosomal slippage. A final genome is gener-
ated with bcftools consensus, and positions with low coverage [8] are masked. For fasta 
input, sequences are aligned to the reference using minimap2 [9] and variants are called 
with paftools.js software. Variant outputs are in files of vcf format. Users can aggregate 
data across several runs to create a table of mutations in text format. Primer conser-
vation scores (e.g., for diagnostics) are calculated using blast, and an in-house script 
estimates the number of mismatches. Choropleth maps are rendered using plotly soft-
ware. Sequence logo plots are generated using seqlogo software (github.com/betteridiot/
seqlogo). Sequences are aligned using mafft software [10] and alignments are masked 
on non-coding ends. Phylogenetic trees are constructed using iq-tree software [11] with 
the best model found by iq-tree ModelFinder. The webserver allows for the online pro-
cessing and profiling of uploaded isolate sequences. It is developed using the flask micro 
web framework. Users upload data in fastq or fasta format. All output files are avail-
able to download, and include identified mutations presented in a table format. Align-
ments (“bam” files) are visualised using pileup.js [12]. Mutations in those proteins that 
have been structurally characterised are visualised using a bio-pv.js (biasmv.github.io/
pv/) library. Flowcharts depicting the bioinformatic pipeline and its inputs and outputs 
can be found in Additional file 1: Figure S1.

Results
To highlight the utility of the tool, we sought to characterize the diversity in a large data-
set of 561,002 sequences from the GISAID database. Sequences were selected using a 
random sample of isolates between 24th December 2019 and 6th July 2021 allowing a 
maximum of 20,000 isolates per country. Using COVID-Profiler, the sequences were 
aligned, and 59,940 SNPs were identified (42,734 non-synonymous; 17,206 synonymous 
changes). We then aimed to characterize whether this diversity affected the performance 
of PCR diagnostics used by public health authorities, and whether it has been influenced 
by selective pressure.
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Diagnostic performance

Rapid and accurate detection of infections through diagnostics is central to infection 
control. We sought to characterise the conservation of primer binding sites (PBSs) of 
12 PCR diagnostics applied worldwide (Additional file 1: Table S1). Analysis by COVID-
Profiler revealed that eleven diagnostics had high conservation of PBSs, but one had a 
high proportion (75.1%) of isolates with >  = 1 mismatch present in the forward PBS. The 
sequence logo plot reveals the mismatches were located at the 5’ end, and thus might 
not have a severe effect on binding (Fig. 1a). The number of isolates with mutations in 
the PBSs was observed to increase in all continents during the timeline of the pandemic 
(Fig. 1b). The rapid increase in allele frequency could result from selective pressure, sam-
pling bias or genetic drift effects.

Fig. 1 Results from the primer conservation tool. A A sequence logo plot indicating the location of 
mutations in the primer binding site (PBS). B Samples with mutations in PBSs across time and continent. 
C Convergent evolution analysis, where each genomic position is represented by a dot with the average 
number of origins indicated on the y-axis. The number of isolates containing the mutation is proportional to 
the size of the dot
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Selective pressure

COVID-Profiler was used to determine whether the mutations were under selective 
pressure. Specifically, the dataset was used to find convergent evolution, which is defined 
by multiple independent origin of a mutation in phylogenetic space and is a signature of 
selective pressure. Across 1,000 independent subsets of the data (N = 500), we counted 
the number of independent origins of mutations within each subset. Most mutations 
(n = 49,443, 82.5%), had an average occurrence of at most one (Fig. 1c). However, sev-
eral mutations had substantially higher counts with the top 10 mutations having occur-
rences greater than 6. These include mutations in the genes S (E484K/Q, L5F, N501T and 
P681H/R), N (M234I), nsp6 (L37F, F108L), orf8 (L68*, F120L) and the 3C-like proteinase 
(L90R). Of the mutations found in the spike protein (S), E484K and N501T have been 
classified as variants of concern with a high confidence of conferring an antigenic change 
(http:// sars2. cvr. gla. ac. uk/ cog- uk/). Interestingly, the Nucleocapsid protein (N) M234I 
mutation is located in a position which has been found to have immunological signifi-
cance both in epitope prediction studies as well as in-vitro epitope mapping experi-
ments[13, 14] as well being linked to isolates with false negative antigenic tests [15]. 
These observations demonstrate the utility in the detection of convergent evolution and 
more broadly the analysis of genomic diversity and tools which support this analysis.

Conclusions
The online COVID-Profiler tool will assist with the important analysis and profiling of 
SARS-CoV-2 viral sequences within clinical and infection control settings. With the vac-
cine rollout, it is important to use tools like COVID-Profiler to monitor mutations and 
the selective pressure driving their patterns of evolution. The tool can be extended to 
include additional functionality (e.g., assign strain types), as well as be modified for the 
analysis of other (re-) emerging pathogens.

Abbreviation
PBS: Primer binding site.
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