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Abstract 

Background:  Third-generation sequencing offers some advantages over next-gener-
ation sequencing predecessors, but with the caveat of harboring a much higher error 
rate. Clustering-related sequences is an essential task in modern biology. To accurately 
cluster sequences rich in errors, error type and frequency need to be accounted for. 
Levenshtein distance is a well-established mathematical algorithm for measuring the 
edit distance between words and can specifically weight insertions, deletions and 
substitutions. However, there are drawbacks to using Levenshtein distance in a biologi-
cal context and hence has rarely been used for this purpose. We present novel modi-
fications to the Levenshtein distance algorithm to optimize it for clustering error-rich 
biological sequencing data.

Results:  We successfully introduced a bidirectional frameshift allowance with end-
user determined accommodation caps combined with weighted error discrimination. 
Furthermore, our modifications dramatically improved the computational speed of 
Levenstein distance. For simulated ONT MinION and PacBio Sequel datasets, the aver-
age clustering sensitivity for 3GOLD was 41.45% (S.D. 10.39) higher than Sequence-
Levenstein distance, 52.14% (S.D. 9.43) higher than Levenshtein distance, 55.93% (S.D. 
8.67) higher than Starcode, 42.68% (S.D. 8.09) higher than CD-HIT-EST and 61.49% 
(S.D. 7.81) higher than DNACLUST. For biological ONT MinION data, 3GOLD clustering 
sensitivity was 27.99% higher than Sequence-Levenstein distance, 52.76% higher than 
Levenshtein distance, 56.39% higher than Starcode, 48% higher than CD-HIT-EST and 
70.4% higher than DNACLUST.

Conclusion:  Our modifications to Levenshtein distance have improved its speed 
and accuracy compared to the classic Levenshtein distance, Sequence-Levenshtein 
distance and other commonly used clustering approaches on simulated and biologi-
cal third-generation sequenced datasets. Our clustering approach is appropriate for 
datasets of unknown cluster centroids, such as those generated with unique molecular 
identifiers as well as known centroids such as barcoded datasets. A strength of our 
approach is high accuracy in resolving small clusters and mitigating the number of 
singletons.
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Background
Third-generation sequencing (TGS) platforms such as Pacific Biosciences (PacBio) 
Single-Molecule Real-Time (SMRT) Sequencing and Oxford Nanopore Technolo-
gies (ONT) produce average read lengths of over 10,000 bases [1]. Long reads offer 
large-scale accuracy at the expense of a high per-base error rate compared to Sanger 
sequencing and next-generation sequencing. Error rates of TGS platforms have been 
reported to be as low as ≤ 1% for PacBio HiFi reads to 15% or higher for ONT R9.4.1 
chemistry [2–4]. As technology continues to rapidly improve, it is expected that these 
error rates will drop.

TGS error is random. Therefore, clustering related reads to build a consensus can 
resolve the error. Clustering related reads for this purpose can be assisted with the 
use of random short (4–20 bp) oligonucleotides appended to individual molecules in 
a specific genomic locus, such as barcodes or unique molecular identifiers (UMIs) [5]. 
There are other molecular sequences that have biologically relevant reasons for being 
clustered, such as motifs, promoters and repeated genomic sequences [6]. In all cases, 
these sequences are subject to sequencing error, which needs to be corrected before 
they can be clustered appropriately [7].

All clustering algorithms are based on the notion of edit distance between strings. 
Edit distance is a measurement of the number of insertions, deletions and substitu-
tions required to make one sequence match another. The most commonly used edit 
distance algorithm is Levenshtein distance (LD) [8]. LD has frequently been used in 
computerized spell checking, speech recognition, and dialect and plagiarism detec-
tion. Rarely has it been used in molecular biology analysis. There are three hurdles 
that LD needs to overcome for it to be optimized for biological applications, espe-
cially in clustering error-rich TGS data. First, it needs to accommodate frameshift due 
to indels. Second, the time complexity needs to be reduced to make it more efficient 
for large datasets. Third, weighted errors must be accommodated to match the error 
profile of the data. We have, for the first time, overcome the challenges associated 
with combining these improvements in our approach called Third-Generation Opti-
mized Levenshtein distance (3GOLD). We demonstrate that 3GOLD metrics cou-
pled with a density-based clustering algorithm are able to accurate cluster sequences 
without prior knowledge of cluster centroid sequences, making it well suited for UMI 
datasets as well as barcoded datasets.

Results
Accommodating frameshift

Traditional LD is calculated to assume that the lengths of the two sequences being 
compared are absolute. LD can be computed between two strings that have differ-
ing lengths. However, LD cannot interpret changes at sequence borders due to an 
insertion or deletion as being frameshift consequence of the internal errors when the 
sequence of interest is embedded in a larger sequence. Biological sequences of inter-
est for error correction, locating or clustering are subject to frameshift errors, since 
they are merely a subsequence of the whole in which they find themselves.
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This limitation of LD has been addressed in the development of Sequence-Leven-
shtein distance (SLD) [9]. SLD accommodates a truncation or elongation of sequence 
A to match the length of sequence B without an increase in the distance calculation, 
provided that A is a prefix of B . Therefore, SLD is only adequate for sequences that 
experience mutations leading to a frameshift on the downstream (3’) border of the 
sequence of interest. This occurrence will not always be the case and is subject to 
how the sequence of interest is identified, especially when it is embedded as a subse-
quence. Consequently, SLD is limited to an unrealistically simple assumption of what 
nucleotide sequences are like that need to be clustered, found or error corrected. 
Although the development of SLD was an important step in the right direction for 
making LD appropriate for a biological context, it falls short of truly being adequate 
for most situations. The benefit of SLD was more theoretical than practical. There are 
many instances in which DNA sequences need to rely on edit distances for analysis 
while being embedded in an entire molecule. For example, ligation adapters, primers, 
probes and sequence loci that are alignment products can all have error-induced bor-
der frameshifts in an upstream (5’) position [10].

To overcome this limitation of SLD, we included mirrored SLD in 3GOLD computa-
tions to accommodate both upstream and downstream frameshifts. This can be accom-
plished by computing the distance between words as they appear as well as between the 
reverse of both words. The lowest edit distance value between the comparisons is used 
in clustering threshold analysis. An example of this improvement is shown in Fig. 1.

Speed improvement

Previous attempts at reducing LD computational speed have focused on capturing the 
value in the position at the last column and last row of the LD matrix. However, we are 
interested in capturing the SLD, which is the lowest value along the rightmost column 

Fig. 1  3GOLD accommodates upstream and downstream frameshift. A SLD is lower than LD when 
computing a single deletion-induced downstream frameshift. If an upstream frameshift occurs due to 
the single base deletion, there is no benefit to using SLD over LD. B The benefit of SLD accommodating 
frameshift can be rescued in the case of an upstream frameshift by calculating the SLD of mirrored 
sequences, effectively converting upstream frameshift to downstream frameshift
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and the bottommost row in the LD matrix, not just the corner intersection between 
them. Therefore, earlier strategies are insufficient for our purposes. By appropriately 
reducing the number of computations required by 3GOLD while still capturing the 
SLD value, we have been able to reduce 3GOLD’s computational time compared to LD 
and SLD. We tested the effects of dataset length and depth on our speed improvements 
using identical Perl scripts except for edit distance metrics subroutines. As the sequence 
length increased, the computational time increased quadratically, as expected [11]. As 
the database depth increased, the computational time increased linearly, which was also 
expected because the sequence length was held constant. The SLD computational time 
was nearly identical to LD but was slightly longer due to searching the entire rightmost 
column and bottommost row for the lowest value rather than just identifying the value 
in the bottommost and rightmost corner of the matrix as LD does.

For depth experiments, our 3GOLD method was an average of 2.77 (S.D. 0.11) times 
faster than the average computation time for SLD and LD. For example, at a depth of 
100,000 sequences, 3GOLD computation finished at 97.16  s, SLD finished at 274.02  s 
and LD finished at 267.39  s. The linear trendline equation for 3GOLD depth compu-
tation time is y = 0.001x + 0.3411 with R2 = 0.9962 . The linear trendline equation for 
the SLD depth computation time is y = 0.0027x + 1.3613 with R2 = 0.9982 . The lin-
ear trendline equation for LD depth computation time is y = 0.0027x − 0.0365 with 
R2 = 0.9975 . During the length experiments, 3GOLD was on average 3.68 (S.D. 0.60) 
times faster than SLD or LD. For example, at length 100 3GOLD computation finished 
at 30.98  s, SLD finished at 101.29  s and LD finished at 96.13  s. The power trendline 
equation for 3 GOLD length computation time is y = 0.0058x1.8182 with R2 = 0.9936 . 
The power trendline equation for SLD length computation time is y = 0.0144x1.9146 
with R2 = 0.9951 . The power trendline equation for LD length computation time is 
y = 0.0144x1.9146 with R2 = 0.9951 . The results of these speed experiments are pre-
sented in Fig. 2.

Accommodating weighted errors

To accurately cluster error-rich TGS data, error types need to be accommodated or 
discriminated against according to their frequency. LD can successfully accommodate 
weighted errors by manipulating the assigned cost to each error type. The following is 
an example of manipulating the core of the classic Levenshtein distance algorithm to 

Fig. 2  3GOLD is faster than SLD and LD. A Computation time increases linearly with increased dataset depth. 
Sequence length was held constant at 50 bases. B Computation time increases quadratically with increased 
sequence length. Dataset depth was held constant at 10,000 sequences
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SLD, however, cannot successfully incorporate weighted errors into its calculation 

because the border values of the edit distance matrix table become erroneously inflated. 
An example of how weighted SLD fails is shown in Fig. 3.

3GOLD offers an accurate and novel way of determining error type and frequency by 
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the unweighted LD value. Therefore, 3GOLD combines the discriminatory benefits of 
weighted LD and the permissive benefits of SLD. For example, 3GOLD interprets the 
matrix table in Fig. 3(A) to determine that a single deletion is required to change “TAG​
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description of the 3GOLD algorithm is found in the methods section. The pseudocode 
of the 3GOLD algorithm is presented in Additional file 1.

Clustering simulated data

Singleton processing and resolving small clusters is a challenge for biological clustering 
tools. Therefore, we designed our simulated clustering experiments to test the sensitiv-
ity and specificity of clustering tools and their ability to correctly capture singletons at 
progressively more challenging parameters. The PacBio Sequencing Simulator (PaSS) 
tool was used to generate simulated Sequel reads [12]. Nanosim version 2.5 was used to 
create ONT MinION R9.4 simulated reads [13]. Six clustering parameters were tested: 
4 clusters of 125 sequences each, 5 clusters of 100 sequences each, 10 clusters of 50 
sequences each, 20 clusters of 25 sequences each, 25 clusters of 20 sequences each, and 
50 clusters of 10 sequences each. We compared the performance of 3GOLD, SLD, LD, 
Starcode, CD-HIT-EST and DNACLUST [14–17]. Starcode is a LD based DNA cluster-
ing tool. CD-HIT-EST and DNACLUST are non-LD based but were included for com-
parison due to their popularity as DNA clustering tools.

Clustering ability was assessed using five criteria: specificity, sensitivity, total correct 
sequences clustered, number of qualified clusters formed and the number of singletons. 
In all areas, 3GOLD had a strong advantage except for specificity. All clustering tools and 
cluster parameters across datasets from both simulators had specificity values of 100% 
except for the following 3GOLD results. For PaSS simulated clusters, the 3GOLD speci-
ficity was 99.42% (S.D. 1.40) at 20 × 25, 99.10% (S.D. 2.76) at 25 × 20 and 98.97% (S.D. 
3.66) at 50 × 10. For Nanosim simulated clusters, the 3GOLD specificity was 99.80% (S. 
D 0.40) at 4 × 125, 99.80% (S.D. 0.44) at 5 × 100, 99.60% (S.D. 0.85) at 10 × 50, 99.08% 
(S.D. 1.85) at 20 × 25, 97.48% (S.D. 5.30) at 25 × 20 and 95.82% (S.D. 8.65). These slight 
dips in 3GOLD specificity become progressively worse with increasingly small cluster 
sizes. As clusters become progressively larger in number and smaller in size, they begin 
to saturate the data field and reside closer to one another, which makes it harder to cor-
rectly resolve. No other clustering tool assessed had less than 100% specificity because of 
their relative inability to include sequences in clusters safeguarded against that risk.

Fig. 3  SLD cannot accommodate weighted errors. A LD comparison of TAG​CTA​GC to TAG​TAG​CT reveals 
that an insertion of “C’ and a deletion of “T” are required to make the second string match the first for an 
unweighted edit distance of 2. SLD analysis only considers the insertion of “C” for an unweighted edit 
distance of 1. B When insertions are weighted 1 and deletions are weighted 5, LD is appropriately 6, reflecting 
an insertion of “C” and a deletion of “T”. However, SLD is not 1 as expected, but rather 3
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There are three ways singletons responsible for 3GOLD specificity drops became 
erroneously clustered: a singleton that was equidistant between centroids was added 
to the larger of the two clusters, a singleton had accumulated enough error to have 
a weighted distance closer to an erroneous centroid, a singleton was “orphaned” by 
the original reference centroid being clustered as a sequence in another cluster, leav-
ing it to be clustered to another centroid that was within the clustering threshold. 
At parameter 4 × 125, PaSS had no incorrectly clustered sequences. Nanosim had 1 
equidistant singleton that was added to the larger of the two clusters. At a parameter 
of 5 × 100, PaSS also had no incorrectly clustered sequences. Nanosim had the same 
equidistant singleton that was added to the larger of the two clusters as in param-
eter 4 × 125. At parameter 10 × 50, PaSS continued to have no incorrectly clustered 
sequences. Nanosim had 2 equidistant singletons that were added to the larger of two 
clusters. At parameter 20 × 25, PaSS had 2 equidistant singletons that were added 
to the largest of two clusters as well as 1 singleton that was closer to an erroneous 
centroid. Nanosim had 4 equidistant singletons that were added to the largest of two 
clusters. At parameter 25 × 20, PaSS had 1 equidistant singleton that was added to 
the largest of two clusters as well as 1 singleton that was closer to an erroneous cen-
troid. PaSS also had 2 orphaned singletons. At 25 × 20, Nanosim produced 4 equidis-
tant singletons that were clustered to the largest cluster and 1 orphaned singleton. At 
parameter 50 × 10, PaSS had 3 singletons that were closer to an erroneous centroid 
and 2 equidistant singletons that were added to the largest of two clusters. Nano-
sim had 1 equidistant singleton that was added to the largest of two clusters and 5 
orphaned singletons.

3GOLD had statistically greater sensitivity than all other tools at all parameters 
tested with one exception. There was no significant difference between 3GOLD 
(99.40% S.D. 0.77) and SLD (74.40% S.D. 13.78) at the 4 × 125 clustering parameter 
as simulated by PaSS (P = 0.1713), despite the large 25% difference between the two 
averages. DNACLUST had the highest number of significantly different sensitivity 
scores at 28 out of the 60 total comparisons. Starcode had the second highest number 
at 22 significantly different sensitivity scores. The sensitivity scores of Starcode and 
DNACLUST were never significantly different from each other. Perhaps the similarity 
between DNACLUST and Starcode performance is found in the fact that they both 
use a variant of the Needleman-Wunsch algorithm and store sequences in a trie data 
structure. Starcode and LD never exhibited statistically significant sensitivity scores, 
presumably because they are the only unweighted LD-based clustering tools without 
frameshift allowance. The specificity and sensitivity raw data for PaSS simulations are 
presented as a table in Additional file 2. The specificity data for the PaSS simulations 
are presented graphically in Additional file 3. The specificity and sensitivity raw data 
for Nanosim simulations are presented as a table in Additional file  4. The specific-
ity data for the Nanosim simulations are presented graphically in Additional file  5. 
3GOLD clustered more sequences than all other tools assessed. For PaSS simulated 
sequences across all clustering parameters, 3GOLD clustered 92.23% (S.D. 7.04). For 
Nanosim simulated sequences across all clustering parameters, 3GOLD clustered 
85.27% (S.D. 13.79). The second-best performance was by SLD, which clustered only 
49.73% (S.D. 12.51) of PaSS simulated sequences and 36.43% (S.D. 26.94) of Nanosim 
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simulated sequences across all clustering parameters. Therefore, the performance dif-
ferential between 3GOLD and SLD remained comparable between clustered sensitiv-
ity, specificity and total sequences.

LD and Starcode clustered a comparable number of sequences. LD clustered 26.87% 
(S.D. 5.94) and Starcode clustered 24.47% (S.D. 3.89) of PaSS simulated sequences. For 
Nanosim simulated sequences, LD clustered 16.27% (S.D. 11.92) and Starcode clustered 
15.53% (S.D. 11.96). The similar clustering performance of LD and Starcode mirrors 
their sensitivity performance, presumably due to their use of unweighted LD without 
frameshift accommodation. Interestingly, SLD and CD-HIT-EST clustered about the 
same percentage of sequences. SLD clustered 49.73% (S.D. 12.51) of PaSS sequences, 
whereas CD-HIT-EST clustered 42.57% (S.D. 5.76) of PaSS simulated sequences. For 
the Nanosim simulated datasets, SLD clustered 36.43% (S.D. 26.94) and CD-HIT-EST 
clustered 31.07% (S.D. 20.44) of all sequences. CD-HIT-EST makes use of identity meas-
ures as a way of determining distance. Like LD and SLD, identity-based distance does 
not follow triangle inequality. Furthermore, CD-HIT-EST uses pairwise alignment and 
k-mer short word filtering in its clustering algorithm, which can accommodate occa-
sional frameshifts such as SLD. Although the clustering algorithm of CD-HIT-EST is 
most similar to that employed in DNACLUST, the distance metric used in DNACLUST 
is uniquely stringent among all tools assayed. DNACLUST therefore had the worst per-
formance by only clustering 16.37% (S.D. 5.07) of PaSS reads and 11.07% (S.D. 9.39) of 
Nanosim reads.

3GOLD produced far fewer singletons than all other compared clustering tools. 
The clustering parameter that resulted in the greatest number of singletons, regard-
less of clustering tool or simulator, was unsurprisingly the most challenging parameter 
of 50 × 10. At 50 × 10, 3GOLD clustering resulted in 30 singletons and 125 singletons 
from the PaSS- and Nanosim-generated datasets, respectively. In contrast, the second-
best performing clustering tool, SLD, left 257 singletons and 405 singletons generated 
by PaSS and Nanosim, respectively. The worst performer was DNACLUST, which left 
376 PaSS simulated singletons and 446 Nanosim simulated singletons. The raw data for 
total sequences clustered, number of qualified clusters formed, the number of single-
tons left, and the cluster size range are presented as a table in Additional file 6 for PaSS 
simulated datasets and Additional file 8 for Nanosim simulated datasets. The cluster size 
range data generated by PaSS is presented graphically in Additional file 7. The cluster 
size range data generated by Nanosim is presented graphically in Additional file 9.

Clustering biological data

To demonstrate the value of 3GOLD on clustering biological data, we chose a bar-
coded dataset that is particularly challenging to demultiplex [18]. The dataset consists 
of 96 barcodes comprised of a dual-barcode design and 56 bp in length. Molecules were 
sequenced by ONT MinION R9.4.1 chemistry. As before, we compared the clustering 
performance of 3GOLD, SLD, LD, Starcode, CD-HIT-EST and DNACLUST. The quality 
of clustering was assessed through specificity, sensitivity, total correct sequences clus-
tered, number of qualified clusters formed and the number of singletons.

For all performance metrics, 3GOLD outperformed the other clustering tools. Sen-
sitivity was 98.83% (S.D. 5.74) for 3GOLD, 70.84% (S.D. 13.04) for SLD, 46.07% (S.D. 
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10.45) for LD, 42.44% (S.D. 10.78) for Starcode, 28.43% (S.D. 8.59) for DNACLUST 
and 50.83% (S.D. 17.50) for CD-HIT-EST. All clustering sensitivity results were statis-
tically significant (P < 0.0001) except between CD-HIT-EST and LD (P = 0.0733) and 
between LD and Starcode (P = 0.3244). As was seen with the simulated datasets, sensi-
tivity scores between LD and Starcode were similar presumably because they both rely 
on unweighted LD as their clustering metric without frameshift allowance. Compared 
to the simulated datasets, the sensitivity performance of CD-HIT-EST decreased, likely 
due to the dual-barcode design and decreased error rate of the sequences. Therefore, 
the short-word filtering accuracy could have been reduced, allowing the sensitivity per-
formance of CD-HIT-EST to more closely match that seen with LD. As with the simu-
lated data, DNACLUST had the lowest sensitivity score due to its stringent clustering 
algorithm. Specificity for all clustering tools was 100% (S.D. 0.00). These results are pre-
sented in Table 1.

3GOLD correctly clustered more biological sequences than all other tools assessed. 
3GOLD correctly clustered 98.83% (S.D. 5.74) of all sequences. SLD had the second-best 
clustering performance by correctly clustering 70.84% (S.D. 13.04) of all sequences. LD, 
Starcode and CD-HIT-EST all correctly clustered about the same percentage. LD cor-
rectly clustered 43.67% (S.D. 10.45) of all sequences. Starcode correctly clustered 38.90% 
(S.D. 10.78) of all sequences. CD-HIT-EST correctly clustered 50.30% (S.D. 17.50) of all 
sequences. Unsurprisingly, DNACLUST had the worst performance by only correctly 
clustering 10.36% (S.D. 8.59) of all sequences.

3GOLD produced at least two orders of magnitude fewer singletons than the com-
peting clustering tools by leaving only 10 singletons. The greatest number of unclus-
tered single sequences was produced by DNACLUST, which left 4,045 singletons, likely 
due to the disadvantageous clustering metrics. SLD and CD-HIT-EST left comparable 
numbers of singletons at 2199 and 1827, respectively. It is likely that the similar perfor-
mance between SLD and CD-HIT-EST is due to the ability to accommodate occasional 
frameshifts. LD and Starcode, which both rely on unweighted LD without frameshift 
accommodation, left 3259 and 3463 singletons, respectively.

3GOLD clustering was completed in 3,830.411  s. Building the cluster matrix took 
3,698.292  s, whereas collapsing it into final clusters took only 132.119  s. In contrast, 
SLD and LD clustering took approximately eighteen times longer to compute, requir-
ing 69,712.716 s and 72,766.322 s, respectively. For SLD, 67,719.119 s were consumed in 

Table 1  Sensitivity and specificity of clustering tools on ONT MinION R9.4.1 biological data

Standard deviation values are presented inside parentheses. P values are presented inside brackets. Only statistically 
insignificant P values (P > 0.05) are presented in the table. All other P values are < 0.0001. The decision to only show 
insignificant values was made to reduce the size of the table for easier viewing and interpretation

Clustering tool Specificity Sensitivity range Sensitivity average Sensitivity insignificant P-values

3GOLD 100% (0.00) 100–67% 98.83% (5.74)

SLD 100% (0.00) 92–22% 70.84% (13.04)

LD 100% (0.00) 70–25% 46.07% (10.45) LD vs. CD-HIT-EST [0.0733]

Starcode 100% (0.00) 70–21% 42.44% (10.78) Starcode vs. LD [0.3244]

CD-HIT-EST 100% (0.00) 85–24% 50.83% (17.50)

DNACLUST 100% (0.00) 49–20% 28.43% (8.59)
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building the cluster matrix, whereas collapsing the cluster matrix took 1993.597 s. LD 
cluster matrix building took a similar amount of time as SLD cluster matrix building did, 
requiring 66,528.418  s. However, the matrix collapse and final cluster processing took 
much longer at 6237.904 s. This was due to LD clustering needing to process through 
many more singletons. 3GOLD had very few singletons to process through, so it was 
very quick in this regard. These findings are reported in Table 2.

Discussion
There are four possible downsides to using 3GOLD. First, input string lengths need to 
be uniform and therefore might require trimming prior to clustering. If 3GOLD were to 
broaden its application to include sequences of differing lengths, it might be able to do 
so by incorporating a normalized LD metric, such as generalized Levenshtein distance 
[19]. Second, the combination of identified errors can be inflated by selecting the low-
est cumulative error. For example, an insertion and deletion will be included in the dis-
tance calculation if they have a combined weight that is lower than a substitution weight, 
despite increasing the total number of errors between the strings by 1. Similarly, the 
preference for the lowest cumulative error weight between strings can lead to erroneous 
clustering. This drawback was seen a few times in clustering the simulated datasets. For 
example, as seen in the PacBio simulated 50 × 10 dataset, the bidirectional weighted dis-
tances calculated between the sequence GAC​TGC​CGC​AGT​TTC​TCT​TA and the refer-
ence centroid GAC​TCC​GCA​GTT​CAT​ATC​TC are 7 and 8. In contrast, the bidirectional 
weighted distance between GAC​TGC​CGC​AGT​TTC​TCT​TA and the experimental cen-
troid TAT​ACC​CGA​ACT​TTC​TCC​TA is 6 and 9, respectively. Therefore, the sequence 
to be clustered was closer to an erroneous centroid than the reference centroid. Finally, 
the accuracy of our clustering approach is at the expense of speed. As with any cluster-
ing algorithm, there is a trade-off between speed and accuracy. Clustering with 3GOLD 
might not be practical for very large datasets or datasets comprised of long sequences if 
time is more valuable than accuracy, despite the ability to run 3GOLD scripts in parallel, 
multithreaded and the currently employed speed improvement strategies.

Conclusions
We present modifications to the shortcomings of LD to optimize it for clustering error-
rich biological sequences. We successfully used 3GOLD metrics to find, characterize 
and cluster sequences. We show the benefits of 3GOLD on clustering simulated datasets 

Table 2  Characteristics of clusters formed on ONT MinION R9.4.1 biological data

Time was measured in seconds

Clustering tool Total clustered Singletons Qualified 
clusters

Cluster size range Time to cluster

3GOLD 9488 10 96 100–67 3,830.411

SLD 6801 2199 96 92–22 69,712.716

LD 4192 3259 91 70–25 72,766.322

Starcode 3735 3463 88 70–21 0.174

CD-HIT-EST 4829 1827 95 85–24 2.370

DNACLUST 995 4045 35 49–20 4.997



Page 11 of 18Logan et al. BMC Bioinformatics           (2022) 23:95 	

of short sequences as well as a biological dataset consisting of long barcodes (56 bp). We 
used a barcoded dataset because clustering accuracy can be assessed using known cen-
troids. However, a strength of our approach is the ability to accurately cluster sequences 
with no prior knowledge of cluster or centroid identity, especially if the clusters are 
small, densely populate the data field and prone to creating singletons. Therefore, our 
tool is well suited for clustering UMI data. There are no currently available tools for clus-
tering UMI data generated from TGS platforms.

Methods
Strategy for speed improvement

3GOLD initializes the LD matrix in the traditional manner until the border lengths 
equal τ + 1 , where τ is the total number of expected errors. Once the border lengths 
equal τ + 1 , the initialization increments diagonally. The border values halt during 
diagonal progression and continue to be incorporated into distance calculations. We 
drew inspiration for our strategy from the modified Needleman-Wunsch algorithm pre-
sented in the Starcode algorithm [14]. Furthermore, 3GOLD computation terminates 
if [i][j] ≥ h at any point in the matrix, where h = τ + f  and f  is the tolerated number 
of frameshift positions. Therefore, our approach differs from Starcode because it adds 
frameshift thresholds to the classic LD values at [i][j] . It also differs from SLD in that it 
allows the end user to place a reasonable cap on the frameshift allowance. Finally, simi-
lar to the trie techniques used by Starcode, we eliminate upstream matching bases from 
compared strings since the LD between them would be zero. An example of this strategy 
is presented in Additional file 10.

Datasets and computational parameters for speed experiments

To test the effects of sequence length on computational efficiency, we generated 10 
random datasets of 10,000 sequences each. The sequences in the first dataset were 10 
bases long, and each subsequent dataset increased sequence length by 10 bases until 
sequences reached 100 bases long. All sequences in the shorter datasets were prefixes for 
the longer datasets to reduce any possible influence of different sequences among data-
sets. To test the effects of dataset depth on speed, we created 10 random datasets rang-
ing in size from 10,000 sequences to 100,000 sequences. The length of sequences in all 
datasets was 50 bases. The scripts used for testing computational speed received dataset 
inputs organized such that one sequence was presented per line. The first sequence in 
the datasets served as the reference for comparison to all other sequences. For 3GOLD 
computations, the frameshift allowance was calculated as 20% of the sequence length, 
and the error rate was computed as 10% of the sequence length. All error weights were 
assigned as 1. These single-threaded experiments were run on a machine with a 2.9 GHz 
Intel Core i5 processor and 8 GB of RAM.

Algorithm for accommodating weighted errors and frameshift

The discrepancy in SLD weighted error computations can be overcome by compar-
ing the value and position of the unweighted SLD along the matrix table borders to 
the unweighted LD to interpret the number and type of errors, respectively. Briefly, 
deletions move the position of an unweighted SLD away from the classic LD position 
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leftward along the j border, whereas insertions move the SLD up along the i border. Sub-
stitutions or indel pairs result in no net movement of the SLD position. SLD can either 
have a single position or multiple. If SLD is found repeatedly on a single border, the posi-
tion closest to the [i][j] corner reveals the error characteristics. If SLD is found on both 
borders excluding the corner, analysis is completed using the value that represents the 
lowest error weight. If insertions and deletions have the same error weight and the SLD 
is found on both borders, error type interpretation is done using the values found on the 
i border to reduce computational time. If insertions and deletions have differing weights, 
bidirectional analysis is performed. In all cases, 3GOLD will select the lowest penalty for 
all error combinations.

Clustering approach

To demonstrate the quality of 3GOLD for clustering, we combine 3GOLD metrics 
with an all-to-all sequence comparison approach. Sequences that are within the weight 
threshold are clustered together. Sequences that are not clustered to any other sequences 
are considered singletons. Once all sequences have been compared to all sequences, 
clusters that match at least 80% of their sequences to a larger related cluster are col-
lapsed into the larger clusters. If the sequences that are exclusive to the smaller cluster 
are not within the weighted distance threshold of the seed sequence of the larger clus-
ter, they are not merged. Once all clusters have merged and have collapsed, centroids 
are determined by density. We consider the centroid of a cluster to meet two criteria: it 
clustered the most sequences to itself to form the current cluster, and it has the shortest 
average distance between itself and all its clustered sequences. Our centroid approach 
is compatible with the prototype-based notion of centroids, where centroids consist of 
identically repeated sequences. Our approach is advantageous, however, because it can 
accommodate asymmetrical, noisy and entwined clusters such as those produced by 
TGS platforms. Once all clusters are formed, the centroids are then compared to all left-
over singletons. Singletons that are within the threshold distance of a centroid become 
clustered and then removed from the singleton set. Our object-oriented clustering codes 
work for both Linux and MacOS systems. The 3GOLD clustering scripts for MacOS are 
called ThreeGold_MacOS_Matrix_Building.pl, ThreeGold_MacOS_Matrix_Building.
pm, ThreeGold_MacOS_Matrix_Clustering.pl and ThreeGold_MacOS_Matrix_Cluster-
ing.pm. Matrix building is performed before matrix clustering.

Clustering performance was characterized by sensitivity, specificity, total sequences 
clustered, number of qualified clusters formed and the number of singletons. Sensitiv-
ity was determined by (100− (100(p/m))) , where p represents the number of sequences 
only found in the reference cluster and not in the experimental cluster and m repre-
sents the number of sequences in the reference cluster. Specificity was computed by 
(t − u/t)(100) where t represents the total number of sequences found in the reference 
cluster and u represents the total number of unclustered sequences. For sequences to be 
considered “clustered” and included in specificity and sensitivity analysis, they needed 
to have at least 20% sensitivity and a size threshold that resulted in no more than the 
expected number of clusters. Cluster specificity and sensitivity were assessed using Tuk-
ey’s multiple comparisons test with ordinary one-way ANOVA for the biological data 
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and two-way ANOVA for the simulated data. Our script for characterizing clustering 
quality is called Characterize_Quality_Of_Clusters.pl.

Characterizing sequencing error profiles

Using 3GOLD clustering metrics requires the end user to input information on the error 
number threshold, the weight threshold, the weight assigned to an insertion, deletion 
and substitution error and the number of frameshifts to accommodate. We built an 
error profiling script that characterizes the expected input parameters between a refer-
ence and an experimental string of data, except for establishing a frameshift limit. If the 
end user does not determine how much frameshift to allow, the default is 15% of the 
sequence length.

Our training script assumes that the input strings have a common beginning. If the 
two strings do not match at their beginnings, the end user will need to tell the code 
where to start computing the interstring distance along the experimental sequence. This 
position can be determined visually or discovered through pairwise alignment of the 
two sequences. The length of the longer string will be trimmed to match the length of 
the shorter string before calculations begin. It is assumed that one string will be larger 
than the other based on the instances of indels. Relying on the algorithmic behavior of 
3GOLD, the error profiling script counts the number of errors between the reference 
and experimental strings. It also logs the occurrences of insertions, deletions and substi-
tutions and then suggests weights to be assigned to each. Because an insertion and dele-
tion pair can technically produce the same output as a substitution in some rare cases, 
the end user is asked to clarify if it is more likely, less likely or equally likely to have a 
substitution or both an insertion and deletion. End users are also asked to judge whether 
insertions occur more, less or equally as frequently as deletions. These relationships help 
establish probability and weight relationships. When fitting the error profiling output to 
the desired data, end users should remember that errors occur as whole numbers rather 
than rational numbers. Our error profiling script is called ThreeGold_Error_Profiling.pl.

Simulated datasets for clustering

We tested 3GOLD’s ability to cluster sequences generated by PaSS and Nanosim ver-
sion 2.5, which simulate PacBio Sequel and ONT MinION R9.4 reads, respectively [12, 
13]. We designed our sequences to be 20 bases long to resemble the longer barcodes or 
UMIs that have been used [7, 20]. To ensure adequate cluster separation, our randomly 
generated centroids were designed to be greater than LD 8 apart. Therefore, each of the 
20-mer centroids could harbor 20% error (4 errors) without risk of neighboring clusters 
bleeding into each other.

Every centroid-based cluster was formed by sending a fasta file through the simulator 
that contained 10,000 repeated copies of the centroid sequence, for a total input length 
of 200,000 bases. Each simulator got the same 50 input sequences. All 50 input fastas 
were concatenated into a single file as input into PaSS for the first step in the simula-
tion of making an index file. The command line parameters used for PaSS simulations 
were “-list percentage.txt -index index -m pacbio_sequel -c sim.config -r 10,000”. We 
used Nanosim version 2.5 in genome mode and used the pretrained human NA12878 
DNA FAB49712 guppy model. Each of the 50 input fastas served individually as an input 
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reference genome. The other command line parameters used for Nanosim simulations 
were “-n 1 -max 11,000 -min 11,000 -b guppy -s 0 -dna_type linear”.

Error profiles of the simulated datasets were determined. Analysis of 195,859 bases 
from 20 PacBio Sequel simulated reads revealed that PaSS introduced 21,646 errors 
(11.10% error rate) with 14,362 insertions (66.35%), 7,284 deletions (33.70%) and 0 sub-
stitutions (0.00%) according to the ThreeGold_Error_Profiling.pl output when select-
ing “less, more”. Since the number of errors appearing in sequences can only be whole 
numbers, we rounded up to allow for 3 errors and assigned the following weights: inser-
tions 1, deletions 2, substitutions 4, so that a substitution is weighted greater than an 
insertion and deletion. Analysis of 145,000 bases from 20 ONT MinION R9.4 simulated 
reads revealed that Nanosim introduced 14,727 errors (10.13% error rate) with 4,463 
insertions (30.30%), 10,264 deletions (69.70%) and 0 substitutions (0.00%) according to 
ThreeGold_Error_Profiling.pl output when selecting “less, more”. Therefore, we assigned 
a weight of 2 for insertions, 1 for deletions and 4 for substitutions and allowed 3 errors. 
For both PaSS and Nanosim reads, we accommodated a frameshift allowance of 20% 
when characterizing error profiles. The 20% frameshift allowance allows the full cap-
ture of concentrated errors in the neighboring sequence if it were to appear only at the 
periphery of the capture.

To process the simulated output files into formats suitable for clustering and analy-
sis, we used a series of four scripts. The first script is called Extract_Simulated_Files.pl 
and is designed to select one of the many output files as a representative. The input is 
a directory of centroids. The code matches a centroid to the name of the simulated file 
and simply takes the first match. The second script is Trim_simulated_reads.pl, which 
finds simulated sequences that are within the distance threshold for clustering. It relies 
on a sliding window approach with a step size of 1 until a perfect match is made, at 
which point the step size turns to 20, since sequences of interest are 20 bases long and 
are in tandem. We relied on the determined error profiles of the simulators for extrac-
tion with a frameshift allowance of 15% and a weight threshold of 8. The third script, 
Order_Untrimmed_Sequences.pl, was designed to keep clustering performance uniform 
across clustering parameters by sorting the discovered sequences to cluster by their 
weighted distance from their respective centroids. In this way, the sequences chosen 
to cluster were beneath the weighted threshold but were selected with a preference for 
noisier sequences. The final code used in processing simulated data was Format_simu-
lated_data_for_clustering.pl. This script took the sorted sequences to cluster, shuffled 
them and then formatted them per the desired clustering parameters. The output was 
both reference cluster files and files of sequences to cluster.

Six clustering parameters were tested: 4 clusters of 125 sequences each, 5 clusters 
of 100 sequences each, 10 clusters of 50 sequences each, 20 clusters of 25 sequences 
each, 25 clusters of 20 sequences each, and 50 clusters of 10 sequences each. To maxi-
mize the challenge of clustering, we preferentially included the noisiest of the discov-
ered sequences. We used an error threshold of 3 edit distances for 3GOLD, SLD, LD 
and Starcode. Starcode was run with sphere clustering, as it was the most similar clus-
tering strategy to 3GOLD. Starcode output was generated using the “—print-clusters” 
parameter, which does not include duplicates. We appropriately replaced all duplicated 
sequences that were otherwise omitted from the Starcode output before comparing the 
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results to reference clusters. We used default parameters for both DNACLUST and the 
web-based CD-HIT-EST tool. The similarity for both DNACLUST and CD-HIT-EST 
was set at 0.85 to accommodate three errors within a 20-base sequence ( 1− 0.15 = 0.85

).

Biological datasets for clustering

To show that our approach works on biological data, we chose to analyze a complex bar-
coded dataset consisting of 96 dual barcodes of length 56 bp [18]. The samples used for 
this dataset were 96 different meticillin-resistant Staphylococcus aureus isolates. Dual-
barcode architecture consisted of eight barcodes that were individually combined with 
forward and reverse primers and introduced during PCR. The resulting amplicons were 
then barcoded according to the ONT 1D native barcoding genomic DNA protocol using 
the native barcoding expansion 1—12 kit EXP-NBD103 and the ligation sequencing kit 
1D SQK-LSK109. The barcoded reads were generated by ONT MinION R9.4.1 chemis-
try using a single flow cell and sequenced using MinKNOW version 2.1. Albacore ver-
sion 2.3.1 was then used to extract FASTQ reads. More information about the sequences 
and barcode design can be found in the original manuscript by Liou and colleagues, and 
the original barcoded datasets can be found in Figshare [18, 21].

To determine the error rate of the biological sequences, we chose the first four reads 
of the first barcoded set, BC01BC01. These were processed through BLAST one at a 
time, and the first hit for each sequence was used as the reference sequence. Analysis of 
the 4,984 bases through the ThreeGold_Error_Profiling.pl script revealed a total of 238 
errors (121 insertions, 117 deletions) for an error rate of 4.78%. We rounded up to an 
error rate of 5%, allowing for 3 errors out of the 56-base barcode. The weights assigned 
to insertions and deletions were both 1, and substitutions were weighted 3. The weight 
threshold was determined to be 5.

Using these 3GOLD metrics for weighted errors and weight threshold, we extracted 
barcode sequences using a 2-step sliding-window approach to search for matches to 
the known barcode sequences. Matches were made against the original 96 barcode 
sequences published by Liou and colleagues [18, 22]. We accommodated a frameshift of 
4. Our frameshift allowance was a smaller percentage of the sequence of interest length 
than that used for the simulated datasets because we were extracting the single best 
match out of an entire fasta and the sequence of interest was more than twice as long. 
Therefore, we could afford a higher stringency in extracting matches. We searched the 
96-barcoded file database until 100 matches per barcode were found, for a total database 
of 9,600 sequences to cluster. We worked with this subset of the original biological data-
set to mitigate the computational challenges associated with clustering the full dataset. 
We maintained a uniform cluster size of 100 to make interpreting the specificity and 
sensitivity outcomes intuitive and uniform across all clusters. All barcode searches dis-
covered at least one perfect match, ensuring that each cluster could be built around the 
appropriate centroid. Discovered barcode matches were formatted into reference clus-
ters and multifasta files of sequences to cluster.

The other clustering tools used did not accommodate frameshift or weighted 
error parameters. Therefore, SLD, LD and Starcode only allowed for an error thresh-
old of 3 for clustering. The command used for Starcode was “./starcode –d 3 -s -i 
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All_Seqs_To_Cluster.txt -o Clustered_by_starcode.txt –seq-id”. The percent similarity 
that we allowed for DNACLUST and for CD-HIT-EST clustering was 0.94642, since 
a 3-error allowance was calculated by 53/56. Therefore, the command used for DNA-
CLUST was “dnaclust -s 0.9465 –i All_Seqs_To_Cluster.txt > Clustered_by_dnaclust.txt”. 
The online CD-HIT-EST tool was used with default parameters except for allowing a 
sequence identity cut-off of 0.9465.

Determining weighted distance threshold for clustering

For both the simulated and biological datasets, sequences were extracted using a sliding 
window approach to determine an appropriate weight threshold for clustering. For the 
simulated datasets, the discovered error profiles and a 20% frameshift allowance were 
used without weight threshold limits to collect matches. The step size for the sliding 
window search was 1 until a perfect match between the sequence and search probe was 
found. Thereafter, the step size became 20 since matches are expected to be in sequen-
tial order onward. The centroid sequences served as the search probes. All 50 simulated 
sequences produced by both Nanosim and PaSS were searched for matches using the 
script Weight_Threshold_Simulated_Datasets.pl. The Nanosim-generated sequences 
produced 8,205 matches, and the PaSS-simulated sequences produced 5,463 matches. 
Matches were graphed, and the weight threshold was determined by the point on the 
graph of the steepest inflection point and a > 99% representation of the matches. For 
the Nanosim simulated data, 67 matches had weights due to two or more substitutions, 
whereas 99.18% of the 8,205 matches did not. Therefore, the weight threshold for the 
Nanosim data was set at 8. For the PaSS simulated data, 39 matches had weights due to 
two or more substitutions, whereas 99.28% of the 5,463 matches did not. Therefore, the 
weight threshold for the PaSS data was also set at 8.

For the biological dataset, we searched all 6,010 sequences of the first cluster 
(BC01BC01) of sequences for the single best match per sequence using a sliding win-
dow search of step 1, 15% frameshift allowance and the discovered error profile weights 
(insertions weighted 1, deletions weighted 1, substitutions weighted 3) without weight 
threshold limits. The weight of every match was graphed. A total of 4,440 out of the 
6,010 (73.87%) sequences had a cumulative error weight of 5, with no sequences having 
a cumulative weight higher than that. Therefore, the clustering weight threshold for the 
biological dataset was set to 5.

Once the appropriate weight threshold was established, sequences were selected for 
clustering by following the same steps as for determining the weight threshold but with 
the determined weight threshold parameter used. These weight threshold distribution 
graphs are included in the supplemental information as Additional file 11.

Abbreviations
3GOLD: Third-generation optimized Levenshtein distance; LD: Levenshtein distance; ONT: Oxford nanopore technolo-
gies; PacBio: Pacific biosciences; PaSS: PacBio sequencing simulator; SD: Standard deviation; SLD: Sequence-Levenshtein 
distance; SMRT: Single molecule real-time; TGS: Third-generation sequencing; UMI: Unique molecular identifier.
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