
3GOLD: optimized Levenshtein distance
for clustering third‑generation sequencing data
Robert Logan1,2, Zoe Fleischmann1, Sofia Annis1, Amy Wangsness Wehe3, Jonathan L. Tilly1, Dori C. Woods1 and
Konstantin Khrapko1* 

Abstract 

Background:  Third-generation sequencing offers some advantages over next-gener-
ation sequencing predecessors, but with the caveat of harboring a much higher error
rate. Clustering-related sequences is an essential task in modern biology. To accurately
cluster sequences rich in errors, error type and frequency need to be accounted for.
Levenshtein distance is a well-established mathematical algorithm for measuring the
edit distance between words and can specifically weight insertions, deletions and
substitutions. However, there are drawbacks to using Levenshtein distance in a biologi-
cal context and hence has rarely been used for this purpose. We present novel modi-
fications to the Levenshtein distance algorithm to optimize it for clustering error-rich
biological sequencing data.

Results:  We successfully introduced a bidirectional frameshift allowance with end-
user determined accommodation caps combined with weighted error discrimination.
Furthermore, our modifications dramatically improved the computational speed of
Levenstein distance. For simulated ONT MinION and PacBio Sequel datasets, the aver-
age clustering sensitivity for 3GOLD was 41.45% (S.D. 10.39) higher than Sequence-
Levenstein distance, 52.14% (S.D. 9.43) higher than Levenshtein distance, 55.93% (S.D.
8.67) higher than Starcode, 42.68% (S.D. 8.09) higher than CD-HIT-EST and 61.49%
(S.D. 7.81) higher than DNACLUST. For biological ONT MinION data, 3GOLD clustering
sensitivity was 27.99% higher than Sequence-Levenstein distance, 52.76% higher than
Levenshtein distance, 56.39% higher than Starcode, 48% higher than CD-HIT-EST and
70.4% higher than DNACLUST.

Conclusion:  Our modifications to Levenshtein distance have improved its speed
and accuracy compared to the classic Levenshtein distance, Sequence-Levenshtein
distance and other commonly used clustering approaches on simulated and biologi-
cal third-generation sequenced datasets. Our clustering approach is appropriate for
datasets of unknown cluster centroids, such as those generated with unique molecular
identifiers as well as known centroids such as barcoded datasets. A strength of our
approach is high accuracy in resolving small clusters and mitigating the number of
singletons.

Keywords:  Clustering, Edit-distance, Single-molecule sequencing

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Logan et al. BMC Bioinformatics (2022) 23:95
https://doi.org/10.1186/s12859-022-04637-7 BMC Bioinformatics

*Correspondence:
k.khrapko@northeastern.edu
1 College of Science,
Department of Biology,
Northeastern University, 330
Huntington Ave, Boston, MA
02115, USA
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04637-7&domain=pdf

Page 2 of 18Logan et al. BMC Bioinformatics (2022) 23:95

Background
Third-generation sequencing (TGS) platforms such as Pacific Biosciences (PacBio)
Single-Molecule Real-Time (SMRT) Sequencing and Oxford Nanopore Technolo-
gies (ONT) produce average read lengths of over 10,000 bases [1]. Long reads offer
large-scale accuracy at the expense of a high per-base error rate compared to Sanger
sequencing and next-generation sequencing. Error rates of TGS platforms have been
reported to be as low as ≤ 1% for PacBio HiFi reads to 15% or higher for ONT R9.4.1
chemistry [2–4]. As technology continues to rapidly improve, it is expected that these
error rates will drop.

TGS error is random. Therefore, clustering related reads to build a consensus can
resolve the error. Clustering related reads for this purpose can be assisted with the
use of random short (4–20 bp) oligonucleotides appended to individual molecules in
a specific genomic locus, such as barcodes or unique molecular identifiers (UMIs) [5].
There are other molecular sequences that have biologically relevant reasons for being
clustered, such as motifs, promoters and repeated genomic sequences [6]. In all cases,
these sequences are subject to sequencing error, which needs to be corrected before
they can be clustered appropriately [7].

All clustering algorithms are based on the notion of edit distance between strings.
Edit distance is a measurement of the number of insertions, deletions and substitu-
tions required to make one sequence match another. The most commonly used edit
distance algorithm is Levenshtein distance (LD) [8]. LD has frequently been used in
computerized spell checking, speech recognition, and dialect and plagiarism detec-
tion. Rarely has it been used in molecular biology analysis. There are three hurdles
that LD needs to overcome for it to be optimized for biological applications, espe-
cially in clustering error-rich TGS data. First, it needs to accommodate frameshift due
to indels. Second, the time complexity needs to be reduced to make it more efficient
for large datasets. Third, weighted errors must be accommodated to match the error
profile of the data. We have, for the first time, overcome the challenges associated
with combining these improvements in our approach called Third-Generation Opti-
mized Levenshtein distance (3GOLD). We demonstrate that 3GOLD metrics cou-
pled with a density-based clustering algorithm are able to accurate cluster sequences
without prior knowledge of cluster centroid sequences, making it well suited for UMI
datasets as well as barcoded datasets.

Results
Accommodating frameshift

Traditional LD is calculated to assume that the lengths of the two sequences being
compared are absolute. LD can be computed between two strings that have differ-
ing lengths. However, LD cannot interpret changes at sequence borders due to an
insertion or deletion as being frameshift consequence of the internal errors when the
sequence of interest is embedded in a larger sequence. Biological sequences of inter-
est for error correction, locating or clustering are subject to frameshift errors, since
they are merely a subsequence of the whole in which they find themselves.

Page 3 of 18Logan et al. BMC Bioinformatics (2022) 23:95 	

This limitation of LD has been addressed in the development of Sequence-Leven-
shtein distance (SLD) [9]. SLD accommodates a truncation or elongation of sequence
A to match the length of sequence B without an increase in the distance calculation,
provided that A is a prefix of B . Therefore, SLD is only adequate for sequences that
experience mutations leading to a frameshift on the downstream (3’) border of the
sequence of interest. This occurrence will not always be the case and is subject to
how the sequence of interest is identified, especially when it is embedded as a subse-
quence. Consequently, SLD is limited to an unrealistically simple assumption of what
nucleotide sequences are like that need to be clustered, found or error corrected.
Although the development of SLD was an important step in the right direction for
making LD appropriate for a biological context, it falls short of truly being adequate
for most situations. The benefit of SLD was more theoretical than practical. There are
many instances in which DNA sequences need to rely on edit distances for analysis
while being embedded in an entire molecule. For example, ligation adapters, primers,
probes and sequence loci that are alignment products can all have error-induced bor-
der frameshifts in an upstream (5’) position [10].

To overcome this limitation of SLD, we included mirrored SLD in 3GOLD computa-
tions to accommodate both upstream and downstream frameshifts. This can be accom-
plished by computing the distance between words as they appear as well as between the
reverse of both words. The lowest edit distance value between the comparisons is used
in clustering threshold analysis. An example of this improvement is shown in Fig. 1.

Speed improvement

Previous attempts at reducing LD computational speed have focused on capturing the
value in the position at the last column and last row of the LD matrix. However, we are
interested in capturing the SLD, which is the lowest value along the rightmost column

Fig. 1  3GOLD accommodates upstream and downstream frameshift. A SLD is lower than LD when
computing a single deletion-induced downstream frameshift. If an upstream frameshift occurs due to
the single base deletion, there is no benefit to using SLD over LD. B The benefit of SLD accommodating
frameshift can be rescued in the case of an upstream frameshift by calculating the SLD of mirrored
sequences, effectively converting upstream frameshift to downstream frameshift

Page 4 of 18Logan et al. BMC Bioinformatics (2022) 23:95

and the bottommost row in the LD matrix, not just the corner intersection between
them. Therefore, earlier strategies are insufficient for our purposes. By appropriately
reducing the number of computations required by 3GOLD while still capturing the
SLD value, we have been able to reduce 3GOLD’s computational time compared to LD
and SLD. We tested the effects of dataset length and depth on our speed improvements
using identical Perl scripts except for edit distance metrics subroutines. As the sequence
length increased, the computational time increased quadratically, as expected [11]. As
the database depth increased, the computational time increased linearly, which was also
expected because the sequence length was held constant. The SLD computational time
was nearly identical to LD but was slightly longer due to searching the entire rightmost
column and bottommost row for the lowest value rather than just identifying the value
in the bottommost and rightmost corner of the matrix as LD does.

For depth experiments, our 3GOLD method was an average of 2.77 (S.D. 0.11) times
faster than the average computation time for SLD and LD. For example, at a depth of
100,000 sequences, 3GOLD computation finished at 97.16 s, SLD finished at 274.02 s
and LD finished at 267.39 s. The linear trendline equation for 3GOLD depth compu-
tation time is y = 0.001x + 0.3411 with R2 = 0.9962 . The linear trendline equation for
the SLD depth computation time is y = 0.0027x + 1.3613 with R2 = 0.9982 . The lin-
ear trendline equation for LD depth computation time is y = 0.0027x − 0.0365 with
R2 = 0.9975 . During the length experiments, 3GOLD was on average 3.68 (S.D. 0.60)
times faster than SLD or LD. For example, at length 100 3GOLD computation finished
at 30.98 s, SLD finished at 101.29 s and LD finished at 96.13 s. The power trendline
equation for 3 GOLD length computation time is y = 0.0058x1.8182 with R2 = 0.9936 .
The power trendline equation for SLD length computation time is y = 0.0144x1.9146
with R2 = 0.9951 . The power trendline equation for LD length computation time is
y = 0.0144x1.9146 with R2 = 0.9951 . The results of these speed experiments are pre-
sented in Fig. 2.

Accommodating weighted errors

To accurately cluster error-rich TGS data, error types need to be accommodated or
discriminated against according to their frequency. LD can successfully accommodate
weighted errors by manipulating the assigned cost to each error type. The following is
an example of manipulating the core of the classic Levenshtein distance algorithm to

Fig. 2  3GOLD is faster than SLD and LD. A Computation time increases linearly with increased dataset depth.
Sequence length was held constant at 50 bases. B Computation time increases quadratically with increased
sequence length. Dataset depth was held constant at 10,000 sequences

Page 5 of 18Logan et al. BMC Bioinformatics (2022) 23:95 	

accommodate weighted error. Given two strings a, b of known lengths |a| = i and
∣

∣b
∣

∣ = j
respectively, the LD lev

(

i, j
)

 between strings a and b is

where K = 0 if (ai = bi) otherwise K = 1 . The added values can be manipulated to
reflect the error weight of substitutions

(

lev
(

i − 1, j − 1
))

 , deletions
(

lev
(

i, j − 1
))

 or
insertions

(

lev
(

i − 1, j
))

 . The following example represents the modification of LD algo-
rithm to weight insertions twice as much as deletions and substitutions. Given two
strings a, b of known lengths |a| and

∣

∣b
∣

∣ respectively, the LD lev
(

i, j
)

 between strings a and
b is

where K = 0 if (ai = bi) otherwise K = 1.
The following example represents the modification of LD algorithm to weight dele-

tions twice as much as insertions and substitutions. Given two strings a, b of known
lengths |a| and

∣

∣b
∣

∣ respectively, the LD lev
(

i, j
)

 between strings a and b is

where K = 0 if (ai = bi) otherwise K = 1.
The following example represents the modification of LD algorithm to weight substitu-

tions twice as much as insertions and deletions. Given two strings a, b of known lengths
|a| and

∣

∣b
∣

∣ respectively, the LD lev
(

i, j
)

 between strings a and b is

where K = 0 if (ai = bi) otherwise K = 2.
SLD, however, cannot successfully incorporate weighted errors into its calculation

because the border values of the edit distance matrix table become erroneously inflated.
An example of how weighted SLD fails is shown in Fig. 3.

3GOLD offers an accurate and novel way of determining error type and frequency by
interpreting the unweighted SLD value and position on the matrix by comparing it to
the unweighted LD value. Therefore, 3GOLD combines the discriminatory benefits of
weighted LD and the permissive benefits of SLD. For example, 3GOLD interprets the
matrix table in Fig. 3(A) to determine that a single deletion is required to change “TAG​
CTA​GC” to “TAG​TAG​CT”. In this case, “C” following the first “G” has been deleted. A

lev
�

i, j
�

=















max
�

i, j
�

if min
�

i, j
�

= 0,

min







lev
�

i− 1, j
�

+ 1

lev
�

i, j− 1
�

+ 1

lev
�

i− 1, j− 1
�

+ K

otherwise

lev
�

i, j
�

=















max
�

i, j
�

if min
�

i, j
�

= 0,

min







lev
�

i− 1, j
�

+ 2

lev
�

i, j− 1
�

+ 1

lev
�

i− 1, j− 1
�

+ K

otherwise

lev
�

i, j
�

=















max
�

i, j
�

if min
�

i, j
�

= 0,

min







lev
�

i− 1, j
�

+ 1

lev
�

i, j− 1
�

+ 2

lev
�

i− 1, j− 1
�

+ K

otherwise

lev
�

i, j
�

=















max
�

i, j
�

if min
�

i, j
�

= 0,

min







lev
�

i− 1, j
�

+ 1

lev
�

i, j− 1
�

+ 1

lev
�

i− 1, j− 1
�

+ K

otherwise

Page 6 of 18Logan et al. BMC Bioinformatics (2022) 23:95

description of the 3GOLD algorithm is found in the methods section. The pseudocode
of the 3GOLD algorithm is presented in Additional file 1.

Clustering simulated data

Singleton processing and resolving small clusters is a challenge for biological clustering
tools. Therefore, we designed our simulated clustering experiments to test the sensitiv-
ity and specificity of clustering tools and their ability to correctly capture singletons at
progressively more challenging parameters. The PacBio Sequencing Simulator (PaSS)
tool was used to generate simulated Sequel reads [12]. Nanosim version 2.5 was used to
create ONT MinION R9.4 simulated reads [13]. Six clustering parameters were tested:
4 clusters of 125 sequences each, 5 clusters of 100 sequences each, 10 clusters of 50
sequences each, 20 clusters of 25 sequences each, 25 clusters of 20 sequences each, and
50 clusters of 10 sequences each. We compared the performance of 3GOLD, SLD, LD,
Starcode, CD-HIT-EST and DNACLUST [14–17]. Starcode is a LD based DNA cluster-
ing tool. CD-HIT-EST and DNACLUST are non-LD based but were included for com-
parison due to their popularity as DNA clustering tools.

Clustering ability was assessed using five criteria: specificity, sensitivity, total correct
sequences clustered, number of qualified clusters formed and the number of singletons.
In all areas, 3GOLD had a strong advantage except for specificity. All clustering tools and
cluster parameters across datasets from both simulators had specificity values of 100%
except for the following 3GOLD results. For PaSS simulated clusters, the 3GOLD speci-
ficity was 99.42% (S.D. 1.40) at 20 × 25, 99.10% (S.D. 2.76) at 25 × 20 and 98.97% (S.D.
3.66) at 50 × 10. For Nanosim simulated clusters, the 3GOLD specificity was 99.80% (S.
D 0.40) at 4 × 125, 99.80% (S.D. 0.44) at 5 × 100, 99.60% (S.D. 0.85) at 10 × 50, 99.08%
(S.D. 1.85) at 20 × 25, 97.48% (S.D. 5.30) at 25 × 20 and 95.82% (S.D. 8.65). These slight
dips in 3GOLD specificity become progressively worse with increasingly small cluster
sizes. As clusters become progressively larger in number and smaller in size, they begin
to saturate the data field and reside closer to one another, which makes it harder to cor-
rectly resolve. No other clustering tool assessed had less than 100% specificity because of
their relative inability to include sequences in clusters safeguarded against that risk.

Fig. 3  SLD cannot accommodate weighted errors. A LD comparison of TAG​CTA​GC to TAG​TAG​CT reveals
that an insertion of “C’ and a deletion of “T” are required to make the second string match the first for an
unweighted edit distance of 2. SLD analysis only considers the insertion of “C” for an unweighted edit
distance of 1. B When insertions are weighted 1 and deletions are weighted 5, LD is appropriately 6, reflecting
an insertion of “C” and a deletion of “T”. However, SLD is not 1 as expected, but rather 3

Page 7 of 18Logan et al. BMC Bioinformatics (2022) 23:95 	

There are three ways singletons responsible for 3GOLD specificity drops became
erroneously clustered: a singleton that was equidistant between centroids was added
to the larger of the two clusters, a singleton had accumulated enough error to have
a weighted distance closer to an erroneous centroid, a singleton was “orphaned” by
the original reference centroid being clustered as a sequence in another cluster, leav-
ing it to be clustered to another centroid that was within the clustering threshold.
At parameter 4 × 125, PaSS had no incorrectly clustered sequences. Nanosim had 1
equidistant singleton that was added to the larger of the two clusters. At a parameter
of 5 × 100, PaSS also had no incorrectly clustered sequences. Nanosim had the same
equidistant singleton that was added to the larger of the two clusters as in param-
eter 4 × 125. At parameter 10 × 50, PaSS continued to have no incorrectly clustered
sequences. Nanosim had 2 equidistant singletons that were added to the larger of two
clusters. At parameter 20 × 25, PaSS had 2 equidistant singletons that were added
to the largest of two clusters as well as 1 singleton that was closer to an erroneous
centroid. Nanosim had 4 equidistant singletons that were added to the largest of two
clusters. At parameter 25 × 20, PaSS had 1 equidistant singleton that was added to
the largest of two clusters as well as 1 singleton that was closer to an erroneous cen-
troid. PaSS also had 2 orphaned singletons. At 25 × 20, Nanosim produced 4 equidis-
tant singletons that were clustered to the largest cluster and 1 orphaned singleton. At
parameter 50 × 10, PaSS had 3 singletons that were closer to an erroneous centroid
and 2 equidistant singletons that were added to the largest of two clusters. Nano-
sim had 1 equidistant singleton that was added to the largest of two clusters and 5
orphaned singletons.

3GOLD had statistically greater sensitivity than all other tools at all parameters
tested with one exception. There was no significant difference between 3GOLD
(99.40% S.D. 0.77) and SLD (74.40% S.D. 13.78) at the 4 × 125 clustering parameter
as simulated by PaSS (P = 0.1713), despite the large 25% difference between the two
averages. DNACLUST had the highest number of significantly different sensitivity
scores at 28 out of the 60 total comparisons. Starcode had the second highest number
at 22 significantly different sensitivity scores. The sensitivity scores of Starcode and
DNACLUST were never significantly different from each other. Perhaps the similarity
between DNACLUST and Starcode performance is found in the fact that they both
use a variant of the Needleman-Wunsch algorithm and store sequences in a trie data
structure. Starcode and LD never exhibited statistically significant sensitivity scores,
presumably because they are the only unweighted LD-based clustering tools without
frameshift allowance. The specificity and sensitivity raw data for PaSS simulations are
presented as a table in Additional file 2. The specificity data for the PaSS simulations
are presented graphically in Additional file 3. The specificity and sensitivity raw data
for Nanosim simulations are presented as a table in Additional file 4. The specific-
ity data for the Nanosim simulations are presented graphically in Additional file 5.
3GOLD clustered more sequences than all other tools assessed. For PaSS simulated
sequences across all clustering parameters, 3GOLD clustered 92.23% (S.D. 7.04). For
Nanosim simulated sequences across all clustering parameters, 3GOLD clustered
85.27% (S.D. 13.79). The second-best performance was by SLD, which clustered only
49.73% (S.D. 12.51) of PaSS simulated sequences and 36.43% (S.D. 26.94) of Nanosim

Page 8 of 18Logan et al. BMC Bioinformatics (2022) 23:95

simulated sequences across all clustering parameters. Therefore, the performance dif-
ferential between 3GOLD and SLD remained comparable between clustered sensitiv-
ity, specificity and total sequences.

LD and Starcode clustered a comparable number of sequences. LD clustered 26.87%
(S.D. 5.94) and Starcode clustered 24.47% (S.D. 3.89) of PaSS simulated sequences. For
Nanosim simulated sequences, LD clustered 16.27% (S.D. 11.92) and Starcode clustered
15.53% (S.D. 11.96). The similar clustering performance of LD and Starcode mirrors
their sensitivity performance, presumably due to their use of unweighted LD without
frameshift accommodation. Interestingly, SLD and CD-HIT-EST clustered about the
same percentage of sequences. SLD clustered 49.73% (S.D. 12.51) of PaSS sequences,
whereas CD-HIT-EST clustered 42.57% (S.D. 5.76) of PaSS simulated sequences. For
the Nanosim simulated datasets, SLD clustered 36.43% (S.D. 26.94) and CD-HIT-EST
clustered 31.07% (S.D. 20.44) of all sequences. CD-HIT-EST makes use of identity meas-
ures as a way of determining distance. Like LD and SLD, identity-based distance does
not follow triangle inequality. Furthermore, CD-HIT-EST uses pairwise alignment and
k-mer short word filtering in its clustering algorithm, which can accommodate occa-
sional frameshifts such as SLD. Although the clustering algorithm of CD-HIT-EST is
most similar to that employed in DNACLUST, the distance metric used in DNACLUST
is uniquely stringent among all tools assayed. DNACLUST therefore had the worst per-
formance by only clustering 16.37% (S.D. 5.07) of PaSS reads and 11.07% (S.D. 9.39) of
Nanosim reads.

3GOLD produced far fewer singletons than all other compared clustering tools.
The clustering parameter that resulted in the greatest number of singletons, regard-
less of clustering tool or simulator, was unsurprisingly the most challenging parameter
of 50 × 10. At 50 × 10, 3GOLD clustering resulted in 30 singletons and 125 singletons
from the PaSS- and Nanosim-generated datasets, respectively. In contrast, the second-
best performing clustering tool, SLD, left 257 singletons and 405 singletons generated
by PaSS and Nanosim, respectively. The worst performer was DNACLUST, which left
376 PaSS simulated singletons and 446 Nanosim simulated singletons. The raw data for
total sequences clustered, number of qualified clusters formed, the number of single-
tons left, and the cluster size range are presented as a table in Additional file 6 for PaSS
simulated datasets and Additional file 8 for Nanosim simulated datasets. The cluster size
range data generated by PaSS is presented graphically in Additional file 7. The cluster
size range data generated by Nanosim is presented graphically in Additional file 9.

Clustering biological data

To demonstrate the value of 3GOLD on clustering biological data, we chose a bar-
coded dataset that is particularly challenging to demultiplex [18]. The dataset consists
of 96 barcodes comprised of a dual-barcode design and 56 bp in length. Molecules were
sequenced by ONT MinION R9.4.1 chemistry. As before, we compared the clustering
performance of 3GOLD, SLD, LD, Starcode, CD-HIT-EST and DNACLUST. The quality
of clustering was assessed through specificity, sensitivity, total correct sequences clus-
tered, number of qualified clusters formed and the number of singletons.

For all performance metrics, 3GOLD outperformed the other clustering tools. Sen-
sitivity was 98.83% (S.D. 5.74) for 3GOLD, 70.84% (S.D. 13.04) for SLD, 46.07% (S.D.

Page 9 of 18Logan et al. BMC Bioinformatics (2022) 23:95 	

10.45) for LD, 42.44% (S.D. 10.78) for Starcode, 28.43% (S.D. 8.59) for DNACLUST
and 50.83% (S.D. 17.50) for CD-HIT-EST. All clustering sensitivity results were statis-
tically significant (P < 0.0001) except between CD-HIT-EST and LD (P = 0.0733) and
between LD and Starcode (P = 0.3244). As was seen with the simulated datasets, sensi-
tivity scores between LD and Starcode were similar presumably because they both rely
on unweighted LD as their clustering metric without frameshift allowance. Compared
to the simulated datasets, the sensitivity performance of CD-HIT-EST decreased, likely
due to the dual-barcode design and decreased error rate of the sequences. Therefore,
the short-word filtering accuracy could have been reduced, allowing the sensitivity per-
formance of CD-HIT-EST to more closely match that seen with LD. As with the simu-
lated data, DNACLUST had the lowest sensitivity score due to its stringent clustering
algorithm. Specificity for all clustering tools was 100% (S.D. 0.00). These results are pre-
sented in Table 1.

3GOLD correctly clustered more biological sequences than all other tools assessed.
3GOLD correctly clustered 98.83% (S.D. 5.74) of all sequences. SLD had the second-best
clustering performance by correctly clustering 70.84% (S.D. 13.04) of all sequences. LD,
Starcode and CD-HIT-EST all correctly clustered about the same percentage. LD cor-
rectly clustered 43.67% (S.D. 10.45) of all sequences. Starcode correctly clustered 38.90%
(S.D. 10.78) of all sequences. CD-HIT-EST correctly clustered 50.30% (S.D. 17.50) of all
sequences. Unsurprisingly, DNACLUST had the worst performance by only correctly
clustering 10.36% (S.D. 8.59) of all sequences.

3GOLD produced at least two orders of magnitude fewer singletons than the com-
peting clustering tools by leaving only 10 singletons. The greatest number of unclus-
tered single sequences was produced by DNACLUST, which left 4,045 singletons, likely
due to the disadvantageous clustering metrics. SLD and CD-HIT-EST left comparable
numbers of singletons at 2199 and 1827, respectively. It is likely that the similar perfor-
mance between SLD and CD-HIT-EST is due to the ability to accommodate occasional
frameshifts. LD and Starcode, which both rely on unweighted LD without frameshift
accommodation, left 3259 and 3463 singletons, respectively.

3GOLD clustering was completed in 3,830.411 s. Building the cluster matrix took
3,698.292 s, whereas collapsing it into final clusters took only 132.119 s. In contrast,
SLD and LD clustering took approximately eighteen times longer to compute, requir-
ing 69,712.716 s and 72,766.322 s, respectively. For SLD, 67,719.119 s were consumed in

Table 1  Sensitivity and specificity of clustering tools on ONT MinION R9.4.1 biological data

Standard deviation values are presented inside parentheses. P values are presented inside brackets. Only statistically
insignificant P values (P > 0.05) are presented in the table. All other P values are < 0.0001. The decision to only show
insignificant values was made to reduce the size of the table for easier viewing and interpretation

Clustering tool Specificity Sensitivity range Sensitivity average Sensitivity insignificant P-values

3GOLD 100% (0.00) 100–67% 98.83% (5.74)

SLD 100% (0.00) 92–22% 70.84% (13.04)

LD 100% (0.00) 70–25% 46.07% (10.45) LD vs. CD-HIT-EST [0.0733]

Starcode 100% (0.00) 70–21% 42.44% (10.78) Starcode vs. LD [0.3244]

CD-HIT-EST 100% (0.00) 85–24% 50.83% (17.50)

DNACLUST 100% (0.00) 49–20% 28.43% (8.59)

Page 10 of 18Logan et al. BMC Bioinformatics (2022) 23:95

building the cluster matrix, whereas collapsing the cluster matrix took 1993.597 s. LD
cluster matrix building took a similar amount of time as SLD cluster matrix building did,
requiring 66,528.418 s. However, the matrix collapse and final cluster processing took
much longer at 6237.904 s. This was due to LD clustering needing to process through
many more singletons. 3GOLD had very few singletons to process through, so it was
very quick in this regard. These findings are reported in Table 2.

Discussion
There are four possible downsides to using 3GOLD. First, input string lengths need to
be uniform and therefore might require trimming prior to clustering. If 3GOLD were to
broaden its application to include sequences of differing lengths, it might be able to do
so by incorporating a normalized LD metric, such as generalized Levenshtein distance
[19]. Second, the combination of identified errors can be inflated by selecting the low-
est cumulative error. For example, an insertion and deletion will be included in the dis-
tance calculation if they have a combined weight that is lower than a substitution weight,
despite increasing the total number of errors between the strings by 1. Similarly, the
preference for the lowest cumulative error weight between strings can lead to erroneous
clustering. This drawback was seen a few times in clustering the simulated datasets. For
example, as seen in the PacBio simulated 50 × 10 dataset, the bidirectional weighted dis-
tances calculated between the sequence GAC​TGC​CGC​AGT​TTC​TCT​TA and the refer-
ence centroid GAC​TCC​GCA​GTT​CAT​ATC​TC are 7 and 8. In contrast, the bidirectional
weighted distance between GAC​TGC​CGC​AGT​TTC​TCT​TA and the experimental cen-
troid TAT​ACC​CGA​ACT​TTC​TCC​TA is 6 and 9, respectively. Therefore, the sequence
to be clustered was closer to an erroneous centroid than the reference centroid. Finally,
the accuracy of our clustering approach is at the expense of speed. As with any cluster-
ing algorithm, there is a trade-off between speed and accuracy. Clustering with 3GOLD
might not be practical for very large datasets or datasets comprised of long sequences if
time is more valuable than accuracy, despite the ability to run 3GOLD scripts in parallel,
multithreaded and the currently employed speed improvement strategies.

Conclusions
We present modifications to the shortcomings of LD to optimize it for clustering error-
rich biological sequences. We successfully used 3GOLD metrics to find, characterize
and cluster sequences. We show the benefits of 3GOLD on clustering simulated datasets

Table 2  Characteristics of clusters formed on ONT MinION R9.4.1 biological data

Time was measured in seconds

Clustering tool Total clustered Singletons Qualified
clusters

Cluster size range Time to cluster

3GOLD 9488 10 96 100–67 3,830.411

SLD 6801 2199 96 92–22 69,712.716

LD 4192 3259 91 70–25 72,766.322

Starcode 3735 3463 88 70–21 0.174

CD-HIT-EST 4829 1827 95 85–24 2.370

DNACLUST 995 4045 35 49–20 4.997

Page 11 of 18Logan et al. BMC Bioinformatics (2022) 23:95 	

of short sequences as well as a biological dataset consisting of long barcodes (56 bp). We
used a barcoded dataset because clustering accuracy can be assessed using known cen-
troids. However, a strength of our approach is the ability to accurately cluster sequences
with no prior knowledge of cluster or centroid identity, especially if the clusters are
small, densely populate the data field and prone to creating singletons. Therefore, our
tool is well suited for clustering UMI data. There are no currently available tools for clus-
tering UMI data generated from TGS platforms.

Methods
Strategy for speed improvement

3GOLD initializes the LD matrix in the traditional manner until the border lengths
equal τ + 1 , where τ is the total number of expected errors. Once the border lengths
equal τ + 1 , the initialization increments diagonally. The border values halt during
diagonal progression and continue to be incorporated into distance calculations. We
drew inspiration for our strategy from the modified Needleman-Wunsch algorithm pre-
sented in the Starcode algorithm [14]. Furthermore, 3GOLD computation terminates
if [i][j] ≥ h at any point in the matrix, where h = τ + f and f is the tolerated number
of frameshift positions. Therefore, our approach differs from Starcode because it adds
frameshift thresholds to the classic LD values at [i][j] . It also differs from SLD in that it
allows the end user to place a reasonable cap on the frameshift allowance. Finally, simi-
lar to the trie techniques used by Starcode, we eliminate upstream matching bases from
compared strings since the LD between them would be zero. An example of this strategy
is presented in Additional file 10.

Datasets and computational parameters for speed experiments

To test the effects of sequence length on computational efficiency, we generated 10
random datasets of 10,000 sequences each. The sequences in the first dataset were 10
bases long, and each subsequent dataset increased sequence length by 10 bases until
sequences reached 100 bases long. All sequences in the shorter datasets were prefixes for
the longer datasets to reduce any possible influence of different sequences among data-
sets. To test the effects of dataset depth on speed, we created 10 random datasets rang-
ing in size from 10,000 sequences to 100,000 sequences. The length of sequences in all
datasets was 50 bases. The scripts used for testing computational speed received dataset
inputs organized such that one sequence was presented per line. The first sequence in
the datasets served as the reference for comparison to all other sequences. For 3GOLD
computations, the frameshift allowance was calculated as 20% of the sequence length,
and the error rate was computed as 10% of the sequence length. All error weights were
assigned as 1. These single-threaded experiments were run on a machine with a 2.9 GHz
Intel Core i5 processor and 8 GB of RAM.

Algorithm for accommodating weighted errors and frameshift

The discrepancy in SLD weighted error computations can be overcome by compar-
ing the value and position of the unweighted SLD along the matrix table borders to
the unweighted LD to interpret the number and type of errors, respectively. Briefly,
deletions move the position of an unweighted SLD away from the classic LD position

Page 12 of 18Logan et al. BMC Bioinformatics (2022) 23:95

leftward along the j border, whereas insertions move the SLD up along the i border. Sub-
stitutions or indel pairs result in no net movement of the SLD position. SLD can either
have a single position or multiple. If SLD is found repeatedly on a single border, the posi-
tion closest to the [i][j] corner reveals the error characteristics. If SLD is found on both
borders excluding the corner, analysis is completed using the value that represents the
lowest error weight. If insertions and deletions have the same error weight and the SLD
is found on both borders, error type interpretation is done using the values found on the
i border to reduce computational time. If insertions and deletions have differing weights,
bidirectional analysis is performed. In all cases, 3GOLD will select the lowest penalty for
all error combinations.

Clustering approach

To demonstrate the quality of 3GOLD for clustering, we combine 3GOLD metrics
with an all-to-all sequence comparison approach. Sequences that are within the weight
threshold are clustered together. Sequences that are not clustered to any other sequences
are considered singletons. Once all sequences have been compared to all sequences,
clusters that match at least 80% of their sequences to a larger related cluster are col-
lapsed into the larger clusters. If the sequences that are exclusive to the smaller cluster
are not within the weighted distance threshold of the seed sequence of the larger clus-
ter, they are not merged. Once all clusters have merged and have collapsed, centroids
are determined by density. We consider the centroid of a cluster to meet two criteria: it
clustered the most sequences to itself to form the current cluster, and it has the shortest
average distance between itself and all its clustered sequences. Our centroid approach
is compatible with the prototype-based notion of centroids, where centroids consist of
identically repeated sequences. Our approach is advantageous, however, because it can
accommodate asymmetrical, noisy and entwined clusters such as those produced by
TGS platforms. Once all clusters are formed, the centroids are then compared to all left-
over singletons. Singletons that are within the threshold distance of a centroid become
clustered and then removed from the singleton set. Our object-oriented clustering codes
work for both Linux and MacOS systems. The 3GOLD clustering scripts for MacOS are
called ThreeGold_MacOS_Matrix_Building.pl, ThreeGold_MacOS_Matrix_Building.
pm, ThreeGold_MacOS_Matrix_Clustering.pl and ThreeGold_MacOS_Matrix_Cluster-
ing.pm. Matrix building is performed before matrix clustering.

Clustering performance was characterized by sensitivity, specificity, total sequences
clustered, number of qualified clusters formed and the number of singletons. Sensitiv-
ity was determined by (100− (100(p/m))) , where p represents the number of sequences
only found in the reference cluster and not in the experimental cluster and m repre-
sents the number of sequences in the reference cluster. Specificity was computed by
(t − u/t)(100) where t represents the total number of sequences found in the reference
cluster and u represents the total number of unclustered sequences. For sequences to be
considered “clustered” and included in specificity and sensitivity analysis, they needed
to have at least 20% sensitivity and a size threshold that resulted in no more than the
expected number of clusters. Cluster specificity and sensitivity were assessed using Tuk-
ey’s multiple comparisons test with ordinary one-way ANOVA for the biological data

Page 13 of 18Logan et al. BMC Bioinformatics (2022) 23:95 	

and two-way ANOVA for the simulated data. Our script for characterizing clustering
quality is called Characterize_Quality_Of_Clusters.pl.

Characterizing sequencing error profiles

Using 3GOLD clustering metrics requires the end user to input information on the error
number threshold, the weight threshold, the weight assigned to an insertion, deletion
and substitution error and the number of frameshifts to accommodate. We built an
error profiling script that characterizes the expected input parameters between a refer-
ence and an experimental string of data, except for establishing a frameshift limit. If the
end user does not determine how much frameshift to allow, the default is 15% of the
sequence length.

Our training script assumes that the input strings have a common beginning. If the
two strings do not match at their beginnings, the end user will need to tell the code
where to start computing the interstring distance along the experimental sequence. This
position can be determined visually or discovered through pairwise alignment of the
two sequences. The length of the longer string will be trimmed to match the length of
the shorter string before calculations begin. It is assumed that one string will be larger
than the other based on the instances of indels. Relying on the algorithmic behavior of
3GOLD, the error profiling script counts the number of errors between the reference
and experimental strings. It also logs the occurrences of insertions, deletions and substi-
tutions and then suggests weights to be assigned to each. Because an insertion and dele-
tion pair can technically produce the same output as a substitution in some rare cases,
the end user is asked to clarify if it is more likely, less likely or equally likely to have a
substitution or both an insertion and deletion. End users are also asked to judge whether
insertions occur more, less or equally as frequently as deletions. These relationships help
establish probability and weight relationships. When fitting the error profiling output to
the desired data, end users should remember that errors occur as whole numbers rather
than rational numbers. Our error profiling script is called ThreeGold_Error_Profiling.pl.

Simulated datasets for clustering

We tested 3GOLD’s ability to cluster sequences generated by PaSS and Nanosim ver-
sion 2.5, which simulate PacBio Sequel and ONT MinION R9.4 reads, respectively [12,
13]. We designed our sequences to be 20 bases long to resemble the longer barcodes or
UMIs that have been used [7, 20]. To ensure adequate cluster separation, our randomly
generated centroids were designed to be greater than LD 8 apart. Therefore, each of the
20-mer centroids could harbor 20% error (4 errors) without risk of neighboring clusters
bleeding into each other.

Every centroid-based cluster was formed by sending a fasta file through the simulator
that contained 10,000 repeated copies of the centroid sequence, for a total input length
of 200,000 bases. Each simulator got the same 50 input sequences. All 50 input fastas
were concatenated into a single file as input into PaSS for the first step in the simula-
tion of making an index file. The command line parameters used for PaSS simulations
were “-list percentage.txt -index index -m pacbio_sequel -c sim.config -r 10,000”. We
used Nanosim version 2.5 in genome mode and used the pretrained human NA12878
DNA FAB49712 guppy model. Each of the 50 input fastas served individually as an input

Page 14 of 18Logan et al. BMC Bioinformatics (2022) 23:95

reference genome. The other command line parameters used for Nanosim simulations
were “-n 1 -max 11,000 -min 11,000 -b guppy -s 0 -dna_type linear”.

Error profiles of the simulated datasets were determined. Analysis of 195,859 bases
from 20 PacBio Sequel simulated reads revealed that PaSS introduced 21,646 errors
(11.10% error rate) with 14,362 insertions (66.35%), 7,284 deletions (33.70%) and 0 sub-
stitutions (0.00%) according to the ThreeGold_Error_Profiling.pl output when select-
ing “less, more”. Since the number of errors appearing in sequences can only be whole
numbers, we rounded up to allow for 3 errors and assigned the following weights: inser-
tions 1, deletions 2, substitutions 4, so that a substitution is weighted greater than an
insertion and deletion. Analysis of 145,000 bases from 20 ONT MinION R9.4 simulated
reads revealed that Nanosim introduced 14,727 errors (10.13% error rate) with 4,463
insertions (30.30%), 10,264 deletions (69.70%) and 0 substitutions (0.00%) according to
ThreeGold_Error_Profiling.pl output when selecting “less, more”. Therefore, we assigned
a weight of 2 for insertions, 1 for deletions and 4 for substitutions and allowed 3 errors.
For both PaSS and Nanosim reads, we accommodated a frameshift allowance of 20%
when characterizing error profiles. The 20% frameshift allowance allows the full cap-
ture of concentrated errors in the neighboring sequence if it were to appear only at the
periphery of the capture.

To process the simulated output files into formats suitable for clustering and analy-
sis, we used a series of four scripts. The first script is called Extract_Simulated_Files.pl
and is designed to select one of the many output files as a representative. The input is
a directory of centroids. The code matches a centroid to the name of the simulated file
and simply takes the first match. The second script is Trim_simulated_reads.pl, which
finds simulated sequences that are within the distance threshold for clustering. It relies
on a sliding window approach with a step size of 1 until a perfect match is made, at
which point the step size turns to 20, since sequences of interest are 20 bases long and
are in tandem. We relied on the determined error profiles of the simulators for extrac-
tion with a frameshift allowance of 15% and a weight threshold of 8. The third script,
Order_Untrimmed_Sequences.pl, was designed to keep clustering performance uniform
across clustering parameters by sorting the discovered sequences to cluster by their
weighted distance from their respective centroids. In this way, the sequences chosen
to cluster were beneath the weighted threshold but were selected with a preference for
noisier sequences. The final code used in processing simulated data was Format_simu-
lated_data_for_clustering.pl. This script took the sorted sequences to cluster, shuffled
them and then formatted them per the desired clustering parameters. The output was
both reference cluster files and files of sequences to cluster.

Six clustering parameters were tested: 4 clusters of 125 sequences each, 5 clusters
of 100 sequences each, 10 clusters of 50 sequences each, 20 clusters of 25 sequences
each, 25 clusters of 20 sequences each, and 50 clusters of 10 sequences each. To maxi-
mize the challenge of clustering, we preferentially included the noisiest of the discov-
ered sequences. We used an error threshold of 3 edit distances for 3GOLD, SLD, LD
and Starcode. Starcode was run with sphere clustering, as it was the most similar clus-
tering strategy to 3GOLD. Starcode output was generated using the “—print-clusters”
parameter, which does not include duplicates. We appropriately replaced all duplicated
sequences that were otherwise omitted from the Starcode output before comparing the

Page 15 of 18Logan et al. BMC Bioinformatics (2022) 23:95 	

results to reference clusters. We used default parameters for both DNACLUST and the
web-based CD-HIT-EST tool. The similarity for both DNACLUST and CD-HIT-EST
was set at 0.85 to accommodate three errors within a 20-base sequence ( 1− 0.15 = 0.85

).

Biological datasets for clustering

To show that our approach works on biological data, we chose to analyze a complex bar-
coded dataset consisting of 96 dual barcodes of length 56 bp [18]. The samples used for
this dataset were 96 different meticillin-resistant Staphylococcus aureus isolates. Dual-
barcode architecture consisted of eight barcodes that were individually combined with
forward and reverse primers and introduced during PCR. The resulting amplicons were
then barcoded according to the ONT 1D native barcoding genomic DNA protocol using
the native barcoding expansion 1—12 kit EXP-NBD103 and the ligation sequencing kit
1D SQK-LSK109. The barcoded reads were generated by ONT MinION R9.4.1 chemis-
try using a single flow cell and sequenced using MinKNOW version 2.1. Albacore ver-
sion 2.3.1 was then used to extract FASTQ reads. More information about the sequences
and barcode design can be found in the original manuscript by Liou and colleagues, and
the original barcoded datasets can be found in Figshare [18, 21].

To determine the error rate of the biological sequences, we chose the first four reads
of the first barcoded set, BC01BC01. These were processed through BLAST one at a
time, and the first hit for each sequence was used as the reference sequence. Analysis of
the 4,984 bases through the ThreeGold_Error_Profiling.pl script revealed a total of 238
errors (121 insertions, 117 deletions) for an error rate of 4.78%. We rounded up to an
error rate of 5%, allowing for 3 errors out of the 56-base barcode. The weights assigned
to insertions and deletions were both 1, and substitutions were weighted 3. The weight
threshold was determined to be 5.

Using these 3GOLD metrics for weighted errors and weight threshold, we extracted
barcode sequences using a 2-step sliding-window approach to search for matches to
the known barcode sequences. Matches were made against the original 96 barcode
sequences published by Liou and colleagues [18, 22]. We accommodated a frameshift of
4. Our frameshift allowance was a smaller percentage of the sequence of interest length
than that used for the simulated datasets because we were extracting the single best
match out of an entire fasta and the sequence of interest was more than twice as long.
Therefore, we could afford a higher stringency in extracting matches. We searched the
96-barcoded file database until 100 matches per barcode were found, for a total database
of 9,600 sequences to cluster. We worked with this subset of the original biological data-
set to mitigate the computational challenges associated with clustering the full dataset.
We maintained a uniform cluster size of 100 to make interpreting the specificity and
sensitivity outcomes intuitive and uniform across all clusters. All barcode searches dis-
covered at least one perfect match, ensuring that each cluster could be built around the
appropriate centroid. Discovered barcode matches were formatted into reference clus-
ters and multifasta files of sequences to cluster.

The other clustering tools used did not accommodate frameshift or weighted
error parameters. Therefore, SLD, LD and Starcode only allowed for an error thresh-
old of 3 for clustering. The command used for Starcode was “./starcode –d 3 -s -i

Page 16 of 18Logan et al. BMC Bioinformatics (2022) 23:95

All_Seqs_To_Cluster.txt -o Clustered_by_starcode.txt –seq-id”. The percent similarity
that we allowed for DNACLUST and for CD-HIT-EST clustering was 0.94642, since
a 3-error allowance was calculated by 53/56. Therefore, the command used for DNA-
CLUST was “dnaclust -s 0.9465 –i All_Seqs_To_Cluster.txt > Clustered_by_dnaclust.txt”.
The online CD-HIT-EST tool was used with default parameters except for allowing a
sequence identity cut-off of 0.9465.

Determining weighted distance threshold for clustering

For both the simulated and biological datasets, sequences were extracted using a sliding
window approach to determine an appropriate weight threshold for clustering. For the
simulated datasets, the discovered error profiles and a 20% frameshift allowance were
used without weight threshold limits to collect matches. The step size for the sliding
window search was 1 until a perfect match between the sequence and search probe was
found. Thereafter, the step size became 20 since matches are expected to be in sequen-
tial order onward. The centroid sequences served as the search probes. All 50 simulated
sequences produced by both Nanosim and PaSS were searched for matches using the
script Weight_Threshold_Simulated_Datasets.pl. The Nanosim-generated sequences
produced 8,205 matches, and the PaSS-simulated sequences produced 5,463 matches.
Matches were graphed, and the weight threshold was determined by the point on the
graph of the steepest inflection point and a > 99% representation of the matches. For
the Nanosim simulated data, 67 matches had weights due to two or more substitutions,
whereas 99.18% of the 8,205 matches did not. Therefore, the weight threshold for the
Nanosim data was set at 8. For the PaSS simulated data, 39 matches had weights due to
two or more substitutions, whereas 99.28% of the 5,463 matches did not. Therefore, the
weight threshold for the PaSS data was also set at 8.

For the biological dataset, we searched all 6,010 sequences of the first cluster
(BC01BC01) of sequences for the single best match per sequence using a sliding win-
dow search of step 1, 15% frameshift allowance and the discovered error profile weights
(insertions weighted 1, deletions weighted 1, substitutions weighted 3) without weight
threshold limits. The weight of every match was graphed. A total of 4,440 out of the
6,010 (73.87%) sequences had a cumulative error weight of 5, with no sequences having
a cumulative weight higher than that. Therefore, the clustering weight threshold for the
biological dataset was set to 5.

Once the appropriate weight threshold was established, sequences were selected for
clustering by following the same steps as for determining the weight threshold but with
the determined weight threshold parameter used. These weight threshold distribution
graphs are included in the supplemental information as Additional file 11.

Abbreviations
3GOLD: Third-generation optimized Levenshtein distance; LD: Levenshtein distance; ONT: Oxford nanopore technolo-
gies; PacBio: Pacific biosciences; PaSS: PacBio sequencing simulator; SD: Standard deviation; SLD: Sequence-Levenshtein
distance; SMRT: Single molecule real-time; TGS: Third-generation sequencing; UMI: Unique molecular identifier.

Page 17 of 18Logan et al. BMC Bioinformatics (2022) 23:95 	

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​04637-7.

Additional file 1. Pseudocode of the 3GOLD algorithm.

Additional file 2. Sensitivity and specificity of clustering PacBio Sequel simulated datasets.

Additional file 3. Boxplots of clustering specificity on PacBio Sequel simulated datasets.

Additional file 4. Sensitivity and specificity of clustering ONT MinION simulated datasets.

Additional file 5. Boxplots of clustering specificity on ONT MinION simulated datasets.

Additional file 6. Characteristics of clusters formed from PacBio Sequel simulated datasets.

Additional file 7. Boxplots of cluster sizes formed from PacBio Sequel simulated datasets.

Additional file 8. Characteristics of clusters formed from ONT MinION simulated datasets.

Additional file 9. Boxplots of cluster sizes formed from ONT MinION simulated datasets.

Additional file 10. Speed improvement example.

Additional file 11. Weight threshold determination.

Acknowledgements
We wish to thank Boris Yazlovitsky, Greg Shomo, Mariana Levi and the rest of the Research Computing team at North-
eastern University for their support.

Authors’ contributions
RL, ZF, SA, AW, JLT, DCW and KK contributed to the conception and design of this work. RL designed the experiments,
collected the data, analyzed the data, and wrote the codes and manuscript. All authors read and approved the final
manuscript.

Funding
This research was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development
(RO1-HD091439 to JLT, DCW and KK). National Science Foundation (1750996 to DCW).

Availability of data and materials
The datasets and Perl scripts supporting the conclusions of this article are available in the 3GOLD GitHub repository,
https://​github.​com/​roblo​gan6/​3GOLD.

Declarations

Ethics approval and consent to participate
No ethics approval was required for the study.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 College of Science, Department of Biology, Northeastern University, 330 Huntington Ave, Boston, MA 02115, USA.
2 Department of Biology, Eastern Nazarene College, 23 E Elm Ave, Quincy, MA 02170, USA. 3 Health and Natural Sciences
Division, Mathematics Department, Fitchburg State University, Fitchburg, MA 01420‑2697, USA.

Received: 14 May 2021 Accepted: 10 March 2022

References
	1.	 Kraft F, Kurth I. Long-read sequencing in human genetics. Medizinische Genet. 2019;31:198–204.
	2.	 Weirather JL, deCesare M, Wang Y, Piazza P, Sebastiano V, Wang X-J, et al. Comprehensive comparison of Pacific

Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. F1000Research.
2017;6(1):100

	3.	 Laver T, Harrison J, O’Neill PA, Moore K, Farbos A, Paszkiewicz K, et al. Assessing the performance of the Oxford Nano-
pore Technologies MinION. Biomol Detect Quantif. 2015;3:1–8. https://​doi.​org/​10.​1016/j.​bdq.​2015.​02.​001.

	4.	 Logsdon GA, Vollger MR, Eichler EE. Long-read human genome sequencing and its applications. Nat Rev Genet.
2020;21(10):597–614. https://​doi.​org/​10.​1038/​s41576-​020-​0236-x.

	5.	 Annis S, Fleischmann Z, Logan R, Mullin-Bernstein Z, Franco M, Saurich J, et al. LUCS: a high-resolution nucleic acid
sequencing tool for accurate long- read analysis of individual DNA molecules. Aging (Albany NY). 2020;12(8):7603.

https://doi.org/10.1186/s12859-022-04637-7
https://github.com/roblogan6/3GOLD
https://doi.org/10.1016/j.bdq.2015.02.001
https://doi.org/10.1038/s41576-020-0236-x

Page 18 of 18Logan et al. BMC Bioinformatics (2022) 23:95

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	6.	 Zhong W, Altun G, Harrison R, Tai PC, Pan Y. Improved K-means clustering algorithm for exploring local protein
sequence motifs representing common structural property. IEEE Trans Nanobioscience. 2005;4(3):255–65.

	7.	 Smith T, Heger A, Sudbery I. UMI-tools: modelling sequencing errors in unique molecular identifiers to improve
quantification accuracy. Genome Res. 2017;27:491–9.

	8.	 Levenshtein VI. Binary codes capable of correcting deletions, insertions, and reversals. Sov Physics-Doklady.
1966;10(8):707–10.

	9.	 Buschmann T, Bystrykh LV. Levenshtein error-correcting barcodes for multiplexed DNA sequencing. BMC Bioinfor-
matics. 2013;14(1):1–10.

	10.	 Peng Q, Vijaya Satya R, Lewis M, Randad P, Wang Y. Reducing amplification artifacts in high multiplex ampli-
con sequencing by using molecular barcodes. BMC Genomics. 2015;16(1):1–12. https://​doi.​org/​10.​1186/​
s12864-​015-​1806-8.

	11.	 Backurs A, Indyk P. Edit distance cannot be computed in strongly subquadratic time (unless SETH is false). SIAM J
Comput. 2018;47(3):1087–97.

	12.	 Zhang W, Jia B, Wei C. PaSS : a sequencing simulator for PacBio sequencing. BMC Bioinformatics. 2019;20(1):1–7.
	13.	 Yang C, Chu J, Warren RL, Birol I. NanoSim: Nanopore sequence read simulator based on statistical characterization.

Gigascience. 2017;6(4):1–6.
	14.	 Zorita E, Cuscó P, Filion GJ. Starcode: Sequence clustering based on all-pairs search. Bioinformatics.

2015;31(12):1913–9.
	15.	 Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT Suite : a web server for clustering and comparing biological sequences.

Bioinformatics. 2010;26(5):680–2.
	16.	 Ghodsi M, Liu B, Pop M. DNACLUST: Accurate and efficient clustering of phylogenetic marker genes. BMC Bioinfor-

matics. 2011;12(271).
	17.	 Weizhong L, Godzik A. Cd-hit : a fast program for clustering and comparing large sets of protein or nucleotide

sequences. Bioinformatics. 2006;22(13):1658–9.
	18.	 Liou CH, Wu HC, Liao YC, Lauderdale TLY, Huang IW, Chen FJ. Nanomlst: Accurate multilocus sequence typing using

oxford nanopore technologies minion with a dual-barcode approach to multiplex large numbers of samples.
Microb Genomics. 2020;6(3):1–8.

	19.	 Yujian L, Bo L. A normalized Levenshtein distance metric. IEEE Trans Pattern Anal Mach Intell. 2007;29(6):1091–5.
	20.	 Hawkins JA, Jones SK, Finkelstein IJ, Press WH. Indel-correcting DNA barcodes for high-throughput sequencing. Proc

Natl Acad Sci. 2018;115(27):E6217-26. https://​doi.​org/​10.​1073/​pnas.​18026​40115.
	21.	 nanoMLST 96 dual barcoded files [Internet]. [cited 2020 Oct 28]. Available from: https://​figsh​are.​com/​artic​les/​

Ninety-​six_​dual-​barco​ded_​files/​98944​79
	22.	 nanoMLST supplemental text including sequences of seven housekeeping genes, primer sequences and

sequences of 96 dual barcodes [Internet]. [cited 2020 Oct 28]. Available from: https://​figsh​are.​com/​artic​les/​online_​
resou​rce/​Suppl​ement​al_​text_​inclu​ding_​seque​nces_​of_​seven_​house​keepi​ng_​genes_​and_​seque​nces_​of_​96_​dual_​
barco​des/​98913​86

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1186/s12864-015-1806-8
https://doi.org/10.1186/s12864-015-1806-8
https://doi.org/10.1073/pnas.1802640115
https://figshare.com/articles/Ninety-six_dual-barcoded_files/9894479
https://figshare.com/articles/Ninety-six_dual-barcoded_files/9894479
https://figshare.com/articles/online_resource/Supplemental_text_including_sequences_of_seven_housekeeping_genes_and_sequences_of_96_dual_barcodes/9891386
https://figshare.com/articles/online_resource/Supplemental_text_including_sequences_of_seven_housekeeping_genes_and_sequences_of_96_dual_barcodes/9891386
https://figshare.com/articles/online_resource/Supplemental_text_including_sequences_of_seven_housekeeping_genes_and_sequences_of_96_dual_barcodes/9891386

	3GOLD: optimized Levenshtein distance for clustering third-generation sequencing data
	Abstract
	Background:
	Results:
	Conclusion:

	Background
	Results
	Accommodating frameshift
	Speed improvement
	Accommodating weighted errors
	Clustering simulated data
	Clustering biological data

	Discussion
	Conclusions
	Methods
	Strategy for speed improvement
	Datasets and computational parameters for speed experiments
	Algorithm for accommodating weighted errors and frameshift
	Clustering approach
	Characterizing sequencing error profiles
	Simulated datasets for clustering
	Biological datasets for clustering
	Determining weighted distance threshold for clustering

	Acknowledgements
	References

