
Supervised promoter recognition: 
a benchmark framework
Raul I. Perez Martell*, Alison Ziesel, Hosna Jabbari and Ulrike Stege 

Introduction
Promoters are non-coding genomic elements necessary for the expression of their asso-
ciated gene(s). Most promoters include transcription factor binding sites (TFBS): short, 
often palindromic DNA sequences bound by transcription factor proteins to provide 
greater control over a promoter’s activity. TFBS can be summarised as ‘motifs’ [1] that 
represent the set of related short sequences preferred by a given transcription factor 
(TF). A frequent example of a motif found in eukaryotic promoters is the TATA box, 
a cis-regulatory element characterised by its consensus sequence of repeating T and A 
base pairs. Other relevant promoter motifs can be found in the JASPAR database [2]. A 
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minimal promoter must be able to recruit RNA polymerase (RNAP) to allow for tran-
scription to occur. Promoters can be separated into three main regions: core, proximal, 
and distal. Core promoters are located closest to their gene, containing the transcription 
start site (TSS) of the gene and usually include general TFBS to create an RNAP bind-
ing site. Proximal promoters are located approximately 200 base pairs upstream from 
the TSS, and are the DNA regions where more gene-specific TF bind. Distal promot-
ers are generally found thousands of base pairs upstream from the core promoter and 
include several other TFBS that can recruit proteins to enhance or silence the RNAP’s 
transcription process. While a promoter sequence itself is not expressed, mutations to 
the promoter sequence can have a prominent impact on gene expression. E.g., recombi-
nation events may occur, which produce a novel promoter-gene combination, resulting 
in a significantly different expression pattern for the controlled gene; these are observed 
in certain types of cancer [3]. As the central regulatory feature for gene expression, pro-
moters can provide potentially significant information used for predicting downstream 
gene expression patterns. Rudge et al. [4] have shown that understanding gene expres-
sion patterns can lead to therapies for disease control or prevention. Furthermore, bio-
logical experimentation for developing insights into the mechanisms of therapies and 
cell machinery are done in organisms where promoters might not be as well defined as 
for humans and other model organisms. Therefore, understanding and reliably identify-
ing promoters within genomes are essential to this goal.

Identification of promoters through their genomic sequence is highly complex because 
of their sequence and structure diversity, which excludes any universal promoter ele-
ments. Considering the central dogma of molecular biology, all of the non-genetic 
effects involved in promoter activity could, in theory, be ultimately mapped to the DNA. 
This allows the genetic sequence of promoters, transcription factors, and other interact-
ing proteins available in the genome to have the ability to fully characterise a promoter. 
Therefore, we focus on the promoter identification problem known as ab initio promoter 
recognition, which entails the use of DNA sequences solely to identify promoters. The 
work presented here can aid in any type of ab initio promoter recognition, but initially 
aims to help in recognition models for eukaryotic RNAP II core promoters since they 
take part in the transcription of RNAs that will become messenger RNAs (mRNAs) 
and also small regulatory RNAs—the former being the products used by ribosomes to 
synthesise proteins, while the latter play a role in regulatory processes such as activa-
tion and inhibition of gene transcription. Core promoters are chosen for their relatively 
small size to other promoter sequences and the abundance of work on them. Recogni-
tion models for core promoter sequences are also constantly regarded in the literature as 
highly precise or accurate in a multitude of metrics. Therefore, we aim to validate these 
findings that have become prevalent within the promoter recognition field.

A review by Li et al. [5] revealed that current promoter identification efforts mainly 
lie in supervised machine learning (ML) techniques, with deep learning (DL) as the 
latest promising approach by utilizing data from different High-Throughput Sequenc-
ing (HTS) methods. Early ML models require the use of biological signals to be ‘hand-
crafted’ into features. Crafting these features can become especially problematic when 
domain-knowledge is incomplete, as is the case in promoter recognition. DL can 
account for incomplete domain-knowledge by ‘learning’ these features, while additional 
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‘handcrafted’ features can be supplied when domain-knowledge is present. Once ab ini-
tio methods can accurately recognise promoters, the methods and their outputs can be 
analysed to understand the sequences affecting specific promoters and their relation to 
genetic activity, as well as provide further insights into the genomic characteristics of 
promoters.

Other promoter recognition tools also exist [6–8]. It is interesting to note that even 
the state-of-the-art for these non-supervised ML tools are not able to achieve the per-
formance of the DL models examined here, giving us a reason to further explore why DL 
models are obtaining such increased performance.

Additional DL models exist for TF binding prediction [9–12]. These models can be 
used as a mean for predicting the functionality of DNA sequences after fine-tuning. This 
suggests the ability to also predict promoters when specifically re-training the models 
for this task. Although possible to use them as promoter recognition tools, no promoter 
recognition results could be obtained easily from them; as such, we do not consider 
them for this work.

Performance of all ML-based methods is heavily impacted by the underlying training 
data used. Raeder et al. [13] demonstrated that this problem can be exacerbated when 
using imbalanced datasets, such as promoter recognition. This imbalance is evident, as 
promoter sequences generally account for less than 1% of a genome. Since we are inter-
ested in the minority class (promoters) which contains significantly fewer instances, 
models will tend to focus on learning the characteristics of the majority class (non-pro-
moters), therefore neglecting to learn promoter features. Scientists must ensure that the 
training data used in the ML process is a statistically representative sample of the many 
genomic sequences found in nature. It is also crucial that a held-out dataset be used for 
testing and comparing different models’ performances. This means that a trained model 
must not have previously seen any data within the testing dataset to ensure the valid-
ity of its performance metrics. Results from common evaluation methods for an ML 
model, such as cross-validation, can be especially deceptive when the overall dataset 
used for training and testing is limited. Therefore, results obtained in this manner can 
create the impression that a model’s performance is adequate when in reality this may 
not be the case. Early ML models for ab initio promoter recognition were benchmarked 
by Bajic et al. [7]. The benchmarking process was done using a limited subset of available 
genomic data, and found the models to be insufficiently sensitive for promoter recogni-
tion. Deep learning promoter recognition (DLPR) models frequently exhibit improved 
recognition performance over previous models through cross-validation assessments. 
The caveat is that these models are still trained and tested on similarly limited datasets, 
generally comprising less than 60,000 DNA sequences, which cannot possibly cover a 
representative sample of the many genomic sequences found in nature.

We present a framework called Supervised Promoter Recognition Framework (‘SUPR 
REF’) capable of streamlining the complete process of training, validating, testing, 
and comparing promoter recognition models in a systematic manner. Our framework 
includes two different but compatible methods for the creation of benchmark datasets, 
to be used in the evaluation process of DLPR models. The first method utilises sequence 
alignment to find the promoter sequences in a genome, while the second uses promoter 
annotations that specify the TSS to extrapolate a promoter’s location within the genome. 
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In addition, we implemented previously published models where no source code was 
provided to help ease reproducible research within the field. We benchmark published 
DL promoter recognition models using SUPR REF and assess their performance on real-
istic genome datasets.

We demonstrate the benchmarking procedure of SUPR REF on three previously pub-
lished studies: CNNProm by Umarov and Solovyev [14], ICNNP by Qian et al. [15], and 
DProm by Oubounyt et al. [16]. We also include more thorough experimentation on the 
most advanced architecture implemented (DProm)—a convolutional recurrent neural 
network. Benchmarking of previous work includes a comparison between their training 
and testing datasets in addition to comparisons of strategies to create synthetic datasets. 
Experiments include multiple training and testing datasets showcasing a comparison of 
different promoter annotations, sampling methods to overcome the imbalanced data, 
and the effect of output functions in neural networks. The previously mentioned bench-
marks demonstrate the capability to implement literature models while testing them on 
a genomic scale. Further benchmarking is also performed on the state-of-the-art model 
known as DNABERT by Ji et al. [17] to understand the current capabilities of promoter 
recognition tools. In this work, we focus on the most recent and accurate DLPR models, 
whose superior performance was previously established [14, 16, 17] against other mod-
els [7] and were found to have better performance.

We show that the reliability of deep learning ab initio promoter recognition models on 
eukaryotic genomic sequences is still not at an acceptable level, as overall performance 
(measured by MCC) is low. We achieve this by utilising SUPR REF to create larger bio-
logically relevant datasets to test models more thoroughly. The remainder of the paper 
is organised as follows. The “Materials and methods” section describes SUPR REF and 
the benchmarks performed to obtain our results. In the “Results and discussion” section, 
we examine the results from our implementations and their comparisons, along with 
the benchmarking results. Furthermore, we provide results of experiments on interest-
ing functionality within DLPR models and analysis of datasets that provide these models 
with biased performance metrics. Finally, “Conclusions and future work”  recapitulates 
our research aims and its significance, as well as suggesting approaches for future work.

Materials and methods
This section introduces our framework SUPR REF and the implemented models and 
datasets from previously published studies to showcase its use.

We then introduce larger benchmarking datasets that reflect the statistics of promoter 
sequences found in nature, and suggest a method for a fair benchmarking of the DLPR 
models. Finally, we describe the metrics within the evaluation procedure for model com-
parison and benchmarking.

SUPR REF

Different frameworks exist for generalised use of DL in bioinformatics [18, 19]. However, 
their use in more specific tasks would require extensive re-engineering. While some spe-
cialised frameworks exist in other domains (see [20, 21]), to the best of our knowledge 
none exists for promoter recognition. A promoter recognition framework should aid in 
rapid advancement of novel recognition techniques, but must also offer benchmarking 
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capabilities that can clearly assess the significance of these advances over previous mod-
els. It is important for our benchmarking process to be simple and systematic to limit the 
amount of time spent during this process and to help researchers focus on the creation 
of better models. These capabilities can be achieved using SUPR REF.

SUPR REF offers an advantage of domain-knowledge datasets and models that can 
account for promoter-specific problems that would otherwise go unnoticed in a gen-
eralised setting. Additionally, SUPR REF allows researchers without prior DL knowl-
edge to compare models in a systematic way and to make informed decisions of which 
model to use within their specific context.

SUPR REF is a Python 3 framework designed to ease the training and testing proce-
dures of machine learning models for promoter recognition. We made use of pyfaidx 
[22] to enable the efficient processing of DNA sequences within python. The framework 
can be installed as a command-line tool for automation and productivity purposes. It 
contains four main functionalities covering (1) implementations of published models, (2) 
benchmarking, (3) data acquisition, and (4) data conversion. See Fig. 1 for an overview of 
SUPR REF, including the different utilities within each main functionality of SUPR REF.

SUPR REF contains third party implemented architectures of recently published 
models, and the creation of their datasets. The datasets can be split into non-over-
lapping training and testing datasets between all models enabling proper model 

Fig. 1  Schematic displaying main functionalities from SUPR REF. The framework is described through 4 
main functionalities: Re-implementation of previous models, Benchmarking capabilities for ML models, 
Downloading capabilities for annotation and genomic data, and File conversion capabilities that different 
models require
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comparison. SUPR REF also includes training, testing, and cross-validation proce-
dures for each model to analyse and visualise the models’ outputs.

The benchmarking system offers two main utilities, as well as analysis notebooks to 
help visualise and interpret how the trained models function. The create utility allows 
the creation of datasets from two approaches. The annotation approach utilises pro-
moter annotation data and its corresponding reference genome to create a dataset. The 
sequence alignment approach creates a dataset by mapping the promoters in a genome 
using sequence alignment tools. Next, the test utility tests a trained DLPR model with 
previously published datasets or SUPR REF-created datasets. Three additional aiding 
utilities are offered.

As a framework, SUPR REF can also aid in more general promoter recognition 
endeavours, including data acquisition, data conversion, and ML training with two addi-
tional utilities. The download utility is a data acquisition tool which aids in download-
ing promoter annotation data from biologically tested sources such as EPFL’s Eukaryotic 
Promoter Database [23], UCSC’s upstream sequences [24] and Riken’s FANTOM 5 pro-
ject [25]. The conversion utility helps convert data from our dataset creation tool to 
and from common datasets used in bioinformatics tools, such as fasta and kmers (from 
DNABERT). Finally, a train utility is available to help train promoter recognition 
models utilising DL approaches  (user-made PyTorch modules) and other scikit-learn 
machine learning algorithms. These models can be trained on SUPR REF-created data-
sets which can be tailored to your specific needs within promoter recognition, such as 
promoter length and amount of upstream and downstream bases within the promoter 
region.

All utilities within SUPR REF include multiple parameters that can be adjusted based 
on the user’s needs, such as different dataset creation properties, and training and test-
ing parameters. More information on each utility and its parameters can be found on the 
SUPR REF documentation.

DL models

As a recent field of study, DLPR models have not yet been systematically reviewed, 
although a recent overview can be found in [26]. In this work, we showcase SUPR REF by 
focusing on the comparison of four recent DLPR models created for the human (hg38) 
genome, including the state-of-the-art DLPR model known as DNABERT. Human pro-
moters are some of the most studied and annotated in the literature within eukaryotes. 
Therefore, human promoter annotations should contain adequately comprehensive data 
to successfully train and test an effective model.

The first method, CNNProm, was proposed by Umarov and Solovyev [14] with a con-
volutional neural network (CNN) architecture. Promoter sequences were obtained from 
the Eukaryotic Promoter Database (EPD) [23], while the non-promoter sequences were 
random subsequences within genes located after their first exons. Since the dataset is 
ambiguously described and only partially attainable, we obtained a dataset that to the 
best of our abilities resembled its description. The created dataset consists of promoter 
sequences from EPD that span 251 bases. Non-promoter sequences span the same 
length as promoters and are obtained from random locations after the first exon of each 
human gene’s sequence. To obtain these non-promoter sequences, we query the UCSC 
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genome database [24]. Promoters were further separated into two classes and classified 
by different CNNProm models: promoters with a TATA box motif (TATA), and promot-
ers without a TATA box motif (non-TATA). The CNNProm TATA model had a slightly 
different architecture from CNNProm non-TATA model. The main difference being 
the number of filters in the CNN and the pooling size, where TATA had a lower value 
in both cases. To reproduce their results, we used the previously created dataset with 
sequences of length 251. To properly compare them to other models, we used the same 
method of obtaining the sequences with an added 49 more bases upstream, totalling 300 
bases for the sequences length.

Subsequently, ICNNP is a DLPR method by Qian et  al. [15], which was described 
as an improvement over CNNProm. Similar to CNNProm, ICNNP consists of a con-
volutional neural network architecture. Unlike CNNProm, which classified human 
sequences of length 251, ICNNP classifies sequences of length 300. This increase in 
length includes 49 additional bases in the upstream region of the promoter sequence. 
The ICNNP dataset includes a mix of TATA and non-TATA promoters from EPD, while 
the non-promoter sequences consist of human introns and coding sequences (CDS) 
collected from the 1998 GENIE dataset [27]. The non-promoter dataset of ICNNP was 
originally compiled by the Berkeley Drosophila Genome Project (BDGP) [28] for use as 
a representative benchmark dataset of human DNA sequences. To create ICNNP, the 
authors first focused on assessing the importance of various motif locations, referred to 
as ‘element sequences’, using Support Vector Machines. Paraphrasing Qian et al., element 
sequences are sequence motifs located near the TSS and their location is found rela-
tive to the TSS. Non-element sequences are the rest of the DNA (sequences where no 
common motifs are found). For the element and non-element sequences to be utilised 
properly in the ICNNP model, they must be located at specific locations within the input 
DNA sequence. This means that the element sequences’ locations or the TSS must be 
known beforehand. The predetermined locations were then extracted from the sequence 
to be used along a compressed (max-pooled) version of the complete sequence for clas-
sification by the neural network. Element sequences were found to account for most of 
the differentiative signal within promoters, while the compression of non-elements was 
found to help remove noise from the model. Therefore, the main difference between 
CNNProm and ICNNP was not from the neural network architecture, but from the pre-
processing of the sequences.

Next, DeePromoter (DProm) [16] consists of a convolutional long short-term mem-
ory (CLSTM) architecture. Similar to the work by Umarov and Solovyev [14], Oubou-
nyt et al. created different models for promoters with and without a TATA box motif, 
along with model separation by species. Promoter sequences were obtained from EPD; 
for non-promoter sequences, DProm used synthetically created sequences by changing 
the promoter sequences. DProm models classify human sequences with a length of 300 
bases.

Finally, DNABERT [17] was chosen as the state-of-the-art for promoter recognition 
for its favorable comparison against the previously mentioned models and an improved 
version of them known as PromID [29]. DNABERT consists of the ‘Transformer’ deep 
learning architecture that has been popular in the natural language processing field. 
Bidirectional Encoder Representations from Transformers (BERT), was first introduced 
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by Google [30] where it delivered state-of-the-art results in many NLP benchmark 
tests. BERT has been made accessible to other fields by using fine-tuning. In the case of 
DNABERT, BERT was fine-tuned for use on DNA sequences. Promoter sequences were 
obtained from EPD for both TATA and non-TATA promoters. TATA and non-TATA 
non-promoter sequences were obtained in different manners. TATA non-promoter 
sequences were randomly picked from genomic regions outside promoter regions which 
also contained a TATA motif. non-TATA non-promoter sequences were created in the 
same manner as DProm.

The first three models encode DNA sequences using one-hot encoding, i.e., a matrix 
where each of the rows consists of unique bases (A, C, G, T) and the columns are the 
locations in the sequence. Sequences in ICNNP are further separated into ‘element’ 
and ‘non-element’ subsequences before one-hot encoding. In contrast, sequences in 
DNABERT are pre-processed into k-mer tokens and are represented as a matrix con-
taining numerical vectors for each token. The dataset for DNABERT contained 59,196 
sequences comprising of 6130 sequences ( 50% promoters) for ‘Human TATA’ model 
and 53,066 sequences ( 50% promoters) for ‘Human non-TATA’ model. These two data-
sets were mixed into a ‘complete model’ for general (TATA and non-TATA) promoter 
recognition.

Each of the previous DLPR methods was assessed on a different dataset. The data-
set for CNNProm contained 57,224 DNA sequences, comprising of 9682 sequences 
( 14.72% promoter) for ‘Human TATA’ model and 47,542 sequences ( 41.67% promoter) 
for ‘Human non-TATA’ model. The dataset for ICNNP contained the least amount of 
sequences with 12,391 sequences ( 57.75% promoter). Finally, the dataset for DProm 
contained 59,194 sequences comprising of 6130 sequences ( 50% promoters) for ‘Human 
TATA’ model and 53,064 sequences ( 50% promoters) for ‘Human non-TATA’ model. The 
specific number of promoters and non-promoters for the three implemented methods 
are available in Table 1.

Benchmark datasets

SUPR REF contains two dataset creation approaches. The sequence alignment approach 
receives as input promoter sequences and requires a local alignment tool (e.g. BLAST) 
to align them to a genome. When exact promoter sequences (without mutations or 
indels) are found in a genome, this approach might not be as accurate or efficient as 
exact string matching algorithms. Therefore, we recommend using this approach when 
annotations are unavailable, or when there are slight variations in the genome or pro-
moter sequences as in the case of non-reference genomes (e.g. single-cell and whole-
genome sequencing). The annotation approach requires annotations containing the TSS 
locations of genes. The annotations for this study were obtained from MGA database 
[31]. MGA data are collected from multiple sources, including EPD. The exact genome 
annotation used is called Hs_EPDnew_006_hg38.1 With the TSS locations denoted 
as + 1 , a promoter region is extrapolated by obtaining a user-defined number of bases 
upstream and bases downstream of the TSS. To match with the previously described DL 

1  https://​ccg.​epfl.​ch/​mga/​hg38/​epd/​Hs_​EPDnew_​006_​hg38.​sga.​gz.

https://ccg.epfl.ch/mga/hg38/epd/Hs_EPDnew_006_hg38.sga.gz
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models, we obtained promoter regions spanning from − 249 to + 50 for each TSS anno-
tation. The annotation approach was chosen to create the benchmark datasets in this 
study, as the data was readily available for the hg38 genome.

With SUPR REF, we created multiple benchmark datasets using the annotation 
approach and a sliding window over the hg38 genome. The creation parameters of these 
benchmark datasets follow a stride of 50 and a window size of 300 to resemble the data-
sets for previous models. Any window with an ambiguous base ‘N’ was removed to avoid 
model noise and bias. Sequences were categorised as promoter if at least 250 out of 300 
bases ( 83% ) were contiguously overlapping with true promoter sequences. All other 
sequences were categorised as non-promoter.

These benchmark datasets follow the IO tagging scheme, where “I” means inside (pro-
moter sequence) and “O” means outside (non-promoter sequence). Tagging schemes 
stem from the Natural Language Processing (NLP) community [32]. They translate well 
into promoter recognition where DNA is regarded as a text corpus, and promoters as 
entities within that corpus.

To elicit a more realistic performance of the DLPR models, we created a larger test-
ing dataset comprising of hg38 chromosome 1 and 2 (hg38chr1&2). This larger dataset 
contains 422,912 sequences, as opposed to less than 60,000 sequences from each study’s 
cross-validation test. The dataset contains overlapping sequences designed to test 
sequences where a few bases on the sequences’ edges are different. This could alert us if 
a model has strict positional learned behaviour or if it is overfitting on specific sequence 
patterns. The hg38chr1&2 dataset was split into its respective chromosomes. The hg38 
chromosome  1 (hg38chr1) benchmark dataset includes 196,224 DNA sequences with 
3748 ( 1.91% ) promoter sequences. These sequences consist of multiple known promoters 
from EPD for the approximately 2000 known coding genes in the human chromosome 1, 
and also the overlapping sequences that occur from the sliding window approach. The 
hg38 chromosome  2 (hg38chr2) benchmark dataset includes 226,688 DNA sequences 
with 2632 ( 1.16% ) promoter sequences. Notably, it is larger than hg38chr1 even though 
chromosome 1 contains more base pairs. The reason is the higher predominance of ‘N’ 
bases in chromosome 1 annotation. The sequences for hg38chr2 also consist of multi-
ple known promoters from EPD for the approximately 1200 known coding genes in the 
human chromosome 2, and also the overlapping sequences that occur from the sliding 
window approach.

A fair testing procedure is incomplete without a held-out testing dataset that is com-
pletely unseen by the trained model. Since some models are trained on the complete set 
of human promoters, it is important to test them on a dataset where human promoters 
are not available to ensure no overlapping occurs within the training and testing data-
sets. Therefore we also include a dataset of mm10 chromosomes. As with the human 
benchmark dataset, the mm10 dataset contains sequences from chromosome  1 and 2 
of mice. The mm10 chromosome  1 (mm10chr1) benchmark dataset includes 191,093 
DNA sequences with 3275 ( 1.71% ) promoter sequences, while the mm10 chromosome 2 
(mm10chr2) benchmark dataset includes 193,183 DNA sequences with 4129 ( 2.13% ) 
promoter sequences.
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Model implementations

Our implementation of CNNProm follows the work by Umarov and Solovyev [14]. 
To reproduce the published results, we trained our implemented CNNProm model 
utilising sequences with a length of 251 bases. Using 251 bases, the architecture pro-
duces the same outcome as the original work from Umarov and Solovyev. This is 
regardless of unintentional dissimilarities within the dataset sequences due to una-
vailability of the original dataset. Therefore based upon the original dataset descrip-
tion, we composed a dataset which produced very similar results. Afterwards, to 
properly compare our implemented CNNProm model to other DLPR models, we 
used sequences with 300 bases to match the other three models which were originally 
designed for use with 300 bases. To create a model that encapsulates both TATA and 
non-TATA promoters, we decided to use the non-TATA architecture, which contains 
the highest amount of CNN filters between the two models. In the context of pro-
moter recognition, CNN layers are used to find motifs within the sequence regardless 
of their locations within the sequence. With this architecture, we implemented the 
CNNProm model for this study using the same configuration as described by Umarov 
and Solovyev [14] and shown in Fig. 2a. In SUPR REF, a CNN layer for motif discov-
ery comprises of a user-specified number of filters of length 15 and 21 for finding 
differently sized motifs, followed by a max-pooling operation and a rectified linear 
unit (ReLU) activation function. This common CNN architecture can be expanded by 
increasing the number of CNN layers on top of each other. Additionally, each CNN 
layer can make use of normalization and dropout.

Our implementation of ICNNP follows the work by Qian et al. [15]. Since the origi-
nal work by Qian et al. used a limited subset of promoter sequences from EPD and 
did not disclose the exact sequences utilised, we randomly chose EPD promoters to 
match this amount. This unfortunately adds variability to our model’s outcome, mak-
ing them differ from the results by the original work. The input sequences contain 300 
nucleotides, and the architecture uses a similar CNN layer to CNNProm containing 
200 filters and a max-pool layer, with the addition of a parallel layer containing loca-
tion-specific ‘element’ subsequences that are concatenated to the CNN layer’s output 
to aid in the classification process. This architecture is shown in Fig. 2b. This archi-
tecture is clearly dependent on nucleotide positions within the 300 length sequence, 
which at a genome level will require a sliding window approach to use a very short 
stride. This means that the model will have to be run once for almost every base in 
a genome, which in the human genome would amount to more than 6 billion times, 
making it infeasible for use in a genome wide promoter recognition setting.

Our implementation of DProm follows the work by Oubounyt et al. [16]. The input 
sequences contain 300 bases, and this architecture utilises a combination of CNN 
and recurrent neural network (RNN) layers. This architecture is shown in Fig. 2c. The 
CNN layer acts as an embedding layer to locate the motifs that get passed to a bidi-
rectional long short-term memory (LSTM) RNN layer that interprets the sequential 
signal of the data, namely the order in which motifs are located within the sequence.

DNABERT was not re-implemented like the previous models as its source code was 
readily available. We utilised DNABERT-Prom-300 model by Ji et al. [17], which was 
included as a fine-tuned model designed for promoter recognition from DNABERT’s 
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pre-trained modelling. Further information on this model was given in DL models 
subsection of “Materials and methods”.

Data cleaning

While implementing the models and recreating their datasets, we noticed that some 
promoters from EPD appeared multiple times within the same dataset. This could lead 
to biases in the training and testing datasets. To avoid this, we removed any duplicate 
sequence after the first occurrence. For example, the CNNProm non-TATA dataset 
contains 687 duplicate sequences, which can translate to ∼ 2− 5% difference in MCC 
values.

Fig. 2  Model architectures from a CNNProm [14], b ICNNP [15], c DProm [16]. ∗Two neurons depicted as 
output layer for softmax activation, but a single output neuron is used in case of sigmoid activation
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We further created a script to completely separate all testing and training datasets for all 
three implemented models for our cross-testing evaluation. To this end, we first generated 
separate training and testing datasets for DProm since it contains all promoter sequences. 
Afterwards, the training and testing datasets are further reduced to match the number 
of promoters needed by CNNProm and ICNNP. The non-promoter sequences are then 
appended to the training and testing datasets to match the complete amount of data needed 
to train each model. Finally, we make sure that no sequences are overlapping between train-
ing and testing datasets for all three models by comparing the rows from each dataset.

Model benchmarking

Our training and testing procedures were implemented using Skorch [33], a library adding 
functionality to PyTorch. The most useful feature is its ability to use training, testing, cross-
validation, and evaluation metrics supported by Scikit-learn [34, 35]. This makes SUPR 
REF’s implementation easy to maintain, and training and testing procedures consistent.

The training process involves importing a SUPR REF created dataset and using stratified 
sampling to create the training batches. The models can be trained with two different out-
put functions: sigmoid and softmax. Sigmoid outputs a single value that can separate pro-
moters and non-promoters by a threshold. Softmax outputs two values: the probability that 
the input sequence is or is not a promoter. The loss function follows the output function: 
sigmoid utilises ‘binary cross entropy loss’. Softmax utilises ‘cross entropy loss’. Model train-
ing is completed once one of the following two conditions is met: 50 epochs have occurred 
or the performance of the model has not increased in 5 epochs. Each epoch produces a 
checkpoint file with the best performing model at that time. The checkpoint file contains all 
the model’s parameters, or each neuron’s weight values in the neural network architecture. 
The learning rate for all models was set to 0.001. Batch size and optimizer differed depend-
ing on the original model’s description.

The testing process imports a dataset and loads the best performing checkpoint of a 
trained model. Next, the trained model is used to predict whether the sequences from the 
imported dataset are promoters or non-promoters. The predictions are then compared to 
their sequences’ true classification, and evaluation metrics are calculated.

Evaluation metrics

Choosing the proper metrics to evaluate supervised machine learning models is a crucial 
step for testing the reliability to perform the task that the model has been trained for. Met-
rics also help to compare different trained models when tested on the same dataset. In the 
case of promoter recognition, the problem can be represented analogously to the classifica-
tion of DNA sequences. Therefore, promoter recognition can be designed as a binary clas-
sification task that can be evaluated—such as in related work [14–16]—with the following 
metrics: Sensitivity (Sn), Specificity (Sp), Precision (PPV), and Matthews correlation coef-
ficient (MCC).

(1)Sn =
TP

TP + FN
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Here: TP is the number of true positives (i.e., correctly identified promoter sequences); 
TN, true negative (correctly rejected promoter sequences); FP, false positive (incor-
rectly identified promoter sequences); FN, false negative (incorrectly rejected promoter 
sequences).

Results and discussion
From the datasets of the original studies for each DLPR model discussed earlier it is clear 
that apart from the architectures, non-promoter sequences are the main differentiating 
factors affecting their training and subsequent performance metrics. We investigate the 
extent that the different negative sequences affects these datasets by testing each of the 
previous DLPR models on human datasets from other studies. We refer to this process 
as cross-testing the models. First, we mixed the complete human dataset—including 
TATA and non-TATA—of each study to create a complete training dataset for each cor-
responding model. In essence, we implemented and trained each model on its study’s 
set of available datasets containing sequences of length 300, including a complete data-
set merging TATA and non-TATA promoters. Note that the original CNNProm models 
used sequences of length 250, and thus differ from our reimplemented CNNProm model 
which utilises sequences of length 300 for a fair comparison with the other models. 
Then, each model was tested on all the datasets for a proper comparison of the models.

Results of cross-testing are provided in Table 1, showing performance metrics of each 
model when tested on their own dataset, alongside our implemented cross validation 
results. Each model’s results from a published study is contained within the original 
study (OS) row. Our implementation results are found under cross-testing (CT 
=[CT ∗ , CT+ , CT− ]) rows, where the models are tested on data that might not be exactly 
the same as the original study, thus creating the difference in results between OS rows 
and CT rows. The data difference is explained in the model implementation subsection 
of “Materials and methods”. CT rows include models trained on sequences that overlap 
( CT+ ) with sequences on the testing dataset and models trained on proper train-test 
split ( CT− ) datasets; this shows the effect that improper splitting can have when evalu-
ating models. Additionally, CT ∗ rows contain 10-fold cross-validation results from our 
implemented models, along a 99% confidence confidence interval. For easier visibility, 
CNNProm, ICNNP, and DProm have been renamed to 1, 2, and 3 respectively. From 
Table 1, we see that OS (1) CNNProm has been tested on all three datasets, while OS 
(2) ICNNP and OS (3) DProm were tested only on their own dataset. This is especially 
problematic as OS (2) ICNNP and OS (3) DProm compare their cross-validation results 
with OS (1) CNNProm’s results, but it is unclear how OS (1) CNNProm was trained or 

(2)Sp =
TN

TN + FP

(3)PPV =
TP

TP + FP

(4)MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )
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tested on the other datasets. This unknown procedure makes it difficult to assess the 
fairness and validity of the comparison between the models.

Results from our cross validation ( CT ∗ ) did not exactly match the OS results. This is 
evident in the CNNProm non-TATA and complete models, as CNNProm was origi-
nally designed for sequences of length 250 and the architecture is highly tuned for that 
length. We observe that some OS results resemble CT+ more closely than those from 
properly split datasets i.e., ICNNP model being superior to CNNProm model on the 
ICNNP dataset. Notably, the CNNProm non-TATA model did not obtain the same per-
formance as in the original publication, even with overlapping and duplicate sequences 
when trained on sequences of length 300, which prompted us to examine the original 
CNNProm non-TATA dataset further. We found that the original dataset includes 686 
duplicate sequences out of 47,541 sequences that can skew cross-validation, while our 
implemented dataset creation for CNNProm did not include duplicate sequences.

When comparing results from OS (1) CNNProm tested on CNNProm dataset and 
ICNNP dataset, we observe a discrepancy for the CNNProm model: CNNProm per-
forms better on the CNNProm complete dataset, while ICNNP outperforms CNNProm 
on their ICNNP complete dataset. The inferior performance of CNNProm seems to be 
occurring because of the improperly split training and testing datasets, as the properly 
split dataset has very similar performance to ICNNP on MCC. This discrepancy in per-
formance could also be due to the difference in non-promoter sequences since the pro-
moter sequences for ICNNP dataset are a subset of the CNNProm dataset promoter 
sequences. Similarly, results from OS (1) CNNProm on the DProm dataset differ sig-
nificantly from its performance on the CNNProm dataset. As previously mentioned 
with the CNNProm and ICNNP datasets, promoter sequences are very similar in both 
CNNProm and DProm datasets; in this case, CNNProm promoter sequences being a 
subset of DProm promoter sequences. Therefore, the difference in CNNProm’s perfor-
mance on the DProm dataset can be mostly attributed to non-promoter sequences.

The conflicting performance results from all three models when tested on datasets 
from different studies show that cross-validation results on small datasets are insuffi-
cient to capture a model’s true performance. We infer that discrepancies in test results 
might stem from a limited number of training samples and the inability of the models to 
properly capture the many variations of promoters within the datasets in a single model. 
The discrepancies could also occur due to insufficient patterns to adequately represent 
the distribution of promoter and non-promoter sequences within real DNA sequences 
found in nature. As such, we used a more representative benchmark dataset to validate 
and compare the true performance of these models.

Benchmark comparison

In previous results, all three implemented models were trained and tested on a common 
promoter database (EPD), meaning that some promoter sequences appear in both the 
training and testing datasets of each other, with the exception of CT− . This bias can skew 
the sensitivity and precision metrics towards more positive values. In a similar manner, 
some non-promoter sequences in certain training sets (CNNProm, ICNNP) are also 
found in the testing datasets, which will skew specificity and MCC in the same manner 
as previously stated. Therefore, all trained models were also tested on hg38 benchmark 
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dataset. ICNNP and DProm models were also tested on the smaller hg38chr1&2 and 
mm10chr1&2 benchmark datasets. These chromosomes were selected because of their 
greater length compared to other chromosomes, while representing the naturally occur-
ring ratio of ∼ 1% promoter and ∼ 99% non-promoter sequences.

The results of the models being tested on the larger, more representative human 
genome dataset and the smaller human and mouse chromosome datasets are shown in 
Table 2. Note that the precision of all three models decrease to nearly zero in the hg38 
dataset. This implies that many non-promoter sequences are identified as promoters by 
these models, which highlights the limited capability of the models when dealing with 
larger sets of data that resemble the promoter to non-promoter ratio in nature. It is also 
important to notice that models are able to perform similarly within related species, as 
the models perform comparably in both human and mouse chromosomes. Finally, note 
how precision generally gets lower as the amount of non-promoter sequences increases, 
which occurs from the increasing number of false positives.

Benchmark on state‑of‑the‑art

The latest DLPR tool, known as DNABERT [17], is currently the best performing tool for 
promoter recognition by utilising BERT [30], a highly specialised deep learning archi-
tecture for language processing. DNABERT requires the DNA sequences to be trans-
formed into k-mer form, which is not easily achievable through their software. Although 
the algorithmic function for transforming a sequence in its k-mer equivalent is provided 
in their source code, it must be programmed further for a generalised setting for con-
verting dataset files. Therefore, our software suite included this functionality as a simple 
command. Subsequently, we created a chromosome  1 dataset to test their tool in the 
specific format required by DNABERT. Details of the exact experiment sequences and 
parameters utilised for the testing dataset is available within the Additional file 1.

For our testing purposes, we utilised their fine-tuned pre-trained model for promoter 
recognition (DNABERT-Prom-300) and obtained the following results shown in Fig. 3. 
From these results, we can see how promoter recognition is still a coin toss where ∼ 50% 
of the time the result could be incorrect. Note that DNABERT was trained on human 
promoter data, which makes it biased towards better results in this testing dataset. 
Therefore, it seems that current promoter recognition tools are still not reliable enough 
to properly solve this problem.

Synthetic data

We further explored promoter modification into non-promoter sequences by observ-
ing the effects of the modified base distribution on the training of models. The models 
had DProm architecture and were trained on multiple different synthetic non-promoter 
datasets. In the DProm study, substitutions occurred in a uniform manner, i.e., any base 
had the same probability of being randomly substituted. Here, we calculated the original 
promoters’ base distributions and made the substitutions match the original promoter 
distributions, i.e., the bases were shuffled instead of replaced by independent DNA sub-
sequences. Therefore, the two types of synthetic data tested are the ‘uniform distribu-
tion’ (UD) and ‘original promoter distribution’ (OPD), respectively. When training only 
on TATA promoters, the models had difficulty differentiating the original promoter 
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distribution sequences from non-promoters, leading to a lower sensitivity compared to 
the uniform distribution sequences. The sensitivity increased for non-TATA promoters, 
although uniform distribution models still outperformed the original promoter distri-
bution. The lower sensitivity was traded for slightly higher specificity, although MCC 
remained generally slightly lower for OPD than UD trained models. These results can 
be seen in Fig.  4a. These experiments validate the use of uniformly random distribu-
tion substitutions rather than original promoter distribution substitutions as done by 
Oubounyt et al. [16].

While non-promoter sequences created from OPD helped models obtain slightly 
higher specificity than UD sequences when tested on hg38chr1, using non-promoter 
synthetic data to train models had disadvantages over non-synthetic data: all models 
trained on synthetic data had lower specificity than models trained on non-synthetic 
data.

Sampling methods

Common methods to compensate for highly imbalanced datasets when training models 
include oversampling and undersampling. Oversampling is generally done by duplicat-
ing the minority class within the training dataset, while undersampling removes samples 
from the majority class. Both of these methods try bringing the number of promoter 
and non-promoter sequences to a similar value to aid in model training. We trained a 
model, referred to as ‘normal sampling’, with the benchmark hg38chr1 which contains 
around 100 non-promoters to each promoter sequence in the dataset. We then trained 
a second model referred to as ‘undersampling’. This model contains at most 10 non-pro-
moter sequences for each promoter in the dataset by limiting the number of non-pro-
moter sequences. Finally, we trained a third model referred to as ‘oversampling’, trained 
with a ratio of one promoter per 10 non-promoter sequences—in this case the promoter 
sequences were duplicated to achieve that ratio.

Comparing the results from these three sampling methods, shown in Fig.  4b, we 
observe that the normal sampling model could perform slightly better than the other 
two methods in MCC, precision and specificity. The oversampling method generally had 

Fig. 3  Results from DNABERT using their ‘Prediction’ functionality for promoter recognition with a human 
chromosome 1 dataset created by SUPR REF 
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higher sensitivity than other sampling methods at the cost of slightly lower precision and 
specificity. The undersampling method seems to be the worst performing method out of 
all three sampling methods tested, which is the method that could be attributed to the 
training of most DLPR models in the literature when utilising limited data.

Output functions

We explored how the activation function in the output layer of a neural network can 
affect the performance of models. The most commonly used output activation functions 
are sigmoid and softmax. When using sigmoid, a numerical threshold is required to 
separate the classification between promoters and non-promoters. The threshold in our 
experiments for models utilising a sigmoid activation function is 0.5. This threshold is 
unnecessary for a softmax function since it outputs the probability of a sequence being a 
promoter or non-promoter. Results for this experiment is shown in Fig. 4c. Notably, the 

Fig. 4  Results from experiments in a synthetic data, b sampling methods, c output functions, d annotations
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sigmoid function in most of our models tends to provide a small performance increase 
in precision while the softmax function tends to provide increased sensitivity, and less 
fluctuation within all metrics.

Annotations

Promoter annotation datasets contain promoter sequences that have been biologically 
verified. The EPDnew database has been utilised in most promoter recognition studies. 
We compare these annotations to UCSC’s upstream datasets, which contain upstream 
sequences for every biologically verified gene in multiple organisms. These upstream 
sequences can be used to obtain promoter sequences since they are adjacent to the 
TSS of their respective genes. It is important to note that the upstream dataset can-
not account for alternative TSS of genes that occur frequently in nature. Results for this 
experiment are shown in Fig. 4d. When tested on benchmark datasets, models trained 
on UCSC upstream data had higher precision than models trained on EPDnew promot-
ers. The trade-off to the higher precision in models trained on UCSC upstream data was 
of lower sensitivity.

Analysis

To understand how the models could differentiate between promoter and non-promoter 
classes, SUPR REF allows us to analyse the sequences of the datasets. This helps us 
choose the relevant positions of the sequence to extract. These subsequences can then 
be used to train and test models.

Looking at the TATA dataset in Fig. 5a, we find that the TATA box motif to be a clear 
differentiating factor ranging from −35 to −20 . We can also find minor differentiating 
bases between −200 and −40 . Take careful consideration that motifs are located relative 
to the TSS (denoted as + 1 ), but the TSS is actually located at position 201 within the 
DNA sequence in both Fig. 5a, b. In the non-TATA dataset used for training CNNProm 
models as seen in Fig.  5b, promoter sequences tend to contain minor differentiating 
motifs in the regions from − 22 to − 10 , and + 17 to + 31 . A more pronounced differ-
entiating region can be clearly located from − 4 to + 2 . We explored whether a smaller 
stretch of DNA would be enough to create a model that performs similarly to the results 
of the CNNProm study by training a model with only the −35 to +2 subsequence. Note 
that this includes a significant differentiating region from −2 to +1 as well as the TATA 
box motif. We found that this limited model performs similarly to models utilising the 
complete sequence. To validate the impact that training and testing datasets can have 
in the evaluation of a model’s performance, we further explored using only the 10 bases 
spanning the TATA box motif to train a model (10-bases model). The TATA box is found 
in the regions between − 33 to − 23 , and using only these 10 bases in a cross-valida-
tion experiment, we achieved the results shown in Table 3, which are comparable to the 
results from OS CNNProm in Table 1. This shows us that minor differentiating regions 
such as − 200 to − 40 and very short but significant differentiating regions such as − 2 
to + 1 did not affect the performance of this model because the much longer and highly 
significant TATA box region was still present within the training dataset.
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Table 3  CNNProm model trained and tested on 10 bases of the human TATA dataset compared to 
original CNNProm TATA dataset results

Model Sn Sp PPV MCC

CNNProm 10-bases 0.95 0.95 0.91 0.89

Original CNNProm 0.95 0.98 – 0.90

Fig. 5  Differentiating bases from promoters in a CNNProm TATA dataset, b CNNProm non-TATA dataset. 
Notice: tiny letters are included within the seqlogos, e.g., position 1–40 in (a) and 179–184 in (b). Clear TATA 
box motif located near position 170–175 in (a)
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Analysis toolkit for trained models

Models from the studies examined here categorise sequences into being promoters or 
non-promoters. The output from these models do not provide a way to further explore 
what features the models might be using to make this decision. Therefore, we created an 
analysis toolkit for CNN and RNN layers within trained models that can highlight the 
bases and locations that carry the most weight into the final output. When visualising 
the CNN and RNN layers to obtain the recognition elements, we can sometimes find 
that the weights correlate to known motifs from databases such as JASPAR. One prob-
lem is that a single element might be distributed into multiple CNN filters or RNN hid-
den weights, thus making it a painful task to correlate them with known motifs. Another 
problem is that multiple elements might be included in a single CNN filter or RNN 
hidden weight, making it difficult to decipher how they were combined or even which 
elements were combined. Therefore, we also created a model that can import JASPAR 
motifs as CNN filters to analyse where they appear in promoters and non-promoters. 
This ensures that each element correlate exactly to only one CNN filter, avoiding the 
previous problems. This model was trained with the CNNProm non-TATA dataset. 
The results from the analysis give multiple seqlogo visuals for each filter (JASPAR PolII 
motif ), as well as visuals for the complete sequence; a combination of all the filters in 
the sequence provides a global view of the bases having an impact in the final output. 
Figure 6 shows an example of an imported JASPAR motif, specifically the human inita-
tor element (INR). Notice that the filter weights seem very small because of normalisa-
tion within the neural network, which causes some bases to not appear in the seqlogo 
in comparison to the JASPAR seqlogo.2 Figure 7 depicts the location where the model 
found INR within promoter sequences in CNNProm human non-TATA dataset. Lastly, 
Fig. 8 shows which bases the model is looking at using all human JASPAR motif filters 
combined.

Conclusions and future work
We demonstrated that the proper assessment of promoter recognition models can be 
heavily impacted by both the training and the testing datasets that are assumed to be 
a sufficient sample size of the DNA sequences observed in nature. Although the three 

Fig. 6  Seqlogo showing the filter weights in a CNN layer for the INR motif imported from JASPAR

2  https://​jaspar.​gener​eg.​net/​static/​logos/​all/​versi​ons/​POL002.​1.​png.

https://jaspar.genereg.net/static/logos/all/versions/POL002.1.png
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studies we examined utilised a similar set of promoter sequences from EPDnew, they 
did not use the same dataset for a proper comparison of their models. Selecting the 
best promoter recognition model can therefore be difficult to assess using the results 
from the published studies or, worse still, can lead to the wrong conclusion if choos-
ing an under-performing model. To tackle this problem and bring clearer comparisons 
to assess DLPR models, we created SUPR REF and included the three literature model 
architectures, training procedures, as well as tools for benchmark dataset creation and 
their subsequent analysis. The dataset creation capability was also used to benchmark 
a state-of-the-art DLPR model to assess the capabilities of current models on promoter 
recognition.

We showcase SUPR REF by comparing previously published DLPR models in 
a highly imbalanced dataset (resembling ratios found at the genomic scale), along-
side several experiments to explore different training methods that can increase 

Fig. 7  Seqlogo showing where the model is locating the INR motif within the promoter sequences of 
CNNProm human non-TATA dataset
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performance. We provide a more specific promoter recognition analysis and data 
that help carry and accelerate DLPR research. Our results indicate that the true per-
formance of ab  initio promoter recognition models is still not at an acceptable level 
for highly imbalanced datasets, as overall performance is still low. Nevertheless, our 
framework can clarify the underlying models that recognise promoters within highly 
imbalanced data and between related species.

SUPR REF is a framework that aims to be at the forefront of reproducible research 
within deep learning for bioinformatics. Within the last decade, an ongoing debate 
within the scientific community regarding reproducibility problems has come to light 
[36]. This debate has also permeated computational fields, as shown by Hutson [37], 
where data should be more accessible and distributed. The bioinformatics field is no 
exception to this problem, and current technology can help mitigate this [38].

Fig. 8  Seqlogo showing the bases that are preferred by all the CNN JASPAR-based filters combined within 
promoter sequences of CNNProm human non-TATA dataset
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Our framework makes use of Scikit-learn, which simplifies the inclusion of state-
of-the-art algorithms for training and testing models. Further improvements for 
benchmarking DLPR models can be achieved from other recently developed testing 
techniques, such as nested cross-validation by Bates et  al. [39], made available by 
Scikit-learn and other similar libraries which SUPR REF used for its development.

Following our results, we hypothesise that training models with a mix of promot-
ers from multiple related species could potentially be a mitigation strategy for the 
imbalance in training datasets of promoter recognition within that branch of life. 
This works in accordance to how models trained on mouse promoters can perform 
similarly on human promoters without the need of retraining the model. The inclu-
sion of more promoter sequences can increase performance as found with the UCSC 
upstream annotations containing 60,555 sequences as opposed to approximately 
30,000 from EPD. These ideas can be further combined by training a model on dif-
ferent annotations and multiple related species. In addition, increasing the dataset 
size of promoter sequences could be possible using non-reference genomes. Although 
MCC deteriorated with more data when looking only at the hg38 dataset Table 2, it is 
highly unlikely that an expansion to non-reference genomes would help increase per-
formance for a single model. Perhaps these deep learning models meet a limit when 
trying to predict multiple promoter sequences because there is no single but multiple 
contradictory functions underlying.

Therefore, once the myriad of biologically functioning variants of promoter 
sequences are identified, they can be clustered together by similarity. Then, the 
sequences that are clustered together can be used to create a model that can special-
ise in that type of sequence or promoter. This can help the training process of DLPR 
models differentiate between the distribution of base pairs that are involved in pro-
moters sequences and non-promoter sequences, thus avoiding noise that might occur 
in the case of IO tagging scheme. As such, promoters would not only be categorised 
as a single class, but as multiple classes of promoters depending on the clustering. 
Techniques to further improve performance of DLPR models are incrementally devel-
oped from best performing ideas and designs. It is imperative that frameworks like 
SUPR REF simplify the process of improving models by removing the need to imple-
ment previously known techniques and being hindered by implementation details. 
This work is a step toward this goal while we increase our understanding of promoter 
sequences necessary for the transcription process that occurs within cells.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​04647-5.

Additional file 1. Additional file includes a pdf file with a step-by-step example of our testing framework utilised for 
DNABERT.

Acknowledgements
This work has been supported by Google Cloud research and Azure for Health. The computational results have been 
achieved in part using Compute Canada, Google Cloud, and Azure Clusters.

Authors’ contributions
Conceptualisation: RIPM, Methodology and formal analysis: RIPM, Data acquisition and curation: RIPM, Software 
implementation: RIPM, Visualisation: RIPM, Writing–original draft: RIPM, Writing–review and editing: RIPM, AZ, HJ and US, 
Funding acquisition: HJ and US. All authors read and approved the final manuscript.

https://doi.org/10.1186/s12859-022-04647-5


Page 27 of 28Perez Martell et al. BMC Bioinformatics          (2022) 23:118 	

Funding
Google Cloud academic research grant, Azure Sponsorship through the Microsoft AI for Health Azure grant, University of 
Victoria graduate fellowship (RIPM), and NSERC Discovery Grants (HJ and US).

Availability of data and materials
Source code and documentation for the use of SUPR REF can be found at https://​doi.​org/​10.​5281/​zenodo.​58231​12 [40] 
or GitHub for the latest version. Data and functionality for obtaining third party data is also available at the same location.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 10 January 2022   Accepted: 16 March 2022

References
	1.	 Lambert S, et al. The human transcription factors. Cell. 2018;172(4):650–65. https://​doi.​org/​10.​1016/j.​cell.​2018.​01.​029.
	2.	 Fornes O, et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic 

Acids Res. 2019;48(D1):7–92. https://​doi.​org/​10.​1093/​nar/​gkz10​01.
	3.	 Krzyzanowski P, et al. Regional perturbation of gene transcription is associated with intrachromosomal rear-

rangements and gene fusion transcripts in high grade ovarian cancer. Sci Rep. 2019. https://​doi.​org/​10.​1038/​
s41598-​019-​39878-9.

	4.	 Rudge T, et al. Characterization of intrinsic properties of promoters. ACS Synth Biol. 2016;5(1):89–98. https://​doi.​org/​
10.​1021/​acssy​nbio.​5b001​16.

	5.	 Li Y, et al. The identification of cis-regulatory elements: a review from a machine learning perspective. BioSystems. 
2015;138:6–17. https://​doi.​org/​10.​1016/j.​biosy​stems.​2015.​10.​002.

	6.	 Narang V, et al. Computational modeling of oligonucleotide positional densities for human promoter prediction. 
Artif Intell Med. 2005;35(1–2):107–19. https://​doi.​org/​10.​1016/j.​artmed.​2005.​02.​005.

	7.	 Bajic V, et al. Performance assessment of promoter predictions on ENCODE regions in the EGASP experiment. 
Genome Biol. 2006;7(1):3–113. https://​doi.​org/​10.​1186/​gb-​2006-7-​s1-​s3.

	8.	 de Medeiros OM, et al. TSSFinder–fast and accurate ab initio prediction of the core promoter in eukaryotic genomes. 
Brief Bioinform. 2021. https://​doi.​org/​10.​1093/​bib/​bbab1​98.

	9.	 Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based sequence model. Nat 
Methods. 2015;12(10):931–4. https://​doi.​org/​10.​1038/​nmeth.​3547.

	10.	 Alipanahi B, et al. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat 
Biotechnol. 2015;33(8):831–8. https://​doi.​org/​10.​1038/​nbt.​3300.

	11.	 Quang D, Xie X. DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of 
DNA sequences. Nucleic Acids Res. 2016;44(11):107. https://​doi.​org/​10.​1093/​nar/​gkw226.

	12.	 Li J, et al. DeepATT: a hybrid category attention neural network for identifying functional effects of DNA sequences. 
Brief Bioinform. 2021;22(3):159. https://​doi.​org/​10.​1093/​bib/​bbaa1​59.

	13.	 Raeder T, et al. Learning from imbalanced data: evaluation matters. Intell Syst Ref Libr. 2012. https://​doi.​org/​10.​1007/​
978-3-​642-​23166-7_​12.

	14.	 Umarov R, Solovyev V. Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning 
neural networks. PLoS ONE. 2017;12(2):0171410. https://​doi.​org/​10.​1371/​journ​al.​pone.​01714​10.

	15.	 Qian Y et al. An improved promoter recognition model using convolutional neural network. In: 2018 IEEE 42nd 
annual COMPSAC, 2018. IEEE, Tokyo, Japan. p. 471–476. https://​doi.​org/​10.​1109/​COMPS​AC.​2018.​00072.

	16.	 Oubounyt M, et al. DeePromoter: robust promoter predictor using deep learning. Front Genet. 2019;10:286–286. 
https://​doi.​org/​10.​3389/​fgene.​2019.​00286.

	17.	 Ji Y, et al. DNABERT: pre-trained bidirectional encoder representations from transformers model for DNA-language 
in genome. Bioinformatics. 2021;37(15):2112–20. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btab0​83.

	18.	 Chen K, et al. Selene: a PyTorch-based deep learning library for sequence data. Nat Methods. 2019;16(4):315–8. 
https://​doi.​org/​10.​1038/​s41592-​019-​0360-8.

	19.	 Kopp W, et al. Deep learning for genomics using Janggu. Nat Commun. 2020;11(1):3488. https://​doi.​org/​10.​1038/​
s41467-​020-​17155-y.

	20.	 Budach S, Marsico A. pysster: classification of biological sequences by learning sequence and structure motifs with 
convolutional neural networks. Bioinformatics. 2018;34(17):3035–7. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bty222.

	21.	 Avsec Z, et al. The Kipoi repository accelerates community exchange and reuse of predictive models for genomics. 
Nat Biotechnol. 2019;37(6):592–600. https://​doi.​org/​10.​1038/​s41587-​019-​0140-0.

	22.	 Shirley MD et al. Efficient “pythonic” access to FASTA files using pyfaidx. Technical Report e1196, PeerJ Inc. 2015. 
https://​doi.​org/​10.​7287/​peerj.​prepr​ints.​970v1.

	23.	 Dréos R, et al. The eukaryotic promoter database in its 30th year: focus on non-vertebrate organisms. Nucleic Acids 
Res. 2017;45(D1):51–5. https://​doi.​org/​10.​1093/​nar/​gkw10​69.

	24.	 Haeussler M, et al. The UCSC genome browser database: 2019 update. Nucleic Acids Res. 2019;47:853–8. https://​doi.​
org/​10.​1093/​nar/​gky10​95.

	25.	 The FANTOM Consortium et al. A promoter-level mammalian expression atlas. Nature. 2014;507(7493):462–70. 
https://​doi.​org/​10.​1038/​natur​e13182.

https://doi.org/10.5281/zenodo.5823112
https://doi.org/10.1016/j.cell.2018.01.029
https://doi.org/10.1093/nar/gkz1001
https://doi.org/10.1038/s41598-019-39878-9
https://doi.org/10.1038/s41598-019-39878-9
https://doi.org/10.1021/acssynbio.5b00116
https://doi.org/10.1021/acssynbio.5b00116
https://doi.org/10.1016/j.biosystems.2015.10.002
https://doi.org/10.1016/j.artmed.2005.02.005
https://doi.org/10.1186/gb-2006-7-s1-s3
https://doi.org/10.1093/bib/bbab198
https://doi.org/10.1038/nmeth.3547
https://doi.org/10.1038/nbt.3300
https://doi.org/10.1093/nar/gkw226
https://doi.org/10.1093/bib/bbaa159
https://doi.org/10.1007/978-3-642-23166-7_12
https://doi.org/10.1007/978-3-642-23166-7_12
https://doi.org/10.1371/journal.pone.0171410
https://doi.org/10.1109/COMPSAC.2018.00072
https://doi.org/10.3389/fgene.2019.00286
https://doi.org/10.1093/bioinformatics/btab083
https://doi.org/10.1038/s41592-019-0360-8
https://doi.org/10.1038/s41467-020-17155-y
https://doi.org/10.1038/s41467-020-17155-y
https://doi.org/10.1093/bioinformatics/bty222
https://doi.org/10.1038/s41587-019-0140-0
https://doi.org/10.7287/peerj.preprints.970v1
https://doi.org/10.1093/nar/gkw1069
https://doi.org/10.1093/nar/gky1095
https://doi.org/10.1093/nar/gky1095
https://doi.org/10.1038/nature13182


Page 28 of 28Perez Martell et al. BMC Bioinformatics          (2022) 23:118 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	26.	 Perez Martell R. Deep learning for promoter recognition: a robust testing methodology. M.Sc. Thesis, University of 
Victoria; 2020.

	27.	 Reese M, et al. Genie–gene finding in Drosophila melanogaster. Genome Res. 2000;10(4):529–38. https://​doi.​org/​10.​
1101/​gr.​10.4.​529.

	28.	 The FlyBase Consortium. The FlyBase database of the Drosophila genome projects and community literature. 
Nucleic Acids Res. 1999;27(1):85–8. https://​doi.​org/​10.​1093/​nar/​27.1.​85.

	29.	 Umarov R, et al. Promoter analysis and prediction in the human genome using sequence-based deep learning 
models. Bioinformatics. 2019;35(16):2730–7. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bty10​68.

	30.	 Devlin J, et al. BERT: pre-training of deep bidirectional transformers for language understanding; 2019. arXiv:​1810.​
04805 [cs].

	31.	 Dréos R, et al. MGA repository: a curated data resource for ChIP-seq and other genome annotated data. Nucleic 
Acids Res. 2018;46(D1):175–80. https://​doi.​org/​10.​1093/​nar/​gkx995.

	32.	 Ju Y, et al. CircSLNN: identifying RBP-binding sites on circRNAs via sequence labeling neural networks. Front Genet. 
2019. https://​doi.​org/​10.​3389/​fgene.​2019.​01184.

	33.	 Tietz M et al. Skorch: a scikit-learn compatible neural network library that wraps PyTorch. Online: skorch.readthe-
docs.io/en/stable/; 2017. https://​skorch.​readt​hedocs.​io/​en/​stable/.

	34.	 Pedregosa F, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–30.
	35.	 Buitinck L et al. API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD: 

languages for data mining and machine learning; 2013. p. 108–122.
	36.	 Fidler F, Wilcox J. Reproducibility of scientific results; 2021.
	37.	 Hutson M. Artificial intelligence faces reproducibility crisis. Science. 2018;359(6377):725–6. https://​doi.​org/​10.​1126/​

scien​ce.​359.​6377.​725.
	38.	 Kim Y-M, et al. Experimenting with reproducibility: a case study of robustness in bioinformatics. GigaScience. 2018. 

https://​doi.​org/​10.​1093/​gigas​cience/​giy077.
	39.	 Bates S et al. Cross-validation: what does it estimate and how well does it do it?. 2021. arXiv:​2104.​00673.
	40.	 Perez I. ivanpmartell/suprref: SUPRREF. Zenodo. 2022. https://​doi.​org/​10.​5281/​zenodo.​58231​12; https://​zenodo.​org/​

record/​58231​12.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1101/gr.10.4.529
https://doi.org/10.1101/gr.10.4.529
https://doi.org/10.1093/nar/27.1.85
https://doi.org/10.1093/bioinformatics/bty1068
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1093/nar/gkx995
https://doi.org/10.3389/fgene.2019.01184
https://skorch.readthedocs.io/en/stable/
https://doi.org/10.1126/science.359.6377.725
https://doi.org/10.1126/science.359.6377.725
https://doi.org/10.1093/gigascience/giy077
http://arxiv.org/abs/2104.00673
https://doi.org/10.5281/zenodo.5823112
https://zenodo.org/record/5823112
https://zenodo.org/record/5823112

	Supervised promoter recognition: a benchmark framework
	Abstract 
	Motivation: 
	Results: 

	Introduction
	Materials and methods
	SUPR REF
	DL models
	Benchmark datasets
	Model implementations
	Data cleaning

	Model benchmarking
	Evaluation metrics

	Results and discussion
	Benchmark comparison
	Benchmark on state-of-the-art
	Synthetic data
	Sampling methods
	Output functions
	Annotations
	Analysis
	Analysis toolkit for trained models

	Conclusions and future work
	Acknowledgements
	References


