
RGMQL: scalable and interoperable
computing of heterogeneous omics big data
and metadata in R/Bioconductor
Simone Pallotta, Silvia Cascianelli*  and Marco Masseroli 

Abstract 

Background:  Heterogeneous omics data, increasingly collected through high-
throughput technologies, can contain hidden answers to very important and still
unsolved biomedical questions. Their integration and processing are crucial mostly
for tertiary analysis of Next Generation Sequencing data, although suitable big data
strategies still address mainly primary and secondary analysis. Hence, there is a press-
ing need for algorithms specifically designed to explore big omics datasets, capable of
ensuring scalability and interoperability, possibly relying on high-performance comput-
ing infrastructures.

Results:  We propose RGMQL, a R/Bioconductor package conceived to provide a set
of specialized functions to extract, combine, process and compare omics datasets and
their metadata from different and differently localized sources. RGMQL is built over the
GenoMetric Query Language (GMQL) data management and computational engine,
and can leverage its open curated repository as well as its cloud-based resources, with
the possibility of outsourcing computational tasks to GMQL remote services. Further-
more, it overcomes the limits of the GMQL declarative syntax, by guaranteeing a pro-
cedural approach in dealing with omics data within the R/Bioconductor environment.
But mostly, it provides full interoperability with other packages of the R/Bioconductor
framework and extensibility over the most used genomic data structures and process-
ing functions.

Conclusions:  RGMQL is able to combine the query expressiveness and computational
efficiency of GMQL with a complete processing flow in the R environment, being a fully
integrated extension of the R/Bioconductor framework. Here we provide three fully
reproducible example use cases of biological relevance that are particularly explana-
tory of its flexibility of use and interoperability with other R/Bioconductor packages.
They show how RGMQL can easily scale up from local to parallel and cloud computing
while it combines and analyzes heterogeneous omics data from local or remote data-
sets, both public and private, in a completely transparent way to the user.

Keywords:  Heterogeneous omics big data, Data scalability, Distribution transparency,
Tertiary data analysis

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Pallotta et al. BMC Bioinformatics (2022) 23:123
https://doi.org/10.1186/s12859-022-04648-4 BMC Bioinformatics

*Correspondence:
silvia.cascianelli@polimi.it
Dipartimento di
Elettronica, Informazione e
Bioingegneria, Via Ponzio
34/5, 20133 Milan, Italy

http://orcid.org/0000-0002-5628-9101
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04648-4&domain=pdf

Page 2 of 28Pallotta et al. BMC Bioinformatics (2022) 23:123

Background
The rapid progress of Next Generation Sequencing (NGS) technologies and the
improvement of data processing pipelines have lead to a dramatic increase in the volume
of available omics data with associated high-level features. Both world-wide consortia
and private research groups are gathering a huge number of different omics collections
[1–7]. A crucial point is to make sense of this amount and variety of omics data, using
proper analyses and bioinformatic pipelines to investigate multiple biological and clini-
cal conditions and possibly answer complex issues.

To this aim, suitable big data algorithms as well as integration and processing strat-
egies are fundamental to guarantee scalability and performance, through efficient
implementations on high performance computing infrastructures such as clouds, CPU
clusters and network infrastructures. Omics datasets are in fact collected within many
and heterogeneous data files, structured to trace genomic regions; these files are usually
distributed on different repositories and frequently lack of an attribute-based organi-
zation or a systematic description of their metadata. Thus, to take advantage of them,
available tools for standard knowledge extraction are often inefficient or inappropriate.
Even when they have powerful features, rough programmatic interfaces make them not
well-suited for biologists and scientists in the biomedical field.

Furthermore, cloud-based approaches and big data algorithms for computational
genomics have so far been mainly targeted to speeding up NGS primary and secondary
analysis. So, they are focused on read alignment, mapping and feature calling [8–12],
while have been rarely directed to tertiary analysis [13–15]. Tertiary investigations aim
to extract biological knowledge, like discovering how different genomic regions and their
products interact with each other under given clinical conditions. Hence, they require
multi-sample seamlessly integrated processing and analysis of region data and metadata
from heterogenous omics datasets.

The GenoMetric Query Language (GMQL) [16–18] is a high-level, query language
that addresses this kind of tasks performing efficient operations over genomic data and
their metadata. Indeed, through parallel computation on cloud-based technologies, it
performs implicit iterations over thousands of samples, hosted in its open cluster-based
repository. GMQL is thus designed for high scalable performance on large datasets; yet,
it supports only batch interactions (via its Web interface or Scala API), requires users to
write queries compliant to its syntax, and does not provide direct support for data analy-
sis and visualization.

We developed RGMQL to bridge this gap between the declarative nature of GMQL
and the procedural workflows dealing with omics data, commonly carried out in the R/
Bioconductor environment. RGMQL is indeed a R/Bioconductor [19, 20] software pack-
age able to bring query expressiveness and computational efficiency of GMQL within an
interactive data processing flow. It is built over the GMQL data management and com-
putational engine to provide a set of specialized functions that extract, combine, manip-
ulate and compare genomic data and metadata, from both local and remote sources,
without requiring any knowledge of GMQL syntax. More important, it is designed to
offer complete interoperability and take full advantage of the other packages of data pro-
cessing, statistical analysis, machine learning and visualization available within the R and
Bioconductor frameworks. Notably, it provides extensibility over the most commonly

Page 3 of 28Pallotta et al. BMC Bioinformatics (2022) 23:123 	

used genomic data structures and processing functions, as to be easily used by research-
ers used to R programming.

RGMQL can even offer processing outsourcing, i.e., it can assign the analytical com-
putational burden of a processing to a remote GMQL service. Also, it provides data dis-
tribution transparency; accordingly, data are always automatically handled and moved
based on the actual processing unit (local or remote), without any further user concern.
So, RGMQL can easily scale from local to parallel and cloud computing, while process-
ing both local and remote omics datasets in completely transparent way to the user.
Notably, data under analysis can be public or private, since when private data are pro-
cessed remotely they are automatically uploaded in a private area of the GMQL reposi-
tory, accessible to the proprietary user only.

Hence, RGMQL provides researchers with a valuable ally for omics data tertiary inves-
tigation. Being fully integrated within the R/Bioconductor framework, it can straight-
forwardly cooperate with other packages while it makes really easy to take advantage of
GMQL functionalities. Also, it offers GMQL computational facilities and public data-
sets stored remotely, all ready-to-use for analyses that can involve user proprietary data
as well. Furthermore, RGQML is able to guarantee FAIR principles [21] (findability,
accessibility, interoperability and reusabilty) not only at the data level, but also at the
implementation level. The package can be found in Bioconductor and its code in the
associated GitHub project. Genomic data and metadata are easy to find using RGMQL
functions to explore the content of the remote repository. Data of interest can be mate-
rialized in the local file system and within the R environment to be further processed,
ensuring interoperability with proprietary data and reusability. The same interoperabil-
ity and reusability are provided by the package itself, which can cooperate with other R
packages while reuses and extends existing R infrastructure and functions.

Related works

The analysis of high-throughput heterogeneous genomic data has critically become
dependent on robust and efficient bioinformatics approaches. Although many steps
ahead have been made in the design of software and pipelines for such data processing,
mainly addressing region data usually stored in BED (Browser Extensible Data) format,
many software suites are still thought to be used on single experimental files; this is the
case of the well-known BEDTools [22] and BEDOPS [23], which are Unix-based com-
mand line tools providing manipulation primitives for BED file analysis. Conversely, the
GMQL system [16–18] allows implicit and efficient iterations over all the experimental
samples of a dataset of interest; in [17, 24] functional and performance comparisons of
GMQL with BEDTools and BEDOPS are respectively provided. Furthermore, only the
GMQL system has another crucial added value: it is able to handle and perform complex
queries and data processing based on both genomic region data and metadata, which are
fully organized and supported within the well-defined structure of the Genomic Data
Model adopted in the GMQL system.

Despite GMQL original system is certainly the main work related to RGMQL, which
inherits all its mentioned strengths, GMQL and RGMQL have highly divergent features.
In particular, GMQL only provides batch interactions through its Web application and
Scala API, whereas RGMQL works in a continuous R processing flow and ensures full

Page 4 of 28Pallotta et al. BMC Bioinformatics (2022) 23:123

interoperability and analysis of all produced results with the other R/Bioconductor soft-
ware packages. Although a programmatic interface of GMQL, called PyGMQL [25], has
been developed for Python programming language, the possibility of taking advantage of
GMQL in a seamless and fully integrated way within the R/Bioconductor environment
is of key interest for the bioinformatic community. In fact, Bioconductor [20] is one of
the most used open-source software frameworks for open-development and execution
of bioinformatic pipelines and omics data analyses [26], which are highly facilitated by
the use of R programming language and the availability of many dedicated R/Bioconduc-
tor software packages.

Well suited for the analysis and comprehension of high-throughput genomic data [26,
27], Bioconductor strongly encourages extensive reuse of the infrastructure provided by
its existing packages, as to enhance interoperability and full compatibility of each library,
beyond offering robust high-quality code for data processing and analysis. Its last release
(3.14)1 includes 2,083 software packages and numerous annotation and experimental
data packages from published works. Particularly, the GenomicRanges and GenomicFea-
tures [28] packages are the core of the R/Bioconductor infrastructure for omics data
handling: they provide scalable data structures for representing annotated ranges (i.e.,
regions) on the genome and efficient algorithms for overlap computing, coverage calcu-
lation, data extraction and other intra- and inter-range operations. Specifically, Genomi-
cRanges was built to include biologically relevant features upon the IRanges class, which
represents a general vector of ranges. Its GRanges class defines a GRanges object that
indeed contains an IRanges one, where ranges are enriched with sequence name (e.g.,
chromosome name), strand information, sequence length and possibly additional region
metadata. Furthermore, its GRangesList class is designed to build a data structure group-
ing together GRanges of the same genome and sharing the same region metadata. Con-
versely, GenomicFeatures offers methods for extracting and manipulating genomic data
annotations in GRanges and GRangesList objects. Beyond direct computational facili-
ties, this core infrastructure mostly supports an increasing amount of other Bioconduc-
tor packages, including libraries for sequence analysis, differential expression analysis
and data visualization. Yet, these kinds of processing require data to be available in main
memory: though GRangesList have additional built-in data compression to cope with
this issue, the need of RAM memory resident data and results represents undoubtedly a
limit for scalability to big data contexts.

In this scenario, we designed RGMQL to be fully integrated in the R/Bioconductor
framework and to seamlessly extend its functionalities, with any RGMQL resulting data-
set that can be cast to a GRangesList data structure. Not only it ensures interoperabilty
with the other R/Bioconductor packages, but also it provides cloud-based computational
scalability and efficiency, extending the capabilities of R/Bioconductor that does not
directly support scalable genomic data processing on remote clusters. In fact, although
Bioconductor and also the general-purpose Comprehensive R Archive Network (CRAN)
[19] provide some efficient data manipulation packages used also for genomic data pro-
cessing, their computational performances are usually enhanced through optimizations,

1  https://​www.​bioco​nduct​or.​org/​news/​bioc_3_​14_​relea​se/.

https://www.bioconductor.org/news/bioc_3_14_release/

Page 5 of 28Pallotta et al. BMC Bioinformatics (2022) 23:123 	

local parallelism or calling lower-level code at run-time. Particularly, the well-known
dplyr package [29], including many useful data manipulation functions (e.g., filter(),
select(), arrange()), provides fast performances thanks to embedded key code pieces
written in C++ programming language. Only recently, the sparklyr [30] package has
been developed to take advantage of the strength of Apache Spark clusters [31], provid-
ing compatible back-end for dplyr functions. Nonetheless, to the best of our knowledge
RGMQL is the only R/Bioconductor package specifically tailored to comprehensively
query heterogeneous genomic data, regardless if locally or remotely located, within a
processing context extensible towards parallel computations on cloud-based technolo-
gies, even outsourcing the required computing power.

Implementation
RGMQL is a R/Bioconductor package developed to make available GMQL operators
in the R/Bioconductor environment, while ensuring full integration within such a pro-
grammatic framework. It is freely available both at https://​github.​com/​DEIB-​GECO/​
RGMQL and at https://​www.​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​RGMQL.​
html, together with its complete documentation and its vignette, with some task-
oriented examples of the package functionalities. Currently, in its first 4 years of life it
counts more than 3,800 downloads only from Bioconductor.

Here, after a brief description of the GMQL system and of its data model, RGMQL
design is thoroughly discussed, with particular attention to its strengths: the full
integration within the R/Bioconductor framework and the distributed processing
environments.

GMQL and its genomic data model

The GenoMetric Query Language [16–18] is a high-level, declarative language devel-
oped to efficiently process huge omics datasets and their metadata. Indeed, it expresses
operations through compact queries that implicitly imply iterations over all samples.
As its name suggests, GMQL is able to process one or multiple datasets based on dis-
tal predicates, i.e., conditions related to the genomic distance (in base pairs) between
any involved pair of genomic regions; yet, it is also able to support metadata predicates,
concerning experimental and clinical properties. Thus, GQML extends conventional
operations of relational algebra (e.g., SELECT, PROJECT, UNION, etc.) with further
operations specifically designed for genomics, like the domain-specific operations JOIN,
COVER, MAP or EXTEND. In Table 1, all GMQL operators are reported and briefly
described, together with their corresponding RGMQL functions.

GMQL relies on a formal, unified data description model, called Genomic Data
Model (GDM) [24]: it is designed to homogeneously represent semantically heterogene-
ous omics data and metadata, comprehensively managing the latter ones through a flat
attribute-based organization. A GDM dataset is associated with a data schema, where
main attributes are fixed (chr, left, right, strand) and represent genomic region coordi-
nates, while all other attributes further characterize each genomic region; conversely,
metadata express general properties of each sample and are specified in free attribute-
value pair format.

https://github.com/DEIB-GECO/RGMQL
https://github.com/DEIB-GECO/RGMQL
https://www.bioconductor.org/packages/release/bioc/html/RGMQL.html
https://www.bioconductor.org/packages/release/bioc/html/RGMQL.html

Page 6 of 28Pallotta et al. BMC Bioinformatics (2022) 23:123

GDM-based datasets are organized, stored and loaded as collections of samples,
including both region and metadata files. Specifically, the GMQL project makes available
public data of several consortia in an open cluster-based curated repository, including
data from The Cancer Genome Atlas (TCGA) [3], the Encyclopedia of DNA Elements
(ENCODE) [5] and the 1000 Genomes Project (1KGP) [32]; additionally, any user can
have also a personal space to import private datasets, maintaining confidentiality and
access control through login sessions.

All datasets can be processed efficiently by GMQL operators through the developed
GMQL REST Web Services and Web interface. The underlying architecture ensures
scalability and parallelism of processing, and allows using local, remote and distributed
File Systems, as well as several deployment strategies on cloud environments or on sin-
gle Java virtual machines.

The main implementation of the GMQL system, publicly accessible at http://​www.​
gmql.​eu/, is installed on a cluster at CINECA, the largest Italian computing centre and
one of the most important worldwide. Currently, this GMQL architecture includes an
application server and a cluster of machines for execution over the Spark engine and
Hadoop Distributed File System. More details about the GMQL system are in [18].

Table 1  Genometric RGMQL functions with their extension over already existing R functions and
mapping to corresponding GMQL operators

R
package
of origin

RGMQL function GMQL operator Brief description

dplyr arrange() ORDER It orders samples sample regions based on metadata region
attributes

dplyr collect() MATERIALIZE Itsaves persistently the content of any dataset obtained after
query completion

dplyr filter() SELECT It extracts a subset of samples sample regions using region
metadata predicates

dplyr group_by() GROUP It groups samples sample regions based on region metadata
attributes with the same value

dplyr select() PROJECT It selects region metadata attributes to be kept and can
update create metadata region attributes

dplyr setdiff() DIFFERENCE It discards the regions of the first dataset intersecting regions
of the second one

dplyr union() UNION It puts together samples of two datasets keeping as region
attributes those of the first one

base merge() JOIN It returns a dataset by joining the regions of two datasets
based on distance region predicates

stats aggregate() MERGE It combines all the samples of a dataset into a single sample

– cover() COVER It collapses the samples of a dataset into a single sample
based on specified rules

– execute() – It launches the query execution

– extend() EXTEND It generates new metadata attributes for each sample from
aggregations applied to region attributes

– map() MAP It computes aggregated values from overlapping regions of
two datasets

http://www.gmql.eu/
http://www.gmql.eu/

Page 7 of 28Pallotta et al. BMC Bioinformatics (2022) 23:123 	

RGMQL design

RGMQL has been designed to offer both the expressive power of the GMQL query lan-
guage and straightforward usability by any user with only knowledge of the R syntax. In
fact, its functions are developed to directly provide extensibility over core data struc-
tures and processing functions commonly used in the R/Bioconductor environment, as
well as to be fully interoperable with many other R/Bioconductor packages.

Additionally, it can perform complex and computationally intensive queries (involv-
ing region data and metadata of GDM-based datasets) with the same efficiency of the
GMQL system. Indeed, it shares the GMQL back-end architecture and cloud-based
engine to handle and process in parallel also huge genomic datasets, through remote
execution performed at GMQL site. Thanks to the underlying GMQL Apache Spark [33]
engine, RGMQL allows scaling up from local to cluster and cloud execution. The back-
end interacts with the R front-end through the Web Services functions module depicted
in Fig. 1, which maps the RGMQL functions to the corresponding GMQL operators
(Table 1) implemented in Spark. Furthermore, RGMQL supplies several utility func-
tions (Table 2) needed for seamless integration with the GMQL system, exploration of
its curated repository and remote access to the GMQL computational resources.

Typically, R/Bioconductor packages are developed to handle data of limited size
through the use of a single machine; they usually read datasets in RAM memory all at
once, and every R object must reside entirely in memory to be processed. This often

Fig. 1  Representation of the RGMQL package within the R/Bioconductor environment. REST Web services and
Sequential execution modules can handle alternative RGMQL processing environments, together with their
dependency links to httr and rJava R packages, respectively

Page 8 of 28Pallotta et al. BMC Bioinformatics (2022) 23:123

Ta
bl

e 
2 

A
dd

iti
on

al
 R

G
M

Q
L

fu
nc

tio
ns

 to
 h

an
dl

e
in

iti
al

iz
at

io
n,

 re
m

ot
e

da
ta

 e
xp

lo
ra

tio
n,

 p
ro

ce
ss

in
g

an
d

re
su

lt
co

nv
er

si
on

s

Fu
nc

tio
n

ty
pe

RG
M

Q
L

fu
nc

tio
n

Br
ie

f d
es

cr
ip

tio
n

In
pu

t d
at

as
et

O
ut

pu
t d

at
as

et
Re

m
ot

e
pr

oc
es

si
ng

 re
qu

ire
d

FU
N

C
TI

O
N

S
TO

 H
A

N
D

LE
, R

EA
D

 A
N

D
 A

N
A

LY
ZE

LO

C
A

L
A

N
D

 R
EM

O
TE

 D
AT

A
SE

TS
, P

RO
VI

N
D

IN
G

A

LS
O

 U
SE

FU
L

CO
N

VE
RS

IO
N

S

de
le

te
_d

at
as

et
()

It
de

le
te

s
a

pr
iv

at
e

da
ta

se
t f

ro
m

 re
m

ot
e

re
po

si
to

ry
Re

m
ot

e
da

ta
se

t
–

YE
S

do
w

nl
oa

d_
da

ta
se

t(
)

It
do

w
nl

oa
ds

 a
 p

riv
at

e
da

ta
se

t f
ro

m
 re

m
ot

e
re

po
si

to
ry

 to

lo
ca

l p
at

h
Re

m
ot

e
da

ta
se

t
Lo

ca
l d

at
as

et
YE

S

do
w

nl
oa

d_
as

_G
Ra

ng
es

-
Li

st
()

It
do

w
nl

oa
ds

 a
 p

riv
at

e
da

ta
se

t i
nt

o
R

en
vi

ro
nm

en
t a

s
a

G
Ra

ng
es

Li
st

Re
m

ot
e

da
ta

se
t

G
Ra

ng
es

Li
st

YE
S

ex
po

rt
_g

m
ql

()
It

cr
ea

te
s

a
G

D
M

-li
ke

 d
at

as
et

 fr
om

 a
 G

Ra
ng

es
Li

st
G

Ra
ng

es
Li

st
Lo

ca
l d

at
as

et
N

O

fil
te

r_
an

d_
ex

tr
ac

t(
)

It
fil

te
rs

 b
as

ed
 o

n
m

et
ad

at
a

pr
ed

ic
at

es
 a

nd
 g

en
er

at
es

a

ne
w

 G
Ra

ng
es

 w
ith

 a
 c

ho
se

n
lis

t o
f r

eg
io

n
at

tr
ib

ut
es

.
It

w
or

ks
 if

 s
am

pl
es

 h
av

e
th

ei
r r

eg
io

n
co

or
di

na
te

s
(c

hr
,

ra
ng

es
, s

tr
an

d)
 in

 th
e

sa
m

e
or

de
r

Lo
ca

l d
at

as
et

/
G

Ra
ng

es
Li

st
G

Ra
ng

es
N

O

im
po

rt
_g

m
ql

()
It

cr
ea

te
s

a
G

Ra
ng

es
Li

st
 fr

om
 a

 G
D

M
-li

ke
 d

at
as

et
Lo

ca
l d

at
as

et
G

Ra
ng

es
Li

st
N

O

re
ad

_g
m

ql
()

It
re

ad
s

a
G

M
Q

LD
at

as
et

 fr
om

 a
 d

at
as

et
 (w

ith
 a

 v
al

id

fo
rm

at
) o

n
di

sk
, o

r f
ro

m
 th

e
re

m
ot

er
ep

os
ito

ry
 in

 c
as

e
of

re

m
ot

e
pr

oc
es

si
ng

Lo
ca

l/R
em

ot
e

da
ta

se
t

G
M

Q
LD

at
as

et
YE

S,
 if

 is
_l

oc
al

 =
 F

A
LS

E

re
ad

_G
Ra

ng
es

Li
st

()
It

re
ad

s
a

G
M

Q
LD

at
as

et
 fr

om
 a

 G
Ra

ng
eL

is
t

G
Ra

ng
es

Li
st

G
M

Q
LD

at
as

et
N

O

sa
m

pl
e_

m
et

ad
at

a(
)

It
re

tr
ie

ve
s

m
et

ad
at

a
of

 a
 s

pe
ci

fic
 s

am
pl

e
in

 a
 d

at
as

et
Re

m
ot

e
da

ta
se

t
–

YE
S

sa
m

pl
e_

re
gi

on
()

It
re

tr
ie

ve
s

re
gi

on
s

da
ta

 o
f a

 s
pe

ci
fic

 s
am

pl
e

in
 a

 d
at

as
et

Re
m

ot
e

da
ta

se
t

–
YE

S

se
m

ijo
in

()
It

su
pp

or
ts

 th
e

fil
te

r m
et

ho
d

de
fin

in
g

se
m

ijo
in

 c
on

di
tio

ns

on
 m

et
ad

at
a

–
–

N
O

sh
ow

_d
at

as
et

s_
lis

t(
)

It
sh

ow
s

al
l G

M
Q

L
da

ta
se

ts
 in

 re
m

ot
e

re
po

si
to

ry
, b

ot
h

pu
bl

ic
 o

r p
riv

at
el

y
st

or
ed

 b
y

th
e

us
er

–
–

YE
S

sh
ow

_a
ll_

m
et

ad
at

a(
)

It
sh

ow
s

al
l m

et
ad

at
a

of
 a

 g
iv

en
 G

M
Q

L
da

ta
se

t e
ith

er

lo
ca

lly
 o

r i
n

th
e

re
m

ot
e

re
po

si
to

ry
–

–
N

O

sh
ow

_s
am

pl
es

_l
is

t(
)

It
sh

ow
 a

ll
sa

m
pl

es
 o

f a
 G

M
Q

L
da

ta
se

t o
n

th
e

re
m

ot
e

re
po

si
to

ry
–

–
YE

S

sh
ow

_s
ch

em
a(

)
It

sh
ow

s
th

e
re

gi
on

 a
tt

rib
ut

e
sc

he
m

a
of

 a
 G

M
Q

L
da

ta
se

t
on

 th
e

re
m

ot
e

re
po

si
to

ry
–

–
YE

S

ta
ke

()
It

sa
ve

s
as

 a
 G

Ra
ng

es
Li

st
 a

ny
 d

at
as

et
 re

su
lti

ng
 fr

om
 lo

ca
l

pr
oc

es
si

ng
. I

f i
nv

ok
ed

 a
ft

er
 c

ol
le

ct
(),

 th
e

da
ta

se
t i

s
m

at
er

i-
al

iz
ed

 a
ls

o
in

 lo
ca

l F
ile

 S
ys

te
m

G
M

Q
LD

at
as

et
G

Ra
ng

es
Li

st
N

O
, o

nl
y

fo
r l

oc
al

 p
ro

ce
ss

in
g

Page 9 of 28Pallotta et al. BMC Bioinformatics (2022) 23:123 	

Ta
bl

e 
2 

(c
on

tin
ue

d)

Fu
nc

tio
n

ty
pe

RG
M

Q
L

fu
nc

tio
n

Br
ie

f d
es

cr
ip

tio
n

In
pu

t d
at

as
et

O
ut

pu
t d

at
as

et
Re

m
ot

e
pr

oc
es

si
ng

 re
qu

ire
d

up
lo

ad
_d

at
as

et
()

It
up

lo
ad

s
a

da
ta

se
t (

G
D

M
 o

r n
ot

),
an

d
a

co
rr

es
po

nd
in

g
G

M
Q

L
da

ta
se

t i
s

cr
ea

te
d

on
 th

e
re

m
ot

e
re

po
si

to
ry

Lo
ca

l d
at

as
et

Re
m

ot
e

da
ta

se
t

YE
S

FU
N

C
TI

O
N

S
TO

 H
A

N
D

LE
 G

M
Q

L
SE

RV
ER

 A
N

D

M
O

N
IT

O
R

RE
M

O
TE

 JO
BS

, I
F

N
EE

D
ED

in
it_

gm
ql

()
It

in
iti

al
iz

es
 a

nd
 ru

ns
 G

M
Q

L
se

rv
er

 to
 e

xe
cu

te
 a

ny
 p

ro
ce

ss
-

in
g,

 a
nd

 a
ls

o
pe

rf
or

m
s

a
lo

gi
n

to
 G

M
Q

L
RE

ST
 s

er
vi

ce
s

su
ite

, i
f n

ee
de

d

–
–

N
O

lo
gi

n_
gm

ql
()

Lo
gi

n
to

 G
M

Q
L

RE
ST

 s
er

vi
ce

s
su

ite
 a

s
a

re
gi

st
er

ed
 u

se
r,

sp
ec

ify
in

g
us

er
na

m
e

an
d

pa
ss

w
or

d,
 o

r a
s

gu
es

t
–

–
YE

S

lo
go

ut
_g

m
ql

()
Lo

go
ut

 fr
om

 G
M

Q
L

RE
ST

 s
er

vi
ce

s
su

ite
–

–
YE

S

re
gi

st
er

_g
m

ql
()

Re
gi

st
er

 to
 G

M
Q

L
RE

ST
 s

er
vi

ce
s

su
ite

–
–

YE
S

re
m

ot
e_

pr
oc

es
si

ng
()

It
al

lo
w

s
to

 e
na

bl
e

or
 d

is
ab

le
 re

m
ot

e
pr

oc
es

si
ng

–
–

YE
S

sh
ow

_j
ob

s_
lo

g(
)

It
sh

ow
s

th
e

lo
g

of
 a

 s
pe

ci
fic

 jo
b

–
–

YE
S

tr
ac

e_
jo

b(
)

It
tr

ac
es

 a
 s

pe
ci

fic
 jo

b
–

–
YE

S

sh
ow

_j
ob

_l
is

t(
)

It
sh

ow
s

al
l j

ob
s

(ru
n,

 s
uc

ce
de

d
or

 fa
ile

d)
 in

vo
ke

d
by

 th
e

us
er

 o
n

th
e

re
m

ot
e

G
M

Q
L

se
rv

er
–

–
YE

S

sh
ow

_q
ue

rie
s_

lis
t(

)
It

sh
ow

s
al

l t
he

 G
M

Q
L

qu
er

ie
s

sa
ve

d
by

 th
e

us
er

 o
n

th
e

re
m

ot
e

re
po

si
to

ry
–

–
YE

S

st
op

_g
m

ql
()

It
st

op
s

th
e

G
M

Q
L

se
rv

er
 p

ro
ce

ss
in

g
–

–
N

O

st
op

_j
ob

()
It

st
op

s
a

sp
ec

ifi
c

jo
b

–
–

YE
S

FU
N

C
TI

O
N

S
U

SI
N

G
 Q

U
ER

IE
S

IN
 G

M
Q

L
SY

N
TA

X
co

m
pi

le
_q

ue
ry

()
It

co
m

pi
le

s
a

G
M

Q
L

qu
er

y
in

se
rt

ed
 a

s
a

te
xt

 s
tr

in
g

–
–

YE
S

co
m

pi
le

_q
ue

ry
_f

ro
m

-
fil

e(
)

It
co

m
pi

le
s

a
G

M
Q

L
qu

er
y

ta
ke

n
fro

m
 a

 fi
le

–
–

YE
S

ru
n_

qu
er

y(
)

It
ru

ns
 a

 G
M

Q
L

qu
er

y
in

se
rt

ed
 a

s
a

te
xt

 s
tr

in
g

–
–

YE
S

ru
n_

qu
er

y_
fro

m
fil

e(
)

It
ru

ns
 a

 G
M

Q
L

qu
er

y
ta

ke
n

fro
m

 a
 fi

le
–

–
YE

S

sa
ve

_q
ue

ry
()

It
sa

ve
s

in
to

 th
e

re
m

ot
e

re
po

si
to

ry
 a

 G
M

Q
L

qu
er

y,
 ta

ke
n

fro
m

 a
 fi

le
–

–
YE

S

sa
ve

_q
ue

ry
_f

ro
m

fil
e(

)
It

sa
ve

s
in

to
 th

e
re

m
ot

e
re

po
si

to
ry

 a
 G

M
Q

L
qu

er
y,

 in
se

rt
ed

as

 a
 te

xt
 s

tr
in

g
–

–
YE

S

Fo
r e

ac
h

fu
nc

tio
n,

 w
e

re
po

rt
 if

 it
 re

qu
ire

s
re

m
ot

e
re

so
ur

ce
s

an
d

pr
oc

es
si

ng
, a

s
w

el
l a

s
th

e
fo

rm
at

s
of

 it
s

in
pu

t a
nd

 o
ut

pu
t d

at
a

Page 10 of 28Pallotta et al. BMC Bioinformatics (2022) 23:123

prevents the analysis of big data, besides requiring long time to process large sets of
data. Conversely, RGMQL overcomes such limitations, guaranteeing the same scalability
of GMQL and allowing to work with very large datasets, usually not available in local
but cloud repositories. Such big data cannot be handled with standard R data structures
allocated in the main memory. Accordingly, in RGMQL we have introduced the GMQL-
Dataset class, an abstract R structure that represents each GMQL dataset without con-
taining any information about samples (regions or metadata). A R GMQLDataset object
is indeed only a reference to the desired resulting GMQL dataset, which keeps trace
(through a directed acyclic graph) of all the operators to be sequentially applied on the
involved input dataset(s) to obtain it. Processing and real availability of the results are
actually deferred until the materialize command is called by invoking an execution func-
tion. This lazy execution resembles the lazy loading of the R code objects adopted for
packages use. It closes the gap between the interactive computations within R/Biocon-
ductor and the typical GMQL batch execution. In fact, it is needed to perform remote
execution at the GMQL site, but it is preserved also for local processing since it allows to
eventually optimize the processing.

Hence, RGMQL provides a great flexibility of usage in the R/Bioconductor environ-
ment, allowing to use indistinctly remote query outsourcing or local processing on the
user machine, even working seamlessly on local or remote data. Users are provided with
an easy-to-use and interactive framework leveraging both R/Bioconductor and GMQL.
Any processing is part of a continuous workflow although RGMQL does not gener-
ate any actual result before an execution function is called at runtime, both in local or
remote processing. Deferring the computational effort until a result is actually needed
(in the local file system or within the R/Bioconductor environment) for further analy-
ses allows to overcome, but synchronize with, the batch-oriented style of the underlying
GMQL system.

RGMQL integration capabilities: interoperability and extensibility

One of the main strengths of RGMQL is to enable a procedural way of working with
genomic datasets. Users can in fact perform multiple operations, interleaving RGMQL
manipulations with processing and visualizations involving many other R/Bioconductor
packages; the only requirement is including each piece of RGMQL code in an initializa-
tion-execution block, so that all intermediate and final results of interest are correctly
materialized in the main or mass memory and available for further analyses.

Within such an integrative analytical processing, RGMQL requires full interoperability
with the other R/Bioconductor packages. This concerns primarily the dependencies on
external packages to convert or bridge idiomatic R constructs and operations to GMQL
native syntax. In addition, it greatly regards the needed mapping of GMQL datasets
into existing R data structures, suitably and widely-used by other packages in the R/Bio-
conductor environment. Accordingly, any abstract GMQLDataset or any GMQL data-
set already saved in mass memory, can be loaded in main memory into a GRangesList
object, one of the most commonly used R data structure. This makes it accessible in a
widely supported format for further processing. Therefore RGMQL is designed to pro-
vide not only the efficient data structures, but also several import/export functions that
allow data manipulation in GRangesList format, regardless the engine chosen to execute

Page 11 of 28Pallotta et al. BMC Bioinformatics (2022) 23:123 	

the RGMQL processing. An explanatory representation of these functions is reported in
Fig. 2, specifying when to apply each of them based on the data source location.

Also, to guarantee full integration and compatibility with the most commonly used
R/Bioconductor packages, RGMQL functions were named to override well-known R/
Bioconductor processing functions, as to extend their functionalities on GMQLDataset
instances. In doing this, RGMQL functions move away from the original names of the
corresponding GMQL operators, but ease their comprehensibility and application for
any scientist used to R/Bioconductor. Particularly, besides a couple of basic functions
coming from the base and stats R packages, RGMQL extends other functions with a
well-known meaning that are implemented in the widely-used dplyr [29] R package for
data manipulation; Table 1 shows the RGMQL functions together with the R package
generally defining their functionalities and the corresponding GMQL operators.

Therefore, RGMQL not only ensures interoperability with other packages, but also full
integration within the R/Bioconductor environment: indeed, it provides extensibility
over well-known functions and genomic data structures commonly used within such a
framework.

Fig. 2  Representation of RGMQL functions for data import/export both locally and remotely. A GMQLDataset
is created by the read_GMQL() function from a local dataset (in GDM or different tab-delimited format), or
from a remote dataset (specifying is_local = FALSE). Any processing is applied on the involved GMQLDataset
objects, and the computation and materialization of any result (remotely or locally) is deferred until the
collect() and execute() functions are called. A GMQLDataset can be created also by the read_GRangesList()
function from a GRangesList. Similarly, a GRangesList can be obtained from a remote dataset through the
download_as_GRangesList() function, from a local dataset through the import_GMQL() function and, in local
processing only, directly from a GMQLDataset through the take() function

Page 12 of 28Pallotta et al. BMC Bioinformatics (2022) 23:123

RGMQL distributed processing environments: flexibility and scalability

RGMQL can consume computational power directly from the local CPUs/system,
operating in the R/Bioconductor local processing environment, or use remote process-
ing resources offered by the GMQL ecosystem. The former option takes advantage of
the GMQL possibility to be deployed on a single Java virtual machine, while the others
allocate resources and run (respectively only or partially) on a cluster, which is trans-
parently provided by the remote GMQL server. Although local processing is adequate
only for limited data size and not suitable for big data processing, it is a relevant added
value to be able to work locally. For example, there are sensitive data that users cannot
even export in their own private space on the GMQL remote repository, for restriction
constraints.

For remote processing, indeed RGMQL lets users log (with private credentials or sim-
ply as a temporary guest) into the remote GMQL infrastructure and also manage large
public genomic datasets, there hosted in the cluster-based curated repository. Then, it
enables users to consume remote GMQL services, providing two ways of accessing a
GMQL system instance: directly through the GMQL REST Web services or indirectly,
passing through the GMQL Scala API contained into a compressed .jar file enclosed in
the RGMQL package.

Hence, RGMQL implements two different sets of functions and processing modes,
henceforth referred as: 1) the REST Web services mode, which generates HTTP requests,
through the httr R package, designed to map closely to the underlying HTTP proto-
col and providing all standard HTTP functions; and 2) the Sequential execution mode,
which uses the rJava R package to interface with the GMQL Scala API (Fig. 1).

The REST Web services mode does not require any bridging, since it is executed via
Web service functions only. By invoking REST services users can upload local datasets
into a private area of the remote repository, compile and run remotely a textual query
(written in GMQL syntax and passed as argument of the R code) over remote private
and/or public datasets, and download datasets resulting from remote processing into a
local folder. All operations can be applied both on originally remote datasets or on local
ones previously uploaded; this is directly inherited from the GMQL system approach,
which allows the addressed repository to be deployed on a local or a distributed Hadoop
File System (HDFS) [34].

The Sequential execution mode, instead, lets users work in local or remote process-
ing with both local and remote datasets, as clearly appears in Fig. 1. In local processing,
the Sequential execution module is only interfaced with the Local File System. Con-
versely, when users choose remote processing and read any data, the system automati-
cally uploads it on the remote system if it is not already there. Once loaded, RGMQL
functions are called to process data remotely, hiding the batch-like interactions that are
issued sequentially at execution time. In this case, processing instructions are written as
RGMQL functions, which need a direct bridging with the corresponding GMQL Scala
API. The bridge is built by implementing the whole logic into a “wrapper” class written
in Scala, a dialect of the Java programming language, and using the rJava R package to
implement conversions on both sides, as reported in Fig. 1. This wrapper class is instan-
tiated in R/Bioconductor and its public methods are called at execution time to run the
GMQL operators underlying every RGMQL function. Each method of this wrapper class

Page 13 of 28Pallotta et al. BMC Bioinformatics (2022) 23:123 	

can indeed directly call the corresponding native GMQL API. However, only primitive
data types (integer, numeric, logical and character) are passed with no conversion from
R to Scala; all multi-dimensional data types must be converted in Java objects before
passing them as arguments to the wrapper class methods. The same applies when imple-
menting the dual logic, passing data back: the conversion is always performed on the
R side through rJava functions. The RGMQL execute() function returns a directed acy-
clic graph (DAG) including all the GMQL operators to be sequentially applied on the
involved dataset(s). A BASE64 serialized version of the DAG is then sent automatically
through the direct ’REST Web Services’ path, as to launch the query remotely on the
GMQL system.

Notably, in mixed processing the Sequential execution module can alternatively pro-
cess locally both local and remote data (automatically downloaded locally), or ask for
outsourced processing of remote or local data (automatically uploaded remotely). Thus,
RGMQL offers also data distribution transparency, since data are always automatically
handled and moved according to the actual processing unit in use. Regardless of the
computing unit, any resulting dataset can be saved (after local processing) or down-
loaded (after remote processing) in the local File System as a GDM-based dataset. Con-
versely, when a resulting dataset is still needed in the R/Bioconductor environment, it
can be loaded (in local processing) or downloaded (after remote processing) in main
memory as a GRangesList object, made of a GRanges object for each sample and includ-
ing all its region and metadata attributes. Such kind of loading in GRangesList is possible
also starting from a GDM-based dataset already in mass memory, as long as the size
of the obtained GRangesList (or compressed GRangesList) object does not exceed the
maximum allowed space in RAM.

Overall, the alternative local and remote processing environments offered by RGMQL
are easily interchangeable within a single analysis flow. This guarantees high perfor-
mance scalability, necessary to work on big genomic data, and extreme flexibility of use,
as required by the procedural approach of the bioinformatics research, which typically
combines different analyses and data sources.

Results
In the following subsections we illustrate clear and fully reproducible example use cases
of usefulness, expressive power and flexibility of the RGMQL package in biologically
relevant applications. Their complete workflows are available as R Notebooks in the
RGMQL GitHub repository (https://​github.​com/​DEIB-​GECO/​RGMQL), together with
the vignette and reference manual of the RGMQL package. These examples show the
processing capabilities of RGMQL in terms of suitability and scalability offered to per-
form data-intensive computations on large datasets. Also, they demonstrate RGMQL
easiness of use within complete workflows: this is enabled by the data distribution trans-
parency, the flexibility in mixing local and remote data and processing modes, and the
full interoperability with other R packages when results are imported as GenomicRanges
objects.

https://github.com/DEIB-GECO/RGMQL

Page 14 of 28Pallotta et al. BMC Bioinformatics (2022) 23:123

Use case 1: Mutational analysis of kidney cancer patients

This example use case shows how RGMQL, together with the remote engine and curated
genomic data repository provided by GMQL, permits to easily perform genomic analy-
ses on big datasets; particularly, here we take advantage of RGMQL remote processing
to analyze somatic mutational events in specific patients affected by Kidney Renal Clear
Cell Carcinoma (KIRC), extracted from a large dataset provided by The Cancer Genome
Atlas.

First, the datasets in the remote GMQL curated repository are explored using the
show_datasets_list() function, and available mutation datasets are identified. The show_
all_metadata() function is then used to find metadata (e.g., age and type of patients) of
mutation datasets of interest. In this example we choose the GRCh38_TCGA_somatic_
mutation_masked_2019_10 dataset, containing somatic mutation data regarding 10,187
samples of 33 TCGA cancer types:

library(RGMQL)
remote_url <- "http://www.gmql.eu/gmql-rest"
init_gmql(url = remote_url, remote_processing = TRUE)

dataset_list <- show_datasets_list(remote_url)
list <- unlist(lapply(dataset_list[["datasets"]], function(x) x$name))
grep(pattern = ’mutation’, x = list, value = TRUE)

all_metadata <- show_all_metadata(dataset =
"public.GRCh38_TCGA_somatic_mutation_masked_2019_10")

Specific data of interest are then analyzed remotely using the GMQL engine. First the
filter() function is used to select the KIRC patients of interest, e.g., those younger than 65
years at initial KIRC diagnosis:

GRCh38_TCGA_mut <- read_gmql(dataset =
"public.GRCh38_TCGA_somatic_mutation_masked_2019_10",

is_local = FALSE)
mut_under65 <- filter(GRCh38_TCGA_mut,

biospecimen__admin__disease_code == "KIRC" &
clinical__clin_shared__age_at_initial_pathologic_diagnosis < 65)

The map() function is used to find and count, for each mutation sample and each gene,
all somatic mutations occurring in gene regions. Such regions are identified based on the
GRCh38 reference genome annotations from the NCBI Reference Sequence database
(RefSeq) [35], available in the remote GMQL curated repository:

Page 15 of 28Pallotta et al. BMC Bioinformatics (2022) 23:123 	

RefSeq_GRCh38 <- read_gmql(dataset = "public.GRCh38_ANNOTATION_REFSEQ",
is_local = FALSE)

genes <- filter(RefSeq_GRCh38, annotation_type == ’gene’ &
provider == ’RefSeq’)

geneMut <- map(genes, mut_under65, count_name = ’mut_count’)

Following, only genes with at least one mutation are preserved through the filter()
function. Additionally, for each sample the mutated genes are counted, storing such
counts in a new metadata attribute called ’geneMut_count’, by means of the extend()
function:

geneMut2 <- filter(geneMut, r_predicate = mut_count >= 1)
geneMut3 <- extend(geneMut2, geneMut_count = COUNT())

Eventually, found results can be saved in the local file system as a GDM dataset, and
also downloaded in memory as GRangesList. The latter ones can be further straight-
forwardly analyzed and visualized in the R environment with other useful R func-
tions. Particularly, ’geneMut_count’ values can be used to prioritize the samples (one
for each patient) from the most to the least mutated one (Additional file 1). From this
simple evaluation we can notice that somatic mutated gene counts are quite homogene-
ously distributed across samples, with a lower quartile of 26 and an upper quartile of 45
mutated genes. Only a sample/patient (sample id: S_00140) clearly appears as an outlier,
with its 466 mutated genes. Since genes appear mostly characterized by a single somatic
mutation (2 is the 99th percentile), a similar behaviour is obtained also when plotting the
total number of mutational events occurring in each patient.

More relevantly, obtained results can be thoroughly analyzed by studying and plotting
somatic mutation distributions across samples, as to highlight the most mutated genes
in the KIRC population of interest. The mutation count of each gene region is evaluated

Fig. 3  Top 20 genes by percentage of the 217 patients under analysis with the gene mutated

Page 16 of 28Pallotta et al. BMC Bioinformatics (2022) 23:123

considering the percentage of involved patients (Fig. 3) or the number of actual muta-
tional events compared to the gene length (Additional file 2). Although in some sam-
ples multiple events exist in the same gene region, the top 20 mutated genes are exactly
coincident in both cases and include the VHL and TTN-AS1 genes and the PCDH gene
family.

The association between the VHL gene and kidney cancer is widely recognized [36–
38]: it reaches a DisGeneNet association score of 0.9 [39] and more than 90% of the renal
clear cell carcinoma are known to be characterized by somatic mutations in the VHL
gene [40, 41]. Conversely, at present the TTN-AS1 gene, encoding a lncRNA transcribed
from the opposite strand of the TTN gene, is known to be primarily associated with
myopathy and other cardiac and muscular diseases [42].; similarly the protocadherins
(Pcdhs), which are predominantly expressed in the nervous system and constitute the
largest subfamily of the cadherin superfamily of cell-adhesion molecules, are until now
known to be mostly associated with epilepsy and central nervous system neoplasms and
disorders [43, 44], but also with several other cancers [41, 44].

The involvement of VHL gene alterations in kidney cancer is confirmed also when
inspecting gene mutation counts normalized by gene length. This normalization deter-
mines a top 20 gene list (Fig. 4) including mainly microRNA and small nucleolar RNA
genes, favored by their short length (at most about a hundred bases); yet, despite its
12,036 bp length, the VHL gene is still included in this list, together with HIST1H2AC,
a gene encoding for a nuclear protein responsible for the nucleosome structure [40], and
OR8G1, a gene encoding for an olfactory receptor protein, known to be associated with
breast, ovarian and pancreatic cancer [41]. While the evidences on VHL clearly confirm
its involvement in kidney cancer, the other found data-driven associations can be worthy
of further investigations.

Use case 2: Patient‑wise hierarchical clustering based on combined omics data

In this use case, whose workflow is schematically illustrated in Additional file 3, we show
how to combine remote public and local omics data in remote processing, before per-
forming further local analyses on the results. Particularly, we investigate the expression
data of both messenger RNA and microRNA genes aligned to the GRCh38 reference

Fig. 4  Top 20 genes by number of mutations per gene length across the 217 patients considered

Page 17 of 28Pallotta et al. BMC Bioinformatics (2022) 23:123 	

genome, focusing on TCGA patients affected by Adrenocortical carcinoma (ACC). The
miRNA expression data of such patients are supposed available in the working directory
of the local file system in GDM format, within the GRCh38_miRNA_ACC​ dataset (avail-
able for reproducibility purpose at https://​github.​com/​DEIB-​GECO/​RGMQL). Corre-
sponding TCGA ACC expression values from RNA-sequencing experiments are instead
extracted from the large GRCh38_TCGA_gene_expression_2019_10 dataset, available on
the remote GMQL curated repository (including 11,092 TCGA gene expression profile
samples of 33 cancer types):

GRCh38_miRNA_path <- ’./GRCh38_miRNA_ACC’
GRCh38_miRNA_ACC <- read_gmql(GRCh38_miRNA_path, is_local = TRUE)
remote_processing(TRUE)

GRCh38_TCGA_RNAseq <- read_gmql(dataset =
"public.GRCh38_TCGA_gene_expression_2019_10", is_local = FALSE)

GRCh38_TCGA_RNAseq_ACC <- filter(GRCh38_TCGA_RNAseq,
gdc__project__project_id == "TCGA-ACC")

The two resulting datasets are then processed together remotely, after the local
dataset automatic uploading, transparent to the user, in a temporary reserved area of the
remote GMQL repository. Specifically, the datasets are joined through the merge() func-
tion based on their biospecimen__bio__bcr_analyte_barcode metadata attribute, keeping
for each miRNA region also the mRNA gene region at the minimum distance. This is
possible thanks to setting to MD(1) the genometric_predicate and to BOTH the region_
output parameters of the function:

ACC_mRNA_miRNA <- merge(GRCh38_miRNA_ACC, GRCh38_TCGA_RNAseq_ACC,
genometric_predicate = list(MD(1)), region_output = "BOTH",
joinBy = conds(’biospecimen__bio__bcr_analyte_barcode’))

Once the joined dataset is computed and downloaded in the local file system, the
remote processing mode can be turned off to proceed with further local analyses. The
filter_and_extract() function can be used to import only raw count values and gene
annotations from the result dataset in the local R environment, within a GRanges object:

remote_processing(FALSE)

path <- paste(’./Results_use_case_2’, name_dataset, sep = ’/’)
GR_ACC <- filter_and_extract(path, metadata = NULL, region_attributes =

c(’right.gene_symbol’, ’right.htseq_count’, ’left.mirna_id’,
’left.read_count’))

From it, we derive a samples-per-features dataset, where each column hosts values of
a different miRNA or mRNA gene and each row is named according to the TCGA ID
of the corresponding sample. Differently from the previous use case, here we use the
official TCGA patient ID to identify each patient profile, as to ease comparison with

https://github.com/DEIB-GECO/RGMQL

Page 18 of 28Pallotta et al. BMC Bioinformatics (2022) 23:123

preexisting analyses of TCGA data. Such identifiers are collected from the biospeci-
men__shared__bcr_patient_barcode key-value pairs in the metadata table. This table is
obtained from the downloaded GDM dataset through the show_all_metadata() func-
tion, simply as follows:

meta_table <- show_all_metadata(name_dataset, show_value = TRUE)
sample_IDs <- unlist(meta_table[

’left.biospecimen__shared__bcr_patient_barcode’,])

Analogously, we can import in the R environment some clinical annotations of each
sample (e.g., tumor outcome status, stage and grade), which may characterize the gene-
driven subgroups of patients that emerge from a patient clustering analysis. For this
evaluation, we start from a matrix of raw expression values extracted from the previ-
ously obtained GR_ACC​ GRanges object. First, we remove miRNA and mRNA genes
with null raw values in 25% of samples or more, so as to discard too lowly-expressed
genes that are more easily affected by noise and thus less reliable:

LQ <- apply(rawMatrix, 2, function(x) summary(x)[2])
kept <- which(LQ > 0)
dataset <- rawData[, kept]

Then, after data normalization performed through the normalize() function of
the BBmisc package [45], we assess and visualize the optimal number of clusters based
on the average silhouette width, computed using the fviz_nbclust() function of the facto-
extra R package [46] (Additional file 4).

library(BBmisc)
dataset_n <- normalize(dataset, ’standardize’)

library(factoextra)
res <- fviz_nbclust(dataset_n, hcut, method = "silhouette", k.max = 10)
plot(res)

Considering the found optimal number of three clusters, we apply the Ward Hierarchi-
cal Clustering by means of the hclust() R function, using the Spearman correlation-based
distance as dissimilarity measure among the expression profiles, computed through the
get_dist() function of the factoextra R package; the obtained dendrogram is plotted and
the three clusters are highlighted on it with coloured rectangles by means of the rect.
hclust() R function. Furthermore, the fviz_cluster() function of the same factoextra R
package can be used to depict the three clusters, selected by the cutree() R function, in
a ggplot2-based visualization [47] (Fig. 5), using as space dimensions the two principal
components of the data:

Page 19 of 28Pallotta et al. BMC Bioinformatics (2022) 23:123 	

d <- get_dist(x = dataset_n, method = "spearman")
hclust_model <- hclust(d, method = "ward.D")
plot(hclust_model) # display dendogram
rect.hclust(hclust_model, k = 3, border = 2:5)

clusters <- cutree(hclust_model, k = 3)
fviz_cluster(list(data = dataset_n, cluster = clusters), labelsize = 6)

The three clusters obtained include 49, 17 and 13 patients, respectively. Each of these
clusters can be compared with the previously extracted clinical metadata, as well as
with clustering results and survival annotations emerged from the ’Comprehensive Pan-
Genomic Characterization of Adrenocortical Carcinoma’ [48] and other pan-cancer
studies [49] performed by the TCGA consortium. Accordingly, mosaic plots are useful
for showing how different stratification results overlap with each other; particularly, it
is interesting to compare our clustering results with those obtained using the K4 gene
signature [48], which is indicative of steroid phenotype low and high, with or without
proliferation (Fig. 6).

Similarly, considering the available median follow-up of 39.3 months, it is relevant to
assess prognostic insights arising from each cluster by means of the overall survival sta-
tus and months annotations (Fig. 7).

From these comparisons we can notice that all patients in our third cluster have ster-
oid phenotype low without proliferation and are living. Conversely, the first and biggest
cluster has a majority of steroid phenotype high cases (82%), half with and half without
proliferation; out of them, only 24 are still living, with more than 20% annotated with a
recurrence event, while 24 patients are deceased, 14 within the first 2 years after diagno-
sis. Eventually, the second cluster, despite its heterogeneous phenotype, includes only 3

Fig. 5  Clusters from patient-wise hierarchical clustering on the first two dimensions of the data principal
component analysis. The fraction of variance explained by each dimension is reported as percentage in the
corresponding axis label

Page 20 of 28Pallotta et al. BMC Bioinformatics (2022) 23:123

cases with increased proliferation, of which one is deceased and another one is recurred
after 5 years; overall there are only 3 deceased patients, all having high steroid pheno-
type, while the high majority of this cluster patients is living and disease-free. Thus, the
smaller second and third cluster patients, sharing wild type proliferation levels, show
better expected prognoses compared with the first cluster patients.

This use case demonstrates the easiness of combining remote and local (also possibly
private) data, and of using remote processing for a computationally intensive task, like
a join operation on large datasets. It proves also the advantage of locally retrieving only
the computed results, which are typically much smaller in size. Furthermore, it shows
the usefulness of the filter_and_extract() function, which allows selecting from a result-
ing dataset and importing in the R environment only the specific data of interest for the
next processing. The so-obtained GRanges format can indeed be easily manipulated and
analyzed also with many R functions from different packages. The use case shows how
to use several of them for an effective local exploration of data and visualization of the
results from the remote processing of a large dataset, supporting also their clinical/bio-
logical assessment and interpretation.

Use case 3: Identification of transcription factor high accumulation DNA zones

In this last use case, we report a more complex computational workflow (schemati-
cally illustrated in Additional file 5) to stress the usefulness of RGMQL and remote
processing in performing complex queries on large datasets; RGMQL provided results
can then be straightforwardly analyzed in the local R environment with full interoper-
ability. Particularly, as an example we illustrate how to identify transcription factor
(TF) High Occupancy Target (HOT) regions [50–52]. TFs are proteins that control the
rate of transcription of genetic information from DNA to RNA, by binding to specific

Fig. 6  Mosaic plot of the three clusters emerged from patient-wise hierarchical clustering compared with
the published clustering results obtained in [48] using the K4 gene signature

Page 21 of 28Pallotta et al. BMC Bioinformatics (2022) 23:123 	

DNA sequences. Investigating HOT DNA regions, bound by many different transcrip-
tion factors, is crucial to understand cancer genesis and develop new targeted thera-
pies. RGMQL can automate all the steps needed to identify TF high accumulation DNA
zones, interoperably cooperating with the TFHAZ Bioconductor package [53].

ChIP-seq data describes protein interactions with the DNA, including those of tran-
scription factors. Their processing is usually specialized in identifying broad domains
(covering wider DNA regions) or narrow peaks (limited to local spikes); both of them are
worthy to be investigated to find HOT regions. Thus, we consider both BROAD PEAK
and NARROW PEAK datasets released from the ENCODE consortium [5], available
in the remote GMQL curated repository with 2,136 and 11,468 samples, respectively.
Using the filter() function, we select ChIP-seq data of high quality (peaks and optimal idr
thresholded peaks) focusing on the human embryonic stem cell line H1-hESC, and we
group together the so-obtained samples in a single dataset through the union() function:

HM_TF_rep_broad <- filter(Enc_Broad, assay == "ChIP-seq" & file_status ==
"released" & biosample_term_name == "H1-hESC" &
output_type == "peaks")

HM_TF_rep_narrow <- filter(Enc_Narrow, assay == "ChIP-seq" & file_status ==
"released" & biosample_term_name == "H1-hESC" &
output_type == "optimal idr thresholded peaks"

HM_TF_rep <- union(HM_TF_rep_broad, HM_TF_rep_narrow)

Then, we filter out all samples subjected to pharmacological treatment or annotated
with quality issues, and we further use the filter() function to discard all samples regard-
ing histone modifications:

Fig. 7  Mosaic plot of the three clusters emerged from patient-wise hierarchical clustering compared with
the patient overall survival status annotations

Page 22 of 28Pallotta et al. BMC Bioinformatics (2022) 23:123

HM_TF_rep_good_0 <- filter(HM_TF_rep, !biosample_treatments == "*" &
!(audit_error == "extremely low read depth" |

audit_error == "extremely low read length") &
!(audit_warning == "insufficient read depth") &
!(audit_not_compliant == "insufficient read

depth" | audit_not_compliant ==
"insufficient replicate concordance" |
audit_not_compliant == "missing input
control" | audit_not_compliant == "severe
bottlenecking" | audit_not_compliant ==
"unreplicated experiment"))

TF_rep_good_0 <- filter(HM_TF_rep_good_0, !(experiment_target ==
"H2AFZhuman" | experiment_target == "H3F3A-human" |

experiment_target == "H3K27ac-human" |
experiment_target == "H3K27me3-human" |
experiment_target == "H3K36me3-human" |
experiment_target == "H3K4me1-human" |
experiment_target == "H3K4me2-human" |
experiment_target == "H3K4me3-human" |
experiment_target == "H3K79me2-human" |
experiment_target == "H3K9ac-human" |
experiment_target == "H3K9me1-human" |
experiment_target == "H3K9me2-human" |
experiment_target == "H3K9me3-human" |
experiment_target == "H4K20me1-human"))

Also, we add the length of each DNA region in each sample as a new region attribute
through the regions_update parameter of the select() function; then, for each sample we
compute the number of regions and the sum of their lengths, and store them as sample
metadata using the extend() function:

TF_rep_good_1 <- select(TF_rep_good_0, regions_update =
list(length = right - left))

TF_rep_good <- extend(TF_rep_good_1, region_number = COUNT(),

sum_length = SUM("length"))

Once our main GMQLDataset TF_rep_good (including DNA regions that are binding
sites of transcription factors) is ready, we use it in two independent but related process-
ings. The first one is needed to extract a threshold able to identify transcription factor
bound DNA regions of interest. After aggregating all samples in a single sample through
the aggregate() function (notice that ’biosample_term_name’ is uniquely associated with
the value ’H1-hESC’ by dataset construction), we order regions by ascending values
of their length through the arrange() function; then, we execute the RGMQL query to
materialize its result and download it in the local R environment as a GRangesList:

Page 23 of 28Pallotta et al. BMC Bioinformatics (2022) 23:123 	

TF_rep_good_merged <- aggregate(TF_rep_good, groupBy =
conds(default = c("biosample_term_name")))

TF_rep_good_ordered <- arrange(TF_rep_good_merged,
regions_ordering = list(ASC("length")))

collect(TF_rep_good_ordered, name = "TF_rep_good_ordered")
job <- execute()

dataset_name <- job$datasets[[1]]$name
GRL_TF_rep_good_ordered <- download_as_GRangesList(remote_url, dataset_name)

We further process such result locally to extract from the regions, ordered by their
length, the index of their 95th percentile: our threshold is thus the length of the region
placed at the so-obtained index. This threshold is useful to distinguish DNA regions
worthy to be further examined from too wide regions, having length over the threshold.
Such wide regions are indeed outliers that can affect HOT region detection, since their
big length can biasedly increase the number of TFs that bind the region.

At this point, going back to the RGQML remote processing and to our main GMQL-
Dataset TF_rep_good, we perform a second processing; first, it selects the DNA regions
to be further examined based on the just computed threshold; then, it adds all the attrib-
utes needed for the following HOT region detection. With the filter() function we select
as regions of interest only those with a length smaller than the just computed superior
threshold, but at least greater than a given inferior threshold (e.g., 100 bases). Then,
through the extend() function we create new metadata attributes (region_number_fil-
tered and sum_length_filtered) by computing, for each sample, the current number of
contained DNA regions and the sum of their lengths, respectively:

TF_rep_good_filtered_0 <- filter(TF_rep_good, r_predicate = length >= 100 &
length <= threshold)

TF_rep_good_filtered <- extend(TF_rep_good_filtered_0,
region_number_filtered = COUNT(),
sum_length_filtered = SUM("length"))

Following, we combine samples of experiments having the same target TF, using the
cover() function with ’experiment_target’ as grouping parameter. Then, through the
regions_update parameter of the select() function we update the values of the region
attribute length for the obtained combined regions. Also, using the extend() function we
create new useful metadata attributes for each of the so-obtained samples: the number
of so-obtained combined regions (which have the same TF as target) and the min, max
and sum of their lengths:

Page 24 of 28Pallotta et al. BMC Bioinformatics (2022) 23:123

TF_0 <- cover(TF_rep_good_filtered, 1, ANY(), groupBy =
conds("experiment_target"))

TF_1 <- select(TF_0, regions_update = list(length = right - left))
TF <- extend(TF_1, region_number_cover = COUNT(), sum_length_cover =

SUM("length"), min_length_cover = MIN("length"),
max_length_cover = MAX("length"))

The so-obtained dataset TF is downloaded in the current local R environment as a
GRangesList object to be straightforwardly further processed and analyzed. From the
GRangesList, a GRanges object GR_H1_hESC is extracted, including a flatten list of all
genomic regions (ranges) coming from all the TF samples, together with a single meta-
data, i.e., the annotation of the TF binding each region. GR_H1_hESC contains 344,556
ranges from different chromosomes, annotated with 28 different transcription factors.
It is analyzed with the following functions of the TFHAZ package [53]. First, the accu-
mulation() function is used to compute the accumulation vector on all chromosomes of
interest, i.e., the number of transcription factors binding each base of a chromosome;
this is done here below for chromosome 21 as an example. Then, the high_accumula-
tion_zones() function is applied on the accumulation vector (TF_acc_21_w_0) to extract
HOT zones, which have greater number of TF binding regions, according to the ’over-
laps’ identification method. This method uses a single-base local approach and considers
all and only the DNA bases of the TF accumulation vector to compute the threshold (as
mean accumulation plus twice standard deviation) needed to identify the HOT zones.

Fig. 8  Plot of the transcription factor accumulation for chromosome 21 and of the 186 HOT zones (in red)
identified according to the found accumulation threshold 5.6 (red line)

Page 25 of 28Pallotta et al. BMC Bioinformatics (2022) 23:123 	

TF_acc_21_w_0 <- accumulation(data = GR_H1_hESC, acctype = "TF",
chr = "chr21", w = 0)

d_zones <- high_accumulation_zones(TF_acc_21_w_0, method = "overlaps",
threshold = "std")

From this analysis, in chromosome 21 we find 186 HOT DNA regions, each bound
by more than 5 transcription factors according to the threshold of 5.6 computed by the
high_accumulation_zones() function. Figure 8 shows that the HOT regions obtained
are mainly present in the second half of the chromosome 21 and absent from its initial
portion.

The computational workflow discussed in this use case highlights the precious role of
RGMQL in simplifying complex analysis such as the considered one. It allows perform-
ing the entire processing within the R environment, but without requiring consumption
of local computational resources: indeed it takes advantage of the scalability and parallel
computing offered by GMQL. This result can not be achieved by using only the GMQL
system, or only the TFHAZ package together with other available R/Bioconductor pack-
ages. Indeed, in processing omics data, also big, RGMQL profits of both the facilities of
the R environment and of the data and computational resources offered by the GMQL
ecosystem. Therefore, once again, RGMQL demonstrates to play a key role in provid-
ing both a useful interactive procedural approach, typical of the bioinformatics research,
and scalable performance.

Conclusions
As R is able to interface with a variety of other languages to take advantage of well-
established and state-of-the-art algorithms and protocols, similarly the R/Bioconductor
RGMQL package is designed to be fully interoperable with other R packages, as well as
with GMQL. Indeed, it provides the query expressiveness, computational efficiency and
scalability of GMQL in the R/Bioconductor environment. Specialized RGMQL functions
can extract, combine and manipulate omics big data and their metadata from different
and differently localized sources. To this aim, RGMQL extends the most used genomic
data structures and processing functions, and is completely integrated within the R/Bio-
conductor framework.

As proven in our three examples of biologically relevant use cases, RGMQL can lever-
age on public data hosted in the remote GMQL repository, and take advantage at runt-
ime of the most suitable processing mode. This can be chosen according to the analysis
workflow of interest and the location of the involved data, and it can be easily changed
along the workflow. RGMQL further key added values are indeed the flexibility and easi-
ness of use. Switching between local and remote processing with a single line of code,
users can benefit from outsourcing the computational burden to the GMQL engine.
Involved data are always moved automatically, when needed, thanks to the implemented
data distribution transparency. Additionally, RGMQL allows merging not only remote
and local public data, but even proprietary data: also in case of remote processing they
are loaded in a private area of the remote repository, accessible through authenticated
login only.

Page 26 of 28Pallotta et al. BMC Bioinformatics (2022) 23:123

Furthermore, RGMQL is able to guarantee the FAIR principles of findability, acces-
sibility, interoperability and reusabilty, both at the data and at the implementation level.
Hence, RGMQL is definetely a versatile and valuable ally in the R/Bioconductor-based
genomic research, in particular for scalable omics data tertiary investigations.

Availability and requirements

•	 Project name: RGMQL
•	 Project home page: on GitHub: https://​github.​com/​DEIB-​GECO/​RGMQL on Bio-

conductor: https://​www.​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​RGMQL.​
html

•	 Operating system(s): Platform independent
•	 Programming languages: R and Scala/Java
•	 Other requirements: R ( ≥ 3.4.2), Java ( ≥ 1.8)
•	 License: Artistic-2.0
•	 Any restrictions to use by non-academics: None

Abbreviations
1KGP: 1000 Genomes Project; ACC​: Adrenocortical carcinoma; API: Application Programming Interface; BED: Browser
Extensible Data; CRAN: Comprehensive R Archive Network; DAG: directed acyclic graph; ENCODE: Encyclopedia of DNA
Elements; GDM: Genomic Data Model; GMQL: GenoMetric Query Language; HDFS: Hadoop File System; HOT: High Occu-
pancy Target; KIRC: Kidney Renal Clear Cell Carcinoma; NGS: Next Generation Sequencing; Pcdhs: protocadherins; RefSeq:
Reference Sequence; TCGA​: The Cancer Genome Atlas; TF: Transcription factor.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​04648-4.

Additional file 1. Supplementary figure of the use case 1, showing the counts of mutated genes for each KIRC
patient younger than 65 years

Additional file 2. Supplementary figure of the use case 1, showing the top 20 genes by number of mutations across
the 217 patients under analysis, orderly and proportionally plotted horizontally by their gene length, from left (VHL -
12,036 bp) to right (PCDHA@ - 226,209 bp)

Additional file 3. Flowchart of the main steps of use case 2. As illustrated, starting from both local and remote gene
expression datasets, a RGMQL mixed processing first joins the two datasets remotely, then downloads and processes
the result locally. After the generation of a samples-per-genes dataset, also the main phases of local post-processing
with clustering analysis are depicted

Additional file 4. Supplementary figure of the use case 2, showing the optimal number of clusters based on the
average silhouette width

Additional file 5. Flowchart of the main steps of use case 3. As illustrated, after RGMQL remote pre-processing of the
ENCODE ChIP-seq datasets of interest, two independent but related RGMQL processing are performed. The first one
computes the threshold needed to select the DNA regions on which the transcription factor (TF) accumulation must
be assessed. The second one uses the threshold to select such regions, and process them up to find HOT DNA zones
by cooperating with the TFHAZ Bioconductor package

Acknowledgements
Not applicable.

Authors’ contributions
SP designed and implemented the RGMQL package. SC tested the package, contributed to improve it, developed the
use cases and wrote this manuscript. MM conceived the project, supervised its development and contributed to write
and revise this manuscript. All authors read and approved the final manuscript.

https://github.com/DEIB-GECO/RGMQL
https://www.bioconductor.org/packages/release/bioc/html/RGMQL.html
https://www.bioconductor.org/packages/release/bioc/html/RGMQL.html
https://doi.org/10.1186/s12859-022-04648-4

Page 27 of 28Pallotta et al. BMC Bioinformatics (2022) 23:123 	

Funding
This work was supported by the ERC Advanced Grant 693174 “Data-Driven Genomic Computing (GeCo)” Project
(2016–2021), funded by the European Research Council, which covered also the publication costs. The funding body did
not have any role in the design of the study and in the collection, analysis and interpretation of the data, as well as in
writing the manuscript.

Availability of data and materials
RGMQL package, documentation and code are freely available at https://​github.​com/​DEIB-​GECO/​RGMQL and https://​
www.​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​RGMQL.​html The datasets analysed during the current study are
publicly available in the GMQL repository at http://​www.​gmql.​eu/.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent to publish
Not applicable (public data).

Competing interests
The authors declare that they have no competing interests.

Received: 24 July 2021 Accepted: 23 March 2022

References
	1.	 Stark Z, Dolman L, Manolio TA, Ozenberger B, Hill SL, Caulfied MJ, Levy Y, Glazer D, Wilson J, Lawler M, et al. Integrat-

ing genomics into healthcare: a global responsibility. Am J Hum Genet. 2019;104(1):13–20.
	2.	 Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, Staudt LM. Toward a shared vision for cancer

genomic data. N Engl J Med. 2016;375(12):1109–12.
	3.	 Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM. The

cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45(10):1113–20.
	4.	 1000 Genomes Project Consortium, et al. A map of human genome variation from population-scale sequencing.

Nature. 2010;467(7319):1061.
	5.	 ENCODE Project Consortium, et al.: An integrated encyclopedia of DNA elements in the human genome. Nature.

2012;489(7414):57.
	6.	 Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko

M, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 2012;41(D1):991–5.
	7.	 Leinonen R, Sugawara H, Shumway M, Collaboration INSD. The sequence read archive. Nucleic Acids Res.

2010;39(suppl_1):19–21.
	8.	 McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M,

et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.
Genome Res. 2010;20(9):1297–303.

	9.	 Nordberg H, Bhatia K, Wang K, Wang Z. BioPig: a Hadoop-based analytic toolkit for large-scale sequence data. Bioin-
formatics. 2013;29(23):3014–9.

	10.	 O’Driscoll A, Daugelaite J, Sleator RD. ‘big data’, Hadoop and cloud computing in genomics. J Biomed Inform.
2013;46(5):774–81.

	11.	 Zou Q, Li X-B, Jiang W-R, Lin Z-Y, Li G-L, Chen K. Survey of MapReduce frame operation in bioinformatics. Brief Bioin-
form. 2014;15(4):637–47.

	12.	 Guo R, Zhao Y, Zou Q, Fang X, Peng S. Bioinformatics applications on apache spark. GigaScience. 2018;7(8):098.
	13.	 Langmead B, Hansen KD, Leek JT. Cloud-scale RNA-sequencing differential expression analysis with Myrna. Genome

Biol. 2010;11(8):1–11.
	14.	 Harnie D, Saey M, Vapirev AE, Wegner JK, Gedich A, Steijaert M, Ceulemans H, Wuyts R, De Meuter W. Scal-

ing machine learning for target prediction in drug discovery using Apache Spark. Future Gen Comput Syst.
2017;67:409–17.

	15.	 Afgan E, Baker D, Van den Beek M, Blankenberg D, Bouvier D, Čech M, Chilton J, Clements D, Coraor N, Eberhard C,
et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic
Acids Res. 2016;44(W1):3–10.

	16.	 Masseroli M, Pinoli P, Venco F, Kaitoua A, Jalili V, Palluzzi F, Muller H, Ceri S. GenoMetric Query Language: a novel
approach to large-scale genomic data management. Bioinformatics. 2015;31(12):1881–8.

	17.	 Ceri S, Kaitoua A, Masseroli M, Pinoli P, Venco F. Data management for heterogeneous genomic datasets. IEEE/ACM
Trans Comput Biol Bioinf. 2017;14(6):1251–64.

	18.	 Masseroli M, Canakoglu A, Pinoli P, Kaitoua A, Gulino A, Horlova O, Nanni L, Bernasconi A, Perna S, Stamoulakatou E,
et al. Processing of big heterogeneous genomic datasets for tertiary analysis of Next Generation Sequencing data.
Bioinformatics. 2019;35(5):729–36.

	19.	 R Core Team. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing. R
Foundation for Statistical Computing. Vienna, Austria; 2020. https://​www.R-​proje​ct.​org/.

	20.	 Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, et al. Bioconduc-
tor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5(10):80.

https://github.com/DEIB-GECO/RGMQL
https://www.bioconductor.org/packages/release/bioc/html/RGMQL.html
https://www.bioconductor.org/packages/release/bioc/html/RGMQL.html
http://www.gmql.eu/
https://www.R-project.org/

Page 28 of 28Pallotta et al. BMC Bioinformatics (2022) 23:123

	21.	 Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten J-W, da Silva
Santos LB, Bourne PE, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data.
2016;3(1):1–9.

	22.	 Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics.
2010;26(6):841–2.

	23.	 Neph S, Kuehn MS, Reynolds AP, Haugen E, Thurman RE, Johnson AK, Rynes E, Maurano MT, Vierstra J, Thomas S,
et al. BEDOPS: high-performance genomic feature operations. Bioinformatics. 2012;28(14):1919–20.

	24.	 Masseroli M, Kaitoua A, Pinoli P, Ceri S. Modeling and interoperability of heterogeneous genomic big data for inte-
grative processing and querying. Methods. 2016;111:3–11.

	25.	 Nanni L, Pinoli P, Canakoglu A, Ceri S. PyGMQL: scalable data extraction and analysis for heterogeneous genomic
datasets. BMC Bioinform. 2019;20(1):560.

	26.	 Sepulveda JL. Using R and Bioconductor in clinical genomics and transcriptomics. J Mol Diagn. 2020;22(1):3–20.
	27.	 Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T, et al. Orches-

trating high-throughput genomic analysis with Bioconductor. Nat Methods. 2015;12(2):115–21.
	28.	 Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, Gentleman R, Morgan MT, Carey VJ. Software for computing

and annotating genomic ranges. PLoS Comput Biol. 2013;9(8):1003118.
	29.	 Wickham H, François R, Henry L, Müller K. dplyr: a grammar of data manipulation. R package version 1.0.2; 2020.

https://​CRAN.R-​proje​ct.​org/​packa​ge=​dplyr.
	30.	 Luraschi J, Kuo K, Ushey K, Allaire J, Falaki H, Wang L, Zhang A, Li Y, The Apache Software Foundation. sparklyr: R

Interface to Apache Spark. R package version 1.5.1; 2020. https://​CRAN.R-​proje​ct.​org/​packa​ge=​spark​lyr.
	31.	 Eddelbuettel D. Parallel computing with R: a brief review. WIREs Comput Stat. 2021;13(2):1515.
	32.	 1000 Genomes Project Consortium, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68.
	33.	 Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng X, Rosen J, Venkataraman S, Franklin MJ, et al. Apache

Spark: a unified engine for big data processing. Commun ACM. 2016;59(11):56–65.
	34.	 Shvachko K, Kuang H, Radia S, Chansler R. The Hadoop distributed file system. In: 2010 IEEE 26th symposium on

mass storage systems and technologies (MSST). IEEE; 2010. p. 1–10
	35.	 O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D,

et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annota-
tion. Nucleic Acids Res. 2016;44(D1):733–45.

	36.	 Maranchie JK, Vasselli JR, Riss J, Bonifacino JS, Linehan WM, Klausner RD. The contribution of VHL substrate binding
and HIF1-α to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell. 2002;1(3):247–55.

	37.	 Clark PE. The role of VHL in clear-cell renal cell carcinoma and its relation to targeted therapy. Kidney Int.
2009;76(9):939–45.

	38.	 Arjumand W, Sultana S. Role of VHL gene mutation in human renal cell carcinoma. Tumor Biol. 2012;33(1):9–16.
	39.	 Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F, Furlong LI. The DisGeNET knowledge

platform for disease genomics: 2019 update. Nucleic Acids Res. 2020;48(D1):845–55.
	40.	 Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, et al. The Gen-

eCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinform. 2016;54(1):1–30.
	41.	 Rappaport N, Twik M, Plaschkes I, Nudel R, Iny Stein T, Levitt J, Gershoni M, Morrey CP, Safran M, Lancet D. MalaCards:

an amalgamated human disease compendium with diverse clinical and genetic annotation and structured search.
Nucleic Acids Res. 2017;45(D1):877–87.

	42.	 Gerull B, Gramlich M, Atherton J, McNabb M, Trombitás K, Sasse-Klaassen S, Seidman J, Seidman C, Granzier H, Labeit
S, et al. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat
Genet. 2002;30(2):201–4.

	43.	 Jia Z, Wu Q. Clustered protocadherins emerge as novel susceptibility loci for mental disorders. Front Neurosci.
2020;14:587819.

	44.	 Pancho A, Aerts T, Mitsogiannis MD, Seuntjens E. Protocadherins at the crossroad of signaling pathways. Front Mol
Neurosci. 2020;13:117.

	45.	 Bischl B, Lang M, Bossek J, Horn D, Richter J, Surmann D. BBmisc: miscellaneous helper Functions For B. 2017. Bischl.
R package version. https://​rdrr.​io/​cran/​BBmisc/.

	46.	 Kassambara A, Mundt F. ‘factoextra’: extract and visualize the results of multivariate data analyses. 2017. https://​rdrr.​
io/​cran/​facto​extra/.

	47.	 Wickham H. ggplot2. Wiley Interdisc Rev Comput Stat. 2011;3(2):180–5.
	48.	 Zheng S, Cherniack AD, Dewal N, Moffitt RA, Danilova L, Murray BA, Lerario AM, Else T, Knijnenburg TA, Ciriello G,

et al. Comprehensive pan-genomic characterization of adrenocortical carcinoma. Cancer Cell. 2016;29(5):723–36.
	49.	 Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, Kovatich AJ, Benz CC, Levine DA, Lee AV,

et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell.
2018;173(2):400–16.

	50.	 Yan J, Enge M, Whitington T, Dave K, Liu J, Sur I, Schmierer B, Jolma A, Kivioja T, Taipale M, et al. Transcription factor
binding in human cells occurs in dense clusters formed around cohesin anchor sites. Cell. 2013;154(4):801–13.

	51.	 Chen RA-J, Stempor P, Down TA, Zeiser E, Feuer SK, Ahringer J. Extreme HOT regions are CpG-dense promoters in C.
elegans and humans. Genome Res. 2014;24(7):1138–46.

	52.	 Foley JW, Sidow A. Transcription-factor occupancy at HOT regions quantitatively predicts RNA polymerase recruit-
ment in five human cell lines. BMC Genom. 2013;14(1):1–17.

	53.	 Marchesi A, Masseroli M. TFHAZ: transcription factor high accumulation zones. R/Bioconductor package version
1.12.0; 2020. https://​www.​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​TFHAZ.​html.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=sparklyr
https://rdrr.io/cran/BBmisc/
https://rdrr.io/cran/factoextra/
https://rdrr.io/cran/factoextra/
https://www.bioconductor.org/packages/release/bioc/html/TFHAZ.html

	RGMQL: scalable and interoperable computing of heterogeneous omics big data and metadata in RBioconductor
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Related works

	Implementation
	GMQL and its genomic data model
	RGMQL design
	RGMQL integration capabilities: interoperability and extensibility
	RGMQL distributed processing environments: flexibility and scalability

	Results
	Use case 1: Mutational analysis of kidney cancer patients
	Use case 2: Patient-wise hierarchical clustering based on combined omics data
	Use case 3: Identification of transcription factor high accumulation DNA zones

	Conclusions
	Availability and requirements
	Acknowledgements
	References

