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Abstract 

Background:  Heterogeneous omics data, increasingly collected through high-
throughput technologies, can contain hidden answers to very important and still 
unsolved biomedical questions. Their integration and processing are crucial mostly 
for tertiary analysis of Next Generation Sequencing data, although suitable big data 
strategies still address mainly primary and secondary analysis. Hence, there is a press-
ing need for algorithms specifically designed to explore big omics datasets, capable of 
ensuring scalability and interoperability, possibly relying on high-performance comput-
ing infrastructures.

Results:  We propose RGMQL, a R/Bioconductor package conceived to provide a set 
of specialized functions to extract, combine, process and compare omics datasets and 
their metadata from different and differently localized sources. RGMQL is built over the 
GenoMetric Query Language (GMQL) data management and computational engine, 
and can leverage its open curated repository as well as its cloud-based resources, with 
the possibility of outsourcing computational tasks to GMQL remote services. Further-
more, it overcomes the limits of the GMQL declarative syntax, by guaranteeing a pro-
cedural approach in dealing with omics data within the R/Bioconductor environment. 
But mostly, it provides full interoperability with other packages of the R/Bioconductor 
framework and extensibility over the most used genomic data structures and process-
ing functions.

Conclusions:  RGMQL is able to combine the query expressiveness and computational 
efficiency of GMQL with a complete processing flow in the R environment, being a fully 
integrated extension of the R/Bioconductor framework. Here we provide three fully 
reproducible example use cases of biological relevance that are particularly explana-
tory of its flexibility of use and interoperability with other R/Bioconductor packages. 
They show how RGMQL can easily scale up from local to parallel and cloud computing 
while it combines and analyzes heterogeneous omics data from local or remote data-
sets, both public and private, in a completely transparent way to the user.

Keywords:  Heterogeneous omics big data, Data scalability, Distribution transparency, 
Tertiary data analysis
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Background
The rapid progress of Next Generation Sequencing (NGS) technologies and the 
improvement of data processing pipelines have lead to a dramatic increase in the volume 
of available omics data with associated high-level features. Both world-wide consortia 
and private research groups are gathering a huge number of different omics collections 
[1–7]. A crucial point is to make sense of this amount and variety of omics data, using 
proper analyses and bioinformatic pipelines to investigate multiple biological and clini-
cal conditions and possibly answer complex issues.

To this aim, suitable big data algorithms as well as integration and processing strat-
egies are fundamental to guarantee scalability and performance, through efficient 
implementations on high performance computing infrastructures such as clouds, CPU 
clusters and network infrastructures. Omics datasets are in fact collected within many 
and heterogeneous data files, structured to trace genomic regions; these files are usually 
distributed on different repositories and frequently lack of an attribute-based organi-
zation or a systematic description of their metadata. Thus, to take advantage of them, 
available tools for standard knowledge extraction are often inefficient or inappropriate. 
Even when they have powerful features, rough programmatic interfaces make them not 
well-suited for biologists and scientists in the biomedical field.

Furthermore, cloud-based approaches and big data algorithms for computational 
genomics have so far been mainly targeted to speeding up NGS primary and secondary 
analysis. So, they are focused on read alignment, mapping and feature calling [8–12], 
while have been rarely directed to tertiary analysis [13–15]. Tertiary investigations aim 
to extract biological knowledge, like discovering how different genomic regions and their 
products interact with each other under given clinical conditions. Hence, they require 
multi-sample seamlessly integrated processing and analysis of region data and metadata 
from heterogenous omics datasets.

The GenoMetric Query Language (GMQL) [16–18] is a high-level, query language 
that addresses this kind of tasks performing efficient operations over genomic data and 
their metadata. Indeed, through parallel computation on cloud-based technologies, it 
performs implicit iterations over thousands of samples, hosted in its open cluster-based 
repository. GMQL is thus designed for high scalable performance on large datasets; yet, 
it supports only batch interactions (via its Web interface or Scala API), requires users to 
write queries compliant to its syntax, and does not provide direct support for data analy-
sis and visualization.

We developed RGMQL to bridge this gap between the declarative nature of GMQL 
and the procedural workflows dealing with omics data, commonly carried out in the R/
Bioconductor environment. RGMQL is indeed a R/Bioconductor [19, 20] software pack-
age able to bring query expressiveness and computational efficiency of GMQL within an 
interactive data processing flow. It is built over the GMQL data management and com-
putational engine to provide a set of specialized functions that extract, combine, manip-
ulate and compare genomic data and metadata, from both local and remote sources, 
without requiring any knowledge of GMQL syntax. More important, it is designed to 
offer complete interoperability and take full advantage of the other packages of data pro-
cessing, statistical analysis, machine learning and visualization available within the R and 
Bioconductor frameworks. Notably, it provides extensibility over the most commonly 
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used genomic data structures and processing functions, as to be easily used by research-
ers used to R programming.

RGMQL can even offer processing outsourcing, i.e., it can assign the analytical com-
putational burden of a processing to a remote GMQL service. Also, it provides data dis-
tribution transparency; accordingly, data are always automatically handled and moved 
based on the actual processing unit (local or remote), without any further user concern. 
So, RGMQL can easily scale from local to parallel and cloud computing, while process-
ing both local and remote omics datasets in completely transparent way to the user. 
Notably, data under analysis can be public or private, since when private data are pro-
cessed remotely they are automatically uploaded in a private area of the GMQL reposi-
tory, accessible to the proprietary user only.

Hence, RGMQL provides researchers with a valuable ally for omics data tertiary inves-
tigation. Being fully integrated within the R/Bioconductor framework, it can straight-
forwardly cooperate with other packages while it makes really easy to take advantage of 
GMQL functionalities. Also, it offers GMQL computational facilities and public data-
sets stored remotely, all ready-to-use for analyses that can involve user proprietary data 
as well. Furthermore, RGQML is able to guarantee FAIR principles [21] (findability, 
accessibility, interoperability and reusabilty) not only at the data level, but also at the 
implementation level. The package can be found in Bioconductor and its code in the 
associated GitHub project. Genomic data and metadata are easy to find using RGMQL 
functions to explore the content of the remote repository. Data of interest can be mate-
rialized in the local file system and within the R environment to be further processed, 
ensuring interoperability with proprietary data and reusability. The same interoperabil-
ity and reusability are provided by the package itself, which can cooperate with other R 
packages while reuses and extends existing R infrastructure and functions.

Related works

The analysis of high-throughput heterogeneous genomic data has critically become 
dependent on robust and efficient bioinformatics approaches. Although many steps 
ahead have been made in the design of software and pipelines for such data processing, 
mainly addressing region data usually stored in BED (Browser Extensible Data) format, 
many software suites are still thought to be used on single experimental files; this is the 
case of the well-known BEDTools [22] and BEDOPS [23], which are Unix-based com-
mand line tools providing manipulation primitives for BED file analysis. Conversely, the 
GMQL system [16–18] allows implicit and efficient iterations over all the experimental 
samples of a dataset of interest; in [17, 24] functional and performance comparisons of 
GMQL with BEDTools and BEDOPS are respectively provided. Furthermore, only the 
GMQL system has another crucial added value: it is able to handle and perform complex 
queries and data processing based on both genomic region data and metadata, which are 
fully organized and supported within the well-defined structure of the Genomic Data 
Model adopted in the GMQL system.

Despite GMQL original system is certainly the main work related to RGMQL, which 
inherits all its mentioned strengths, GMQL and RGMQL have highly divergent features. 
In particular, GMQL only provides batch interactions through its Web application and 
Scala API, whereas RGMQL works in a continuous R processing flow and ensures full 
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interoperability and analysis of all produced results with the other R/Bioconductor soft-
ware packages. Although a programmatic interface of GMQL, called PyGMQL [25], has 
been developed for Python programming language, the possibility of taking advantage of 
GMQL in a seamless and fully integrated way within the R/Bioconductor environment 
is of key interest for the bioinformatic community. In fact, Bioconductor [20] is one of 
the most used open-source software frameworks for open-development and execution 
of bioinformatic pipelines and omics data analyses [26], which are highly facilitated by 
the use of R programming language and the availability of many dedicated R/Bioconduc-
tor software packages.

Well suited for the analysis and comprehension of high-throughput genomic data [26, 
27], Bioconductor strongly encourages extensive reuse of the infrastructure provided by 
its existing packages, as to enhance interoperability and full compatibility of each library, 
beyond offering robust high-quality code for data processing and analysis. Its last release 
(3.14)1 includes 2,083 software packages and numerous annotation and experimental 
data packages from published works. Particularly, the GenomicRanges and GenomicFea-
tures [28] packages are the core of the R/Bioconductor infrastructure for omics data 
handling: they provide scalable data structures for representing annotated ranges (i.e., 
regions) on the genome and efficient algorithms for overlap computing, coverage calcu-
lation, data extraction and other intra- and inter-range operations. Specifically, Genomi-
cRanges was built to include biologically relevant features upon the IRanges class, which 
represents a general vector of ranges. Its GRanges class defines a GRanges object that 
indeed contains an IRanges one, where ranges are enriched with sequence name (e.g., 
chromosome name), strand information, sequence length and possibly additional region 
metadata. Furthermore, its GRangesList class is designed to build a data structure group-
ing together GRanges of the same genome and sharing the same region metadata. Con-
versely, GenomicFeatures offers methods for extracting and manipulating genomic data 
annotations in GRanges and GRangesList objects. Beyond direct computational facili-
ties, this core infrastructure mostly supports an increasing amount of other Bioconduc-
tor packages, including libraries for sequence analysis, differential expression analysis 
and data visualization. Yet, these kinds of processing require data to be available in main 
memory: though GRangesList have additional built-in data compression to cope with 
this issue, the need of RAM memory resident data and results represents undoubtedly a 
limit for scalability to big data contexts.

In this scenario, we designed RGMQL to be fully integrated in the R/Bioconductor 
framework and to seamlessly extend its functionalities, with any RGMQL resulting data-
set that can be cast to a GRangesList data structure. Not only it ensures interoperabilty 
with the other R/Bioconductor packages, but also it provides cloud-based computational 
scalability and efficiency, extending the capabilities of R/Bioconductor that does not 
directly support scalable genomic data processing on remote clusters. In fact, although 
Bioconductor and also the general-purpose Comprehensive R Archive Network (CRAN) 
[19] provide some efficient data manipulation packages used also for genomic data pro-
cessing, their computational performances are usually enhanced through optimizations, 

1  https://​www.​bioco​nduct​or.​org/​news/​bioc_3_​14_​relea​se/.

https://www.bioconductor.org/news/bioc_3_14_release/
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local parallelism or calling lower-level code at run-time. Particularly, the well-known 
dplyr package [29], including many useful data manipulation functions (e.g., filter(), 
select(), arrange()), provides fast performances thanks to embedded key code pieces 
written in C++ programming language. Only recently, the sparklyr [30] package has 
been developed to take advantage of the strength of Apache Spark clusters [31], provid-
ing compatible back-end for dplyr functions. Nonetheless, to the best of our knowledge 
RGMQL is the only R/Bioconductor package specifically tailored to comprehensively 
query heterogeneous genomic data, regardless if locally or remotely located, within a 
processing context extensible towards parallel computations on cloud-based technolo-
gies, even outsourcing the required computing power.

Implementation
RGMQL is a R/Bioconductor package developed to make available GMQL operators 
in the R/Bioconductor environment, while ensuring full integration within such a pro-
grammatic framework. It is freely available both at https://​github.​com/​DEIB-​GECO/​
RGMQL and at https://​www.​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​RGMQL.​
html, together with its complete documentation and its vignette, with some task-
oriented examples of the package functionalities. Currently, in its first 4 years of life it 
counts more than 3,800 downloads only from Bioconductor.

Here, after a brief description of the GMQL system and of its data model, RGMQL 
design is thoroughly discussed, with particular attention to its strengths: the full 
integration within the R/Bioconductor framework and the distributed processing 
environments.

GMQL and its genomic data model

The GenoMetric Query Language [16–18] is a high-level, declarative language devel-
oped to efficiently process huge omics datasets and their metadata. Indeed, it expresses 
operations through compact queries that implicitly imply iterations over all samples. 
As its name suggests, GMQL is able to process one or multiple datasets based on dis-
tal predicates, i.e., conditions related to the genomic distance (in base pairs) between 
any involved pair of genomic regions; yet, it is also able to support metadata predicates, 
concerning experimental and clinical properties. Thus, GQML extends conventional 
operations of relational algebra (e.g., SELECT, PROJECT, UNION, etc.) with further 
operations specifically designed for genomics, like the domain-specific operations JOIN, 
COVER, MAP or EXTEND. In Table  1, all GMQL operators are reported and briefly 
described, together with their corresponding RGMQL functions.

GMQL relies on a formal, unified data description model, called Genomic Data 
Model (GDM) [24]: it is designed to homogeneously represent semantically heterogene-
ous omics data and metadata, comprehensively managing the latter ones through a flat 
attribute-based organization. A GDM dataset is associated with a data schema, where 
main attributes are fixed (chr, left, right, strand) and represent genomic region coordi-
nates, while all other attributes further characterize each genomic region; conversely, 
metadata express general properties of each sample and are specified in free attribute-
value pair format.

https://github.com/DEIB-GECO/RGMQL
https://github.com/DEIB-GECO/RGMQL
https://www.bioconductor.org/packages/release/bioc/html/RGMQL.html
https://www.bioconductor.org/packages/release/bioc/html/RGMQL.html
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GDM-based datasets are organized, stored and loaded as collections of samples, 
including both region and metadata files. Specifically, the GMQL project makes available 
public data of several consortia in an open cluster-based curated repository, including 
data from The Cancer Genome Atlas (TCGA) [3], the Encyclopedia of DNA Elements 
(ENCODE) [5] and the 1000 Genomes Project (1KGP) [32]; additionally, any user can 
have also a personal space to import private datasets, maintaining confidentiality and 
access control through login sessions.

All datasets can be processed efficiently by GMQL operators through the developed 
GMQL REST Web Services and Web interface. The underlying architecture ensures 
scalability and parallelism of processing, and allows using local, remote and distributed 
File Systems, as well as several deployment strategies on cloud environments or on sin-
gle Java virtual machines.

The main implementation of the GMQL system, publicly accessible at http://​www.​
gmql.​eu/, is installed on a cluster at CINECA, the largest Italian computing centre and 
one of the most important worldwide. Currently, this GMQL architecture includes an 
application server and a cluster of machines for execution over the Spark engine and 
Hadoop Distributed File System. More details about the GMQL system are in [18].

Table 1  Genometric RGMQL functions with their extension over already existing R functions and 
mapping to corresponding GMQL operators

R 
package 
of origin

RGMQL function GMQL operator Brief description

dplyr arrange() ORDER It orders samples sample regions based on metadata region 
attributes

dplyr collect() MATERIALIZE Itsaves persistently the content of any dataset obtained after 
query completion

dplyr filter() SELECT It extracts a subset of samples sample regions using region 
metadata predicates

dplyr group_by() GROUP It groups samples sample regions based on region metadata 
attributes with the same value

dplyr select() PROJECT It selects region metadata attributes to be kept and can 
update create metadata region attributes

dplyr setdiff() DIFFERENCE It discards the regions of the first dataset intersecting regions 
of the second one

dplyr union() UNION It puts together samples of two datasets keeping as region 
attributes those of the first one

base merge() JOIN It returns a dataset by joining the regions of two datasets 
based on distance region predicates

stats aggregate() MERGE It combines all the samples of a dataset into a single sample

– cover() COVER It collapses the samples of a dataset into a single sample 
based on specified rules

– execute() – It launches the query execution

– extend() EXTEND It generates new metadata attributes for each sample from 
aggregations applied to region attributes

– map() MAP It computes aggregated values from overlapping regions of 
two datasets

http://www.gmql.eu/
http://www.gmql.eu/
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RGMQL design

RGMQL has been designed to offer both the expressive power of the GMQL query lan-
guage and straightforward usability by any user with only knowledge of the R syntax. In 
fact, its functions are developed to directly provide extensibility over core data struc-
tures and processing functions commonly used in the R/Bioconductor environment, as 
well as to be fully interoperable with many other R/Bioconductor packages.

Additionally, it can perform complex and computationally intensive queries (involv-
ing region data and metadata of GDM-based datasets) with the same efficiency of the 
GMQL system. Indeed, it shares the GMQL back-end architecture and cloud-based 
engine to handle and process in parallel also huge genomic datasets, through remote 
execution performed at GMQL site. Thanks to the underlying GMQL Apache Spark [33] 
engine, RGMQL allows scaling up from local to cluster and cloud execution. The back-
end interacts with the R front-end through the Web Services functions module depicted 
in Fig.  1, which maps the RGMQL functions to the corresponding GMQL operators 
(Table  1) implemented in Spark. Furthermore, RGMQL supplies several utility func-
tions (Table 2) needed for seamless integration with the GMQL system, exploration of 
its curated repository and remote access to the GMQL computational resources.

Typically, R/Bioconductor packages are developed to handle data of limited size 
through the use of a single machine; they usually read datasets in RAM memory all at 
once, and every R object must reside entirely in memory to be processed. This often 

Fig. 1  Representation of the RGMQL package within the R/Bioconductor environment. REST Web services and 
Sequential execution modules can handle alternative RGMQL processing environments, together with their 
dependency links to httr and rJava R packages, respectively
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prevents the analysis of big data, besides requiring long time to process large sets of 
data. Conversely, RGMQL overcomes such limitations, guaranteeing the same scalability 
of GMQL and allowing to work with very large datasets, usually not available in local 
but cloud repositories. Such big data cannot be handled with standard R data structures 
allocated in the main memory. Accordingly, in RGMQL we have introduced the GMQL-
Dataset class, an abstract R structure that represents each GMQL dataset without con-
taining any information about samples (regions or metadata). A R GMQLDataset object 
is indeed only a reference to the desired resulting GMQL dataset, which keeps trace 
(through a directed acyclic graph) of all the operators to be sequentially applied on the 
involved input dataset(s) to obtain it. Processing and real availability of the results are 
actually deferred until the materialize command is called by invoking an execution func-
tion. This lazy execution resembles the lazy loading of the R code objects adopted for 
packages use. It closes the gap between the interactive computations within R/Biocon-
ductor and the typical GMQL batch execution. In fact, it is needed to perform remote 
execution at the GMQL site, but it is preserved also for local processing since it allows to 
eventually optimize the processing.

Hence, RGMQL provides a great flexibility of usage in the R/Bioconductor environ-
ment, allowing to use indistinctly remote query outsourcing or local processing on the 
user machine, even working seamlessly on local or remote data. Users are provided with 
an easy-to-use and interactive framework leveraging both R/Bioconductor and GMQL. 
Any processing is part of a continuous workflow although RGMQL does not gener-
ate any actual result before an execution function is called at runtime, both in local or 
remote processing. Deferring the computational effort until a result is actually needed 
(in the local file system or within the R/Bioconductor environment) for further analy-
ses allows to overcome, but synchronize with, the batch-oriented style of the underlying 
GMQL system.

RGMQL integration capabilities: interoperability and extensibility

One of the main strengths of RGMQL is to enable a procedural way of working with 
genomic datasets. Users can in fact perform multiple operations, interleaving RGMQL 
manipulations with processing and visualizations involving many other R/Bioconductor 
packages; the only requirement is including each piece of RGMQL code in an initializa-
tion-execution block, so that all intermediate and final results of interest are correctly 
materialized in the main or mass memory and available for further analyses.

Within such an integrative analytical processing, RGMQL requires full interoperability 
with the other R/Bioconductor packages. This concerns primarily the dependencies on 
external packages to convert or bridge idiomatic R constructs and operations to GMQL 
native syntax. In addition, it greatly regards the needed mapping of GMQL datasets 
into existing R data structures, suitably and widely-used by other packages in the R/Bio-
conductor environment. Accordingly, any abstract GMQLDataset or any GMQL data-
set already saved in mass memory, can be loaded in main memory into a GRangesList 
object, one of the most commonly used R data structure. This makes it accessible in a 
widely supported format for further processing. Therefore RGMQL is designed to pro-
vide not only the efficient data structures, but also several import/export functions that 
allow data manipulation in GRangesList format, regardless the engine chosen to execute 
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the RGMQL processing. An explanatory representation of these functions is reported in 
Fig. 2, specifying when to apply each of them based on the data source location.

Also, to guarantee full integration and compatibility with the most commonly used 
R/Bioconductor packages, RGMQL functions were named to override well-known R/
Bioconductor processing functions, as to extend their functionalities on GMQLDataset 
instances. In doing this, RGMQL functions move away from the original names of the 
corresponding GMQL operators, but ease their comprehensibility and application for 
any scientist used to R/Bioconductor. Particularly, besides a couple of basic functions 
coming from the base and stats R packages, RGMQL extends other functions with a 
well-known meaning that are implemented in the widely-used dplyr [29] R package for 
data manipulation; Table 1 shows the RGMQL functions together with the R package 
generally defining their functionalities and the corresponding GMQL operators.

Therefore, RGMQL not only ensures interoperability with other packages, but also full 
integration within the R/Bioconductor environment: indeed, it provides extensibility 
over well-known functions and genomic data structures commonly used within such a 
framework.

Fig. 2  Representation of RGMQL functions for data import/export both locally and remotely. A GMQLDataset 
is created by the read_GMQL() function from a local dataset (in GDM or different tab-delimited format), or 
from a remote dataset (specifying is_local = FALSE). Any processing is applied on the involved GMQLDataset 
objects, and the computation and materialization of any result (remotely or locally) is deferred until the 
collect() and execute() functions are called. A GMQLDataset can be created also by the read_GRangesList() 
function from a GRangesList. Similarly, a GRangesList can be obtained from a remote dataset through the 
download_as_GRangesList() function, from a local dataset through the import_GMQL() function and, in local 
processing only, directly from a GMQLDataset through the take() function
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RGMQL distributed processing environments: flexibility and scalability

RGMQL can consume computational power directly from the local CPUs/system, 
operating in the R/Bioconductor local processing environment, or use remote process-
ing resources offered by the GMQL ecosystem. The former option takes advantage of 
the GMQL possibility to be deployed on a single Java virtual machine, while the others 
allocate resources and run (respectively only or partially) on a cluster, which is trans-
parently provided by the remote GMQL server. Although local processing is adequate 
only for limited data size and not suitable for big data processing, it is a relevant added 
value to be able to work locally. For example, there are sensitive data that users cannot 
even export in their own private space on the GMQL remote repository, for restriction 
constraints.

For remote processing, indeed RGMQL lets users log (with private credentials or sim-
ply as a temporary guest) into the remote GMQL infrastructure and also manage large 
public genomic datasets, there hosted in the cluster-based curated repository. Then, it 
enables users to consume remote GMQL services, providing two ways of accessing a 
GMQL system instance: directly through the GMQL REST Web services or indirectly, 
passing through the GMQL Scala API contained into a compressed .jar file enclosed in 
the RGMQL package.

Hence, RGMQL implements two different sets of functions and processing modes, 
henceforth referred as: 1) the REST Web services mode, which generates HTTP requests, 
through the httr R package, designed to map closely to the underlying HTTP proto-
col and providing all standard HTTP functions; and 2) the Sequential execution mode, 
which uses the rJava R package to interface with the GMQL Scala API (Fig. 1).

The REST Web services mode does not require any bridging, since it is executed via 
Web service functions only. By invoking REST services users can upload local datasets 
into a private area of the remote repository, compile and run remotely a textual query 
(written in GMQL syntax and passed as argument of the R code) over remote private 
and/or public datasets, and download datasets resulting from remote processing into a 
local folder. All operations can be applied both on originally remote datasets or on local 
ones previously uploaded; this is directly inherited from the GMQL system approach, 
which allows the addressed repository to be deployed on a local or a distributed Hadoop 
File System (HDFS) [34].

The Sequential execution mode, instead, lets users work in local or remote process-
ing with both local and remote datasets, as clearly appears in Fig. 1. In local processing, 
the Sequential execution module is only interfaced with the Local File System. Con-
versely, when users choose remote processing and read any data, the system automati-
cally uploads it on the remote system if it is not already there. Once loaded, RGMQL 
functions are called to process data remotely, hiding the batch-like interactions that are 
issued sequentially at execution time. In this case, processing instructions are written as 
RGMQL functions, which need a direct bridging with the corresponding GMQL Scala 
API. The bridge is built by implementing the whole logic into a “wrapper” class written 
in Scala, a dialect of the Java programming language, and using the rJava R package to 
implement conversions on both sides, as reported in Fig. 1. This wrapper class is instan-
tiated in R/Bioconductor and its public methods are called at execution time to run the 
GMQL operators underlying every RGMQL function. Each method of this wrapper class 
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can indeed directly call the corresponding native GMQL API. However, only primitive 
data types (integer, numeric, logical and character) are passed with no conversion from 
R to Scala; all multi-dimensional data types must be converted in Java objects before 
passing them as arguments to the wrapper class methods. The same applies when imple-
menting the dual logic, passing data back: the conversion is always performed on the 
R side through rJava functions. The RGMQL execute() function returns a directed acy-
clic graph (DAG) including all the GMQL operators to be sequentially applied on the 
involved dataset(s). A BASE64 serialized version of the DAG is then sent automatically 
through the direct ’REST Web Services’ path, as to launch the query remotely on the 
GMQL system.

Notably, in mixed processing the Sequential execution module can alternatively pro-
cess locally both local and remote data (automatically downloaded locally), or ask for 
outsourced processing of remote or local data (automatically uploaded remotely). Thus, 
RGMQL offers also data distribution transparency, since data are always automatically 
handled and moved according to the actual processing unit in use. Regardless of the 
computing unit, any resulting dataset can be saved (after local processing) or down-
loaded (after remote processing) in the local File System as a GDM-based dataset. Con-
versely, when a resulting dataset is still needed in the R/Bioconductor environment, it 
can be loaded (in local processing) or downloaded (after remote processing) in main 
memory as a GRangesList object, made of a GRanges object for each sample and includ-
ing all its region and metadata attributes. Such kind of loading in GRangesList is possible 
also starting from a GDM-based dataset already in mass memory, as long as the size 
of the obtained GRangesList (or compressed GRangesList) object does not exceed the 
maximum allowed space in RAM.

Overall, the alternative local and remote processing environments offered by RGMQL 
are easily interchangeable within a single analysis flow. This guarantees high perfor-
mance scalability, necessary to work on big genomic data, and extreme flexibility of use, 
as required by the procedural approach of the bioinformatics research, which typically 
combines different analyses and data sources.

Results
In the following subsections we illustrate clear and fully reproducible example use cases 
of usefulness, expressive power and flexibility of the RGMQL package in biologically 
relevant applications. Their complete workflows are available as R Notebooks in the 
RGMQL GitHub repository (https://​github.​com/​DEIB-​GECO/​RGMQL), together with 
the vignette and reference manual of the RGMQL package. These examples show the 
processing capabilities of RGMQL in terms of suitability and scalability offered to per-
form data-intensive computations on large datasets. Also, they demonstrate RGMQL 
easiness of use within complete workflows: this is enabled by the data distribution trans-
parency, the flexibility in mixing local and remote data and processing modes, and the 
full interoperability with other R packages when results are imported as GenomicRanges 
objects.

https://github.com/DEIB-GECO/RGMQL
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Use case 1: Mutational analysis of kidney cancer patients

This example use case shows how RGMQL, together with the remote engine and curated 
genomic data repository provided by GMQL, permits to easily perform genomic analy-
ses on big datasets; particularly, here we take advantage of RGMQL remote processing 
to analyze somatic mutational events in specific patients affected by Kidney Renal Clear 
Cell Carcinoma (KIRC), extracted from a large dataset provided by The Cancer Genome 
Atlas.

First, the datasets in the remote GMQL curated repository are explored using the 
show_datasets_list() function, and available mutation datasets are identified. The show_
all_metadata() function is then used to find metadata (e.g., age and type of patients) of 
mutation datasets of interest. In this example we choose the GRCh38_TCGA_somatic_
mutation_masked_2019_10 dataset, containing somatic mutation data regarding 10,187 
samples of 33 TCGA cancer types:

library(RGMQL)
remote_url <- "http://www.gmql.eu/gmql-rest"
init_gmql(url = remote_url, remote_processing = TRUE)

dataset_list <- show_datasets_list(remote_url)
list <- unlist(lapply(dataset_list[["datasets"]], function(x) x$name))
grep(pattern = ’mutation’, x = list, value = TRUE)

all_metadata <- show_all_metadata(dataset =
"public.GRCh38_TCGA_somatic_mutation_masked_2019_10")

Specific data of interest are then analyzed remotely using the GMQL engine. First the 
filter() function is used to select the KIRC patients of interest, e.g., those younger than 65 
years at initial KIRC diagnosis:

GRCh38_TCGA_mut <- read_gmql(dataset =
"public.GRCh38_TCGA_somatic_mutation_masked_2019_10",

is_local = FALSE)
mut_under65 <- filter(GRCh38_TCGA_mut,

biospecimen__admin__disease_code == "KIRC" &
clinical__clin_shared__age_at_initial_pathologic_diagnosis < 65)

The map() function is used to find and count, for each mutation sample and each gene, 
all somatic mutations occurring in gene regions. Such regions are identified based on the 
GRCh38 reference genome annotations from the NCBI Reference Sequence database 
(RefSeq) [35], available in the remote GMQL curated repository:
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RefSeq_GRCh38 <- read_gmql(dataset = "public.GRCh38_ANNOTATION_REFSEQ",
is_local = FALSE)

genes <- filter(RefSeq_GRCh38, annotation_type == ’gene’ &
provider == ’RefSeq’)

geneMut <- map(genes, mut_under65, count_name = ’mut_count’)

Following, only genes with at least one mutation are preserved through the filter() 
function. Additionally, for each sample the mutated genes are counted, storing such 
counts in a new metadata attribute called ’geneMut_count’, by means of the extend() 
function:

geneMut2 <- filter(geneMut, r_predicate = mut_count >= 1)
geneMut3 <- extend(geneMut2, geneMut_count = COUNT())

Eventually, found results can be saved in the local file system as a GDM dataset, and 
also downloaded in memory as GRangesList. The latter ones can be further straight-
forwardly analyzed and visualized in the R environment with other useful R func-
tions. Particularly, ’geneMut_count’ values can be used to prioritize the samples (one 
for each patient) from the most to the least mutated one (Additional file 1). From this 
simple evaluation we can notice that somatic mutated gene counts are quite homogene-
ously distributed across samples, with a lower quartile of 26 and an upper quartile of 45 
mutated genes. Only a sample/patient (sample id: S_00140) clearly appears as an outlier, 
with its 466 mutated genes. Since genes appear mostly characterized by a single somatic 
mutation (2 is the 99th percentile), a similar behaviour is obtained also when plotting the 
total number of mutational events occurring in each patient.

More relevantly, obtained results can be thoroughly analyzed by studying and plotting 
somatic mutation distributions across samples, as to highlight the most mutated genes 
in the KIRC population of interest. The mutation count of each gene region is evaluated 

Fig. 3  Top 20 genes by percentage of the 217 patients under analysis with the gene mutated
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considering the percentage of involved patients (Fig. 3) or the number of actual muta-
tional events compared to the gene length (Additional file 2). Although in some sam-
ples multiple events exist in the same gene region, the top 20 mutated genes are exactly 
coincident in both cases and include the VHL and TTN-AS1 genes and the PCDH gene 
family.

The association between the VHL gene and kidney cancer is widely recognized [36–
38]: it reaches a DisGeneNet association score of 0.9 [39] and more than 90% of the renal 
clear cell carcinoma are known to be characterized by somatic mutations in the VHL 
gene [40, 41]. Conversely, at present the TTN-AS1 gene, encoding a lncRNA transcribed 
from the opposite strand of the TTN gene, is known to be primarily associated with 
myopathy and other cardiac and muscular diseases [42].; similarly the protocadherins 
(Pcdhs), which are predominantly expressed in the nervous system and constitute the 
largest subfamily of the cadherin superfamily of cell-adhesion molecules, are until now 
known to be mostly associated with epilepsy and central nervous system neoplasms and 
disorders [43, 44], but also with several other cancers [41, 44].

The involvement of VHL gene alterations in kidney cancer is confirmed also when 
inspecting gene mutation counts normalized by gene length. This normalization deter-
mines a top 20 gene list (Fig. 4) including mainly microRNA and small nucleolar RNA 
genes, favored by their short length (at most about a hundred bases); yet, despite its 
12,036 bp length, the VHL gene is still included in this list, together with HIST1H2AC, 
a gene encoding for a nuclear protein responsible for the nucleosome structure [40], and 
OR8G1, a gene encoding for an olfactory receptor protein, known to be associated with 
breast, ovarian and pancreatic cancer [41]. While the evidences on VHL clearly confirm 
its involvement in kidney cancer, the other found data-driven associations can be worthy 
of further investigations.

Use case 2: Patient‑wise hierarchical clustering based on combined omics data

In this use case, whose workflow is schematically illustrated in Additional file 3, we show 
how to combine remote public and local omics data in remote processing, before per-
forming further local analyses on the results. Particularly, we investigate the expression 
data of both messenger RNA and microRNA genes aligned to the GRCh38 reference 

Fig. 4  Top 20 genes by number of mutations per gene length across the 217 patients considered
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genome, focusing on TCGA patients affected by Adrenocortical carcinoma (ACC). The 
miRNA expression data of such patients are supposed available in the working directory 
of the local file system in GDM format, within the GRCh38_miRNA_ACC​ dataset (avail-
able for reproducibility purpose at https://​github.​com/​DEIB-​GECO/​RGMQL). Corre-
sponding TCGA ACC expression values from RNA-sequencing experiments are instead 
extracted from the large GRCh38_TCGA_gene_expression_2019_10 dataset, available on 
the remote GMQL curated repository (including 11,092 TCGA gene expression profile 
samples of 33 cancer types):

GRCh38_miRNA_path <- ’./GRCh38_miRNA_ACC’
GRCh38_miRNA_ACC <- read_gmql(GRCh38_miRNA_path, is_local = TRUE)
remote_processing(TRUE)

GRCh38_TCGA_RNAseq <- read_gmql(dataset =
"public.GRCh38_TCGA_gene_expression_2019_10", is_local = FALSE)

GRCh38_TCGA_RNAseq_ACC <- filter(GRCh38_TCGA_RNAseq,
gdc__project__project_id == "TCGA-ACC")

The two resulting datasets are then processed together remotely, after the local  
dataset automatic uploading, transparent to the user, in a temporary reserved area of the 
remote GMQL repository. Specifically, the datasets are joined through the merge() func-
tion based on their biospecimen__bio__bcr_analyte_barcode metadata attribute, keeping 
for each miRNA region also the mRNA gene region at the minimum distance. This is 
possible thanks to setting to MD(1) the genometric_predicate and to BOTH the region_
output parameters of the function:

ACC_mRNA_miRNA <- merge(GRCh38_miRNA_ACC, GRCh38_TCGA_RNAseq_ACC,
genometric_predicate = list(MD(1)), region_output = "BOTH",
joinBy = conds(’biospecimen__bio__bcr_analyte_barcode’))

Once the joined dataset is computed and downloaded in the local file system, the 
remote processing mode can be turned off to proceed with further local analyses. The 
filter_and_extract() function can be used to import only raw count values and gene 
annotations from the result dataset in the local R environment, within a GRanges object:

remote_processing(FALSE)

path <- paste(’./Results_use_case_2’, name_dataset, sep = ’/’)
GR_ACC <- filter_and_extract(path, metadata = NULL, region_attributes =

c(’right.gene_symbol’, ’right.htseq_count’, ’left.mirna_id’,
’left.read_count’))

From it, we derive a samples-per-features dataset, where each column hosts values of 
a different miRNA or mRNA gene and each row is named according to the TCGA ID 
of the corresponding sample. Differently from the previous use case, here we use the 
official TCGA patient ID to identify each patient profile, as to ease comparison with 

https://github.com/DEIB-GECO/RGMQL
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preexisting analyses of TCGA data. Such identifiers are collected from the biospeci-
men__shared__bcr_patient_barcode key-value pairs in the metadata table. This table is 
obtained from the downloaded GDM dataset through the show_all_metadata() func-
tion, simply as follows:

meta_table <- show_all_metadata(name_dataset, show_value = TRUE)
sample_IDs <- unlist(meta_table[

’left.biospecimen__shared__bcr_patient_barcode’, ])

Analogously, we can import in the R environment some clinical annotations of each 
sample (e.g., tumor outcome status, stage and grade), which may characterize the gene-
driven subgroups of patients that emerge from a patient clustering analysis. For this 
evaluation, we start from a matrix of raw expression values extracted from the previ-
ously obtained GR_ACC​ GRanges object. First, we remove miRNA and mRNA genes 
with null raw values in 25% of samples or more, so as to discard too lowly-expressed 
genes that are more easily affected by noise and thus less reliable:

LQ <- apply(rawMatrix, 2, function(x) summary(x)[2])
kept <- which(LQ > 0)
dataset <- rawData[, kept]

Then, after data normalization performed through the normalize() function of  
the BBmisc package [45], we assess and visualize the optimal number of clusters based 
on the average silhouette width, computed using the fviz_nbclust() function of the facto-
extra R package [46] (Additional file 4).

library(BBmisc)
dataset_n <- normalize(dataset, ’standardize’)

library(factoextra)
res <- fviz_nbclust(dataset_n, hcut, method = "silhouette", k.max = 10)
plot(res)

Considering the found optimal number of three clusters, we apply the Ward Hierarchi-
cal Clustering by means of the hclust() R function, using the Spearman correlation-based 
distance as dissimilarity measure among the expression profiles, computed through the 
get_dist() function of the factoextra R package; the obtained dendrogram is plotted and 
the three clusters are highlighted on it with coloured rectangles by means of the rect.
hclust() R function. Furthermore, the fviz_cluster() function of the same factoextra R 
package can be used to depict the three clusters, selected by the cutree() R function, in 
a ggplot2-based visualization [47] (Fig. 5), using as space dimensions the two principal 
components of the data:
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d <- get_dist(x = dataset_n, method = "spearman")
hclust_model <- hclust(d, method = "ward.D")
plot(hclust_model) # display dendogram
rect.hclust(hclust_model, k = 3, border = 2:5)

clusters <- cutree(hclust_model, k = 3)
fviz_cluster(list(data = dataset_n, cluster = clusters), labelsize = 6)

The three clusters obtained include 49, 17 and 13 patients, respectively. Each of these 
clusters can be compared with the previously extracted clinical metadata, as well as 
with clustering results and survival annotations emerged from the ’Comprehensive Pan-
Genomic Characterization of Adrenocortical Carcinoma’ [48] and other pan-cancer 
studies [49] performed by the TCGA consortium. Accordingly, mosaic plots are useful 
for showing how different stratification results overlap with each other; particularly, it 
is interesting to compare our clustering results with those obtained using the K4 gene 
signature [48], which is indicative of steroid phenotype low and high, with or without 
proliferation (Fig. 6).

Similarly, considering the available median follow-up of 39.3 months, it is relevant to 
assess prognostic insights arising from each cluster by means of the overall survival sta-
tus and months annotations (Fig. 7).

From these comparisons we can notice that all patients in our third cluster have ster-
oid phenotype low without proliferation and are living. Conversely, the first and biggest 
cluster has a majority of steroid phenotype high cases (82%), half with and half without 
proliferation; out of them, only 24 are still living, with more than 20% annotated with a 
recurrence event, while 24 patients are deceased, 14 within the first 2 years after diagno-
sis. Eventually, the second cluster, despite its heterogeneous phenotype, includes only 3 

Fig. 5  Clusters from patient-wise hierarchical clustering on the first two dimensions of the data principal 
component analysis. The fraction of variance explained by each dimension is reported as percentage in the 
corresponding axis label
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cases with increased proliferation, of which one is deceased and another one is recurred 
after 5 years; overall there are only 3 deceased patients, all having high steroid pheno-
type, while the high majority of this cluster patients is living and disease-free. Thus, the 
smaller second and third cluster patients, sharing wild type proliferation levels, show 
better expected prognoses compared with the first cluster patients.

This use case demonstrates the easiness of combining remote and local (also possibly 
private) data, and of using remote processing for a computationally intensive task, like 
a join operation on large datasets. It proves also the advantage of locally retrieving only 
the computed results, which are typically much smaller in size. Furthermore, it shows 
the usefulness of the filter_and_extract() function, which allows selecting from a result-
ing dataset and importing in the R environment only the specific data of interest for the 
next processing. The so-obtained GRanges format can indeed be easily manipulated and 
analyzed also with many R functions from different packages. The use case shows how 
to use several of them for an effective local exploration of data and visualization of the 
results from the remote processing of a large dataset, supporting also their clinical/bio-
logical assessment and interpretation.

Use case 3: Identification of transcription factor high accumulation DNA zones

In this last use case, we report a more complex computational workflow (schemati-
cally illustrated in Additional file  5) to stress the usefulness of RGMQL and remote 
processing in performing complex queries on large datasets; RGMQL provided results 
can then be straightforwardly analyzed in the local R environment with full interoper-
ability. Particularly, as an example we illustrate how to identify transcription factor 
(TF) High Occupancy Target (HOT) regions [50–52]. TFs are proteins that control the 
rate of transcription of genetic information from DNA to RNA, by binding to specific 

Fig. 6  Mosaic plot of the three clusters emerged from patient-wise hierarchical clustering compared with 
the published clustering results obtained in [48] using the K4 gene signature
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DNA sequences. Investigating HOT DNA regions, bound by many different transcrip-
tion factors, is crucial to understand cancer genesis and develop new targeted thera-
pies. RGMQL can automate all the steps needed to identify TF high accumulation DNA 
zones, interoperably cooperating with the TFHAZ Bioconductor package [53].

ChIP-seq data describes protein interactions with the DNA, including those of tran-
scription factors. Their processing is usually specialized in identifying broad domains 
(covering wider DNA regions) or narrow peaks (limited to local spikes); both of them are 
worthy to be investigated to find HOT regions. Thus, we consider both BROAD PEAK 
and NARROW PEAK datasets released from the ENCODE consortium [5], available 
in the remote GMQL curated repository with 2,136 and 11,468 samples, respectively. 
Using the filter() function, we select ChIP-seq data of high quality (peaks and optimal idr 
thresholded peaks) focusing on the human embryonic stem cell line H1-hESC, and we 
group together the so-obtained samples in a single dataset through the union() function:

HM_TF_rep_broad <- filter(Enc_Broad, assay == "ChIP-seq" & file_status ==
"released" & biosample_term_name == "H1-hESC" &
output_type == "peaks")

HM_TF_rep_narrow <- filter(Enc_Narrow, assay == "ChIP-seq" & file_status ==
"released" & biosample_term_name == "H1-hESC" &
output_type == "optimal idr thresholded peaks"

HM_TF_rep <- union(HM_TF_rep_broad, HM_TF_rep_narrow)

Then, we filter out all samples subjected to pharmacological treatment or annotated 
with quality issues, and we further use the filter() function to discard all samples regard-
ing histone modifications:

Fig. 7  Mosaic plot of the three clusters emerged from patient-wise hierarchical clustering compared with 
the patient overall survival status annotations
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HM_TF_rep_good_0 <- filter(HM_TF_rep, !biosample_treatments == "*" &
!(audit_error == "extremely low read depth" |

audit_error == "extremely low read length") &
!(audit_warning == "insufficient read depth") &
!(audit_not_compliant == "insufficient read

depth" | audit_not_compliant ==
"insufficient replicate concordance" |
audit_not_compliant == "missing input
control" | audit_not_compliant == "severe
bottlenecking" | audit_not_compliant ==
"unreplicated experiment"))

TF_rep_good_0 <- filter(HM_TF_rep_good_0, !(experiment_target ==
"H2AFZhuman" | experiment_target == "H3F3A-human" |

experiment_target == "H3K27ac-human" |
experiment_target == "H3K27me3-human" |
experiment_target == "H3K36me3-human" |
experiment_target == "H3K4me1-human" |
experiment_target == "H3K4me2-human" |
experiment_target == "H3K4me3-human" |
experiment_target == "H3K79me2-human" |
experiment_target == "H3K9ac-human" |
experiment_target == "H3K9me1-human" |
experiment_target == "H3K9me2-human" |
experiment_target == "H3K9me3-human" |
experiment_target == "H4K20me1-human"))

Also, we add the length of each DNA region in each sample as a new region attribute 
through the regions_update parameter of the select() function; then, for each sample we 
compute the number of regions and the sum of their lengths, and store them as sample 
metadata using the extend() function:

TF_rep_good_1 <- select(TF_rep_good_0, regions_update =
list(length = right - left))

TF_rep_good <- extend(TF_rep_good_1, region_number = COUNT(),

sum_length = SUM("length"))

Once our main GMQLDataset TF_rep_good (including DNA regions that are binding 
sites of transcription factors) is ready, we use it in two independent but related process-
ings. The first one is needed to extract a threshold able to identify transcription factor 
bound DNA regions of interest. After aggregating all samples in a single sample through 
the aggregate() function (notice that ’biosample_term_name’ is uniquely associated with 
the value ’H1-hESC’ by dataset construction), we order regions by ascending values 
of their length through the arrange() function; then, we execute the RGMQL query to 
materialize its result and download it in the local R environment as a GRangesList:
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TF_rep_good_merged <- aggregate(TF_rep_good, groupBy =
conds(default = c("biosample_term_name")))

TF_rep_good_ordered <- arrange(TF_rep_good_merged,
regions_ordering = list(ASC("length")))

collect(TF_rep_good_ordered, name = "TF_rep_good_ordered")
job <- execute()

dataset_name <- job$datasets[[1]]$name
GRL_TF_rep_good_ordered <- download_as_GRangesList(remote_url, dataset_name)

We further process such result locally to extract from the regions, ordered by their 
length, the index of their 95th percentile: our threshold is thus the length of the region 
placed at the so-obtained index. This threshold is useful to distinguish DNA regions 
worthy to be further examined from too wide regions, having length over the threshold. 
Such wide regions are indeed outliers that can affect HOT region detection, since their 
big length can biasedly increase the number of TFs that bind the region.

At this point, going back to the RGQML remote processing and to our main GMQL-
Dataset TF_rep_good, we perform a second processing; first, it selects the DNA regions 
to be further examined based on the just computed threshold; then, it adds all the attrib-
utes needed for the following HOT region detection. With the filter() function we select 
as regions of interest only those with a length smaller than the just computed superior 
threshold, but at least greater than a given inferior threshold (e.g., 100 bases). Then, 
through the extend() function we create new metadata attributes (region_number_fil-
tered and sum_length_filtered) by computing, for each sample, the current number of 
contained DNA regions and the sum of their lengths, respectively:

TF_rep_good_filtered_0 <- filter(TF_rep_good, r_predicate = length >= 100 &
length <= threshold)

TF_rep_good_filtered <- extend(TF_rep_good_filtered_0,
region_number_filtered = COUNT(),
sum_length_filtered = SUM("length"))

Following, we combine samples of experiments having the same target TF, using the 
cover() function with ’experiment_target’ as grouping parameter. Then, through the 
regions_update parameter of the select() function we update the values of the region 
attribute length for the obtained combined regions. Also, using the extend() function we 
create new useful metadata attributes for each of the so-obtained samples: the number 
of so-obtained combined regions (which have the same TF as target) and the min, max 
and sum of their lengths:
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TF_0 <- cover(TF_rep_good_filtered, 1, ANY(), groupBy =
conds("experiment_target"))

TF_1 <- select(TF_0, regions_update = list(length = right - left))
TF <- extend(TF_1, region_number_cover = COUNT(), sum_length_cover =

SUM("length"), min_length_cover = MIN("length"),
max_length_cover = MAX("length"))

The so-obtained dataset TF is downloaded in the current local R environment as a 
GRangesList object to be straightforwardly further processed and analyzed. From the 
GRangesList, a GRanges object GR_H1_hESC is extracted, including a flatten list of all 
genomic regions (ranges) coming from all the TF samples, together with a single meta-
data, i.e., the annotation of the TF binding each region. GR_H1_hESC contains 344,556 
ranges from different chromosomes, annotated with 28 different transcription factors. 
It is analyzed with the following functions of the TFHAZ package [53]. First, the accu-
mulation() function is used to compute the accumulation vector on all chromosomes of 
interest, i.e., the number of transcription factors binding each base of a chromosome; 
this is done here below for chromosome 21 as an example. Then, the high_accumula-
tion_zones() function is applied on the accumulation vector (TF_acc_21_w_0) to extract 
HOT zones, which have greater number of TF binding regions, according to the ’over-
laps’ identification method. This method uses a single-base local approach and considers 
all and only the DNA bases of the TF accumulation vector to compute the threshold (as 
mean accumulation plus twice standard deviation) needed to identify the HOT zones.

Fig. 8  Plot of the transcription factor accumulation for chromosome 21 and of the 186 HOT zones (in red) 
identified according to the found accumulation threshold 5.6 (red line)
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TF_acc_21_w_0 <- accumulation(data = GR_H1_hESC, acctype = "TF",
chr = "chr21", w = 0)

d_zones <- high_accumulation_zones(TF_acc_21_w_0, method = "overlaps",
threshold = "std")

From this analysis, in chromosome 21 we find 186 HOT DNA regions, each bound 
by more than 5 transcription factors according to the threshold of 5.6 computed by the 
high_accumulation_zones() function. Figure  8 shows that the HOT regions obtained 
are mainly present in the second half of the chromosome 21 and absent from its initial 
portion.

The computational workflow discussed in this use case highlights the precious role of 
RGMQL in simplifying complex analysis such as the considered one. It allows perform-
ing the entire processing within the R environment, but without requiring consumption 
of local computational resources: indeed it takes advantage of the scalability and parallel 
computing offered by GMQL. This result can not be achieved by using only the GMQL 
system, or only the TFHAZ package together with other available R/Bioconductor pack-
ages. Indeed, in processing omics data, also big, RGMQL profits of both the facilities of 
the R environment and of the data and computational resources offered by the GMQL 
ecosystem. Therefore, once again, RGMQL demonstrates to play a key role in provid-
ing both a useful interactive procedural approach, typical of the bioinformatics research, 
and scalable performance.

Conclusions
As R is able to interface with a variety of other languages to take advantage of well-
established and state-of-the-art algorithms and protocols, similarly the R/Bioconductor 
RGMQL package is designed to be fully interoperable with other R packages, as well as 
with GMQL. Indeed, it provides the query expressiveness, computational efficiency and 
scalability of GMQL in the R/Bioconductor environment. Specialized RGMQL functions 
can extract, combine and manipulate omics big data and their metadata from different 
and differently localized sources. To this aim, RGMQL extends the most used genomic 
data structures and processing functions, and is completely integrated within the R/Bio-
conductor framework.

As proven in our three examples of biologically relevant use cases, RGMQL can lever-
age on public data hosted in the remote GMQL repository, and take advantage at runt-
ime of the most suitable processing mode. This can be chosen according to the analysis 
workflow of interest and the location of the involved data, and it can be easily changed 
along the workflow. RGMQL further key added values are indeed the flexibility and easi-
ness of use. Switching between local and remote processing with a single line of code, 
users can benefit from outsourcing the computational burden to the GMQL engine. 
Involved data are always moved automatically, when needed, thanks to the implemented 
data distribution transparency. Additionally, RGMQL allows merging not only remote 
and local public data, but even proprietary data: also in case of remote processing they 
are loaded in a private area of the remote repository, accessible through authenticated 
login only.
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Furthermore, RGMQL is able to guarantee the FAIR principles of findability, acces-
sibility, interoperability and reusabilty, both at the data and at the implementation level. 
Hence, RGMQL is definetely a versatile and valuable ally in the R/Bioconductor-based 
genomic research, in particular for scalable omics data tertiary investigations.

Availability and requirements

•	 Project name: RGMQL
•	 Project home page: on GitHub: https://​github.​com/​DEIB-​GECO/​RGMQL on Bio-

conductor: https://​www.​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​RGMQL.​
html

•	 Operating system(s): Platform independent
•	 Programming languages: R and Scala/Java
•	 Other requirements: R ( ≥ 3.4.2), Java ( ≥ 1.8)
•	 License: Artistic-2.0
•	 Any restrictions to use by non-academics: None
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