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Background
High-throughput chromosome conformation capture (Hi-C) studies of the 3D genome 
architecture have revealed several features of spatial genome organization in higher 
eukaryotes. Within the chromosome territories [1], transcriptionally active and 
repressed loci are spatially segregated into A and B compartments [2], that closely resem-
ble eu- and heterochromatin, respectively. At the scale of megabases, chromatin is folded 
into topologically associated domains (TADs) [3, 4], commonly interpreted as relatively 
stable globules. In mammals, TAD boundaries are enriched in CTCF/cohesin binding 
[3] and demarcate areas of enhancer action [5]. Regulatory elements within TADs, such 
as promoters and enhancers, interact with each other and form chromatin loops, whose 
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bases are frequently marked with binding of architectural proteins such as CTCF [6], 
YY1 [7], ZNF143 [8], and others [9, 10]. As revealed by the depletion of subunits of the 
cohesin complex [11] and CTCF [12], the overwhelming majority of TADs and loops 
in mammalian cells are established by cohesin-driven CTCF-restricted chromatin fiber 
extrusion. In contrast, mechanisms of compartment formation and maintenance are 
largely unknown. Compartment profile along the genome and contact patterns within 
A/B compartments are sensitive to changes in gene expression during cell differentia-
tion [13] and cell senescence [14, 15], alter in response to osmotic stress [16] and depend 
on the activity of loop extrusion machinery [17, 18]. Despite the increasing number of 
observations on dynamics of compartment structure in different biological conditions, 
the determinants of genome compartmentalization remain elusive [19]. Thus, multiple 
ongoing studies aim to shed light on the aspects of compartment formation [20].

In contrast to TAD and loop annotation and visualization tools (Additional file  1: 
Table  S1), only a limited number of methods for A/B compartments annotation and 
analysis are available. For instance, compartments were initially discovered using prin-
cipal component analysis (PCA) [2] which became a method of choice for compartment 
annotation. Recently, CscoreTool [21] and POSSUMM [22] were reported as a PCA-
based memory-efficient algorithms for compartment annotation, while SNIPER [23] and 
Calder [24] algorithms were developed for sub-compartment detection in moderately 
covered Hi-C data and at various map resolutions, respectively. However, averaged con-
tact frequency between genomic bins belonging to different compartments is mostly 
analysed using the saddle plot diagram [25, 26]. Despite its utility, saddle plot represen-
tation is clearly lacking the separation of short- and long-range interactions, and is not 
convenient to analyze the average contact frequencies at a predefined scale. Thus, the 
available tools cannot systematically probe the dynamics and perturbations of chromatin 
contact patterns within compartments. To fill this gap, we developed a new tool, Pentad, 
which can calculate, visualize and quantify the average compartment structure within a 
predefined range of genomic distances. Using published Hi-C datasets, we demonstrate 
that Pentad accurately detects the redistribution of contacts between and within A and B 
compartments without requiring additional analyses.

Implementation
The average compartment visualisation provided by Pentad represents short- and long-
range contacts within A and B compartments together with intercompartmental inter-
actions. The visualisation comprises several types of areas from the Hi-C matrix that 
are determined based on the annotated A/B compartment signal, which is usually a first 
principal component (PC1) from PCA of the Hi-C matrix (Fig. 1A). The obtained visu-
alisation is then used to estimate the average compartment strength.

To create an average compartment visualisation, compartment areas of different types 
are extracted from the observed-over-expected Hi-C matrix and subjected to filtering. 
First, areas are filtered based on their dimensions in genomic bins, because small areas 
are likely to represent noisy regions of the Hi-C matrix. Next, areas with a low num-
ber of contacts are removed because of their poor resolution. Finally, areas at a distance 
between the anchors larger than a specific cutoff value are removed. Areas that meet the 
criteria are then rescaled using bilinear interpolation into squares of a predefined size. 
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Rescaled areas of the same type are averaged genome wide using median pixel values, 
and they are aggregated into one plot.

To calculate compartment strength, the mean value of contacts from areas represent-
ing interactions within A and B compartments are divided by the mean value of contacts 
between these compartments (Fig.  1B). To avoid bias towards low values of the com-
partment signal when estimating intercompartment interactions, the edges of the cor-
responding average compartment square are cropped to remove residual interactions 
occurring in the A and B compartments. Compartment strength is calculated for each 
chromosome from the Hi-C matrix, enabling a comparison of the results with statistical 
tests.

Current implementation of Pentad is provided as a set of Python scripts that can 
average cis and trans Hi-C interactions, to stratify the compartment areas by genomic 
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Fig. 1  Pentad pipeline for average compartment and compartment strength calculations. A Schematic 
representation of the Pentad pipeline for averaging compartments in cis, trans, and cis-by-distance. B 
Schematic representation of the compartment strength calculation by Pentad
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distance, and calculate compartment strength directly from the average compart-
ments (see Additional file  1: Methods and Additional file  1: Figure S1 for more 
details). The required input files are a Hi-C matrix in cooler format [27] and a com-
partment signal in the bedGraph format.

Results
To demonstrate the utility of the Pentad algorithm, it was first applied to the Hi-C 
datasets with a known impact on the compartment’s structure. Thus, we focused on 
conditional knock-outs of cohesin loading factor NIPBL [18] and cohesin release 
factor WAPL [17] in mammalian cells. As previously reported, removing NIPBL 
enhances chromatin compartmentalization, and knocking out WAPL compromises 
the segregation of A and B compartments. We confirmed the increase in compart-
ment segregation in NIPBL-deficient cells (Fig. 2A, the central square of the average 
compartment), and we found that both A and B compartments gain interactions at 
long genomic distances. In addition, we showed that increased compaction of the 
A compartment is provided by a shift of the interactions from the main diagonal of 
the Hi-C matrix to longer distances because of the disruption of TADs. In WAPL-
deficient cells (Fig.  2B), we observed decreased compartment segregation, with the 
B compartment losing interactions at all genomic distances and the A compartment 
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Fig. 2  Pentad accurately calculates averaged compartments and detects their dynamics. A Cis-pentads for 
mouse cells with conditional knock-out (KO) of cohesin loading factor (NIPBL; data from Schwarzer et al. [18]). 
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losing interactions only on long-range distances. We also observed a gain of contacts 
at short genomic distances for the A compartment, potentially caused by an increased 
number of loops upon WAPL knock-out.

We next applied Pentad to a time-course datasets to assess its ability to capture the 
A/B compartment dynamics. First, we probed the compartmentalization that occurs 
when human cells transition from mitosis to G1 [28]. As expected, in the prometa-
phase and at the entry of G1, we did not see any compartment structure. It emerges 
3 h after the release of the cells from prometaphase arrest (Fig. 3A). When applied to 
the compartments stratified by genomic distance, Pentad revealed that A and B com-
partments have different assembly kinetics at short and long distances (Figs. 3B, 3C). 
Second, we inspected changes in compartmentalization during the early develop-
ment of mouse embryos [29]. Here, we observed a prolonged formation of chromatin 
compartments, which are reduced after fertilisation and re-established during pre-
implantation development (Fig. 4A). By analysing allele-specific Hi-C contact matri-
ces, we detected that compartmentalization already occurs in zygotes for the paternal 
genome, but it is weakly pronounced until the later stages for the maternal genome 
for short-range A and long-range B compartments (Figs. 4B, 4C).
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Conclusions
Pentad is a simple tool that allows one to analyse chromatin compartments based on a 
Hi-C matrix and compartment signal only. Our results demonstrate the tool’s utility for 
quantitative analysis of A/B compartments and tracing the changes of the average com-
partment structure at different genomic scales in various biological conditions. It is fast 
and easy to use, and it provides reliable results, and this makes Pentad a useful tool for 
analysing the impact of various factors on the 3D genome organization. We anticipate 
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that Pentad could simplify data interpretation and stimulate formulating novel hypothe-
ses to understand the mechanisms underlying chromatin compartments formation, and 
would be used for the analysis of A/B compartment structure in a wide range of biologi-
cal conditions and model systems.

Availability and requirements

Project name: Pentad.
Project home page: https://​github.​com/​magni​tov/​pentad.
Operating system(s): Platform independent.
Programming language: Python.
Other requirements: conda.
License: MIT License.
Any restrictions to use by non-academics: None.
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some conformation capture; ICM: Inner cell mass; NIPBL: Nipped-B-like protein; PCA: Principal component analysis; TAD: 
Topologically associated domains; WAPL: Wings apart-like protein homolog; YY1: Yin yang 1; ZNF143: Zinc finger protein 
143.
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