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Background
Assembling fragments of DNA sequences is an important phase in reproducing the 
complete genome sequences of the studied organisms. Particularly noteworthy is 
the de novo assembly task, where there is no reference genome. This task is further 
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complicated by the presence of reading errors and the presence of repetitive regions. 
With the dynamic development of third-generation sequencing (NGS) methods and 
the associated significant decrease in sequencing costs, the burden of the complex-
ity of the entire process of whole-genome sequencing has shifted from biotechnol-
ogy to the computational phase. Currently, the bottleneck is the acquisition of DNA 
readings in the sequencing process and their computer analysis. Hence the need to 
develop new processing algorithms, with particular emphasis on their efficiency. In 
addition to the well-known and used methods of parallelizing computations through 
GPUs, dedicated FPGAs, or large computing clusters, one of the possible paths is to 
use the potential of quantum computers.

Existing de novo assembly tools are based on two algorithmic solutions: de Bruijn and 
overlap-layout-consensus graphs. The techniques used vary with the length of the reads. 
Hybrid approaches are also being developed, using both short and long reads [1]. One 
possible approach to assembling sequences without a reference genome is to formulate 
the problem as an optimization task, namely the travelling salesman problem (TSP). 
This issue, formulated in its general form in the 1930s by Karl Menger, is one of the best 
known combinatorial problems. Its main difficulty is that the increase in the number 
of possibilities to be considered with the increasing size of the input data is factorial. It 
has been proven that TSP belongs to the class of NP-hard problems [2], which makes 
it an interesting problem from an algorithmic point of view and causes that, although 
it can be considered one of the best-studied combinatorial problems in computer sci-
ence, there are still attempts to develop more efficient algorithms to solve it. In its clas-
sic form, the task is to find the optimal (shortest) path between cities from a given set, 
such that each city is visited exactly once. The path has to start and end in the same city. 
The travelling salesman problem is used in several areas, from the most obvious, such 
as mapping the optimal routes for vehicles, to drilling printed circuit boards or picking 
orders in [3] warehouses. In bioinformatics itself, many TSP applications can be men-
tioned, such as multiple sequence alignment, construction of phylogenetic trees or pro-
tein structure prediction [4].

The use of quantum annealer, a device dedicated to solving optimization problems, 
seems to be one of the obvious directions to be checked. The principle of its operation 
has been described i.a. in [5]. The annealer itself works by generating independent sam-
ples by slowly transforming the initial state into a random end state taking into account 
a given objective function. In the conventional approach, we use thermal fluctuations, 
while the quantum annealer uses quantum fluctuations to transcend individual states.

The usefulness of QA has been tested, i.a. in [6]. The authors analyze the capabili-
ties and limitations of QA, such as the relatively small number of qubits and their poor 
conectivity. Introducing a new synthetic class of problems to take advantage of quantum 
tunneling effect and comparing the time of their solution achieved by the classical and 
D-Wave algorithms, they prove the superiority of the latter. Another example is the work 
[7], where the authors compare the operation of quantum annealer with the simulated 
annealing algorithm, as well as with the quantum Monte Carlo algorithm (where the 
quantum tunneling phenomenon is emulated on the CPU), demonstrating experimen-
tally the superiority of QA for selected classes of problems. Whether QA is able to lower 
the asymptotic complexity of NP-hard problems in general remains an open question.
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Attempts to solve TSP, or its generalized form—VRP—by means of quantum annealer 
have already been made, among others in the works of [8, 9]. This work is not the first 
attempt to use the QA in the de novo assembly problem—the topic was taken up, among 
others, by Boev et al. [10] and Sarkar et al. [11].

QA are a class of quantum computers based on the heuristic optimization method (the 
phenomenon of quantum annealing) to solve optimization and sampling problems using 
quantum physical systems. The most famous devices of this class are QA from D-Wave. 
The largest quantum computer it offers now is Advantage, with a QPU consisting of over 
5000 quantum bits; however, in the experiments carried out as part of the described 
research, the quantum annealer in older architecture, namely D-Wave 2000Q, was used.

This study aimed to investigate the possibility of using a QA in a de novo assembly 
task, formulated as an optimization problem (travelling salesman problem). For this pur-
pose, the algorithm proposed by Jugas et al. [12] for the detection of overlaps in readings 
of DNA sequences and their ordering was first verified by performing calculations on a 
classical computer. Then, the results obtained by the classical algorithm were compared 
with the results obtained by using the hybrid algorithm to determine the travelling sales-
man path (combining calculations performed on the CPU and the QPU).

Methods
Preliminary assumptions

We made the following initial assumptions:

•	 only long reads are considered (single-end, not reversed - every read is forward 
strand);

•	 the algorithm does not take into account dealing with repetitive DNA regions;
•	 the tested DNA sequence fragments contain a small percentage of errors (maximum 

1.5%);

The individual steps of the algorithm are presented in Fig. 1.

Encoding DNA reads as a signal

The input of the algorithm is the set of N reads, a read is string over { A, C, G, T }. The 
first step of the algorithm is to encode the read into a signal i.e. sequence of numbers. 
Following the approach described by [12], cumulated phase signal representation [13] 
was used. According to the mapping, each letter was assigned one of the complex num-
bers: A: 1+ j , C: −1− j , G: −1+ j , T: 1− j . Then a complex number argument is calcu-
lated and values obtained in this way are accumulated in the signal. The advantage of 
such a representation is the preservation of information about the chemical and struc-
tural properties of the sequences, as well as the positional information, which makes it 
possible to compare them with each other [14].

Pearson’s correlation coefficient matrix

The next step of the algorithm is to compare each pair of reads to detect possible 
overlap. The method of computing the similarity of a pair of reads, as summarized 
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below, is taken from [12]. The Pearson correlation coefficient [15] was adopted as 
the measure of similarity:

where X, Y are compared signals, cov is covariance and σ stand for standard deviation. 
The values of the coefficient fall within the range �−1, 1� , with values close to 1 and −1 
representing a linear relationship (positive or negative, respectively), while values close 
to 0 indicate a low relationship between the studied variables.

Given a pair of reads to compare, we shift them successively against each other, 
computing the Pearson correlation coefficient for overlapping sequence fragments 
for each shift. Then we place the maximum value obtained in this way in the result-
ing matrix (see Fig. 2).

(1)ρX ,Y =
cov(X ,Y )

σXσY

Fig. 1  Diagram showing the steps of the algorithm
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Solving travelling salesman problem

The symmetric matrix of correlation coefficients of size N × N  created by this method, 
where N is the power of the input data set, is the input for the next processing step: 
ordering overlapping reads by solving the travelling salesman problem. The “cities” vis-
ited by the travelling salesman (the vertices of the complete undirected graph) are, in 
this case, the individual reads. Finding the optimal path in the graph—with the above-
mentioned assumptions—allows ordering overlapping fragments of the DNA sequence 
and is equivalent to solving the assembly task.

Introducing artificial vertex and scaling

In the classic formulation of the TSP, the travelling salesman starts from a specific start-
ing point—we do not have one here. Potentially each of the reads may be the beginning 
or the end of the genome sequence. This difference is pointed out by Parsons et al. [16], 
who are therefore critical of the idea of using TSP as a solution to the de novo assembly 

Fig. 2  The method of calculating the Pearson correlation coefficients matrix
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problem. However, as Mallen-Fullerton and Anaya [17] rightly point out, this limitation 
is easy to circumvent by introducing an artificial vertex into the graph with zero dis-
tance from other vertices. In the algorithm that is the subject of this article, it will always 
be vertex marked with the number zero. Then the artificial vertex should be specified 
as the starting point. Thus, the Hamilton cycle obtained at the algorithm’s output, after 
removing the artificial vertex, will allow obtaining the searched path. Moreover, since 
the classical TSP minimizes the cost function, and due to the requirement to operate on 
integers, imposed by the Google OR Tools tool (see next paragraph), it was necessary to 
rescale the correlation coefficient matrix by subtracting all values from 1, multiplying by 
1000 and applying the min-max scaling.

Google OR Tools

In the work [12], which is the starting point for the described research, due to the small 
size of the input data, the nearest neighbour algorithm was used to solve the TSP prob-
lem. In this paper, however, to make the solution more universal, in the case of the base 
solution (on a classic computer), we decided to use the Google OR Tools (GOT) [18] 
tool. It is open-source software designed to solve combinatorial optimization problems, 
such as vehicle routing, scheduling or bin packing. A particular emphasis was placed 
on its performance—for example, on a typical computer, solving the TSP problem for 
280 cities takes about one second [19]. In general, the solution returned by GOT is not 
always optimal due to the computational complexity of the problem belonging to the 
NP-hard problems class. However, since in the quantum computational model described 
below, one should not expect precise solutions—which results from the very nature of 
quantum computing—this is by no means an obstacle. In the context of de-novo assem-
bly, obtaining a sub-optimal solution to the TSP is acceptable as long as it does not result 
in the detection of a false overlap. The traveling salesman path provides information 
which reads do actually overlap, while their final ordering to obtain the result sequence 
requires further processing (including calculating the exact offset between reads). This 
goes beyond the scope of this solution, as in the Overlap Layout Consensus approach 
the “Consensus” step is not the goal of our research.

The presented algorithm considers the approximate nature of the solution to the trav-
elling salesman problem, which is reflected in the next processing step—division into 
contigs. Before we move on to its description, let us look at the second method of solv-
ing the TSP problem on QA.

D‑Wave‑VRP

The D-Wave-VRP [20] tool1 was used to perform the calculations based on the quantum 
paradigm. This part of the experiments, intended to be calculated on the QPU, was carried 
out on a real quantum annealer (D-Wave 2000Q). The TSP problem is a particular case 
of the Vehicle Routing Problem (VRP), formulated in 1959 by Dantzig and Ramser [21], 
where the goal is to find optimal routes for several vehicles visiting a specific set of loca-
tions. The D-Wave-VRP tool allows solving a number of general VRP variants tasks, such as 

1  OpenSource, available at GitHub under the Apache License 2.0.
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Capacitated Multi-Depot Vehicle Routing Problem (CMDVRP) or without specifying vehi-
cle capacity (). From the point of view of this paper, the problem comes down to finding the 
optimal route for one vehicle with no restrictions on its capacity, with one depot (which is 
an artificial vertex) and N destinations.

In order to solve the TSP problem by means of a quantum annealer, it is necessary to 
formulate it as an optimization problem. In D-Wave-VRP, the TSP problem formulation 
as QUBO (Quadratic Unconstrained Binary Optimization) is based on [22]. A detailed 
description of the notation, assumptions and corresponding equations can be found in sec-
tions 2.1 and 2.2 of [20]. Paraphrasing the aforementioned paragraphs, the QUBO formula-
tion has the following form:

where A1 , A2 are constants (their values in the D-Wave-VRP tool were set as A1 = 1 , 
A2 = 107 ). Component C of the above equation, which is the essence of VRP, has the 
form:

where M is the number of warehouses, N is the number of points visited, Ci,j is the dis-
tance from i to j, xi,j,k is a binary variable accepting value 1 then and only then vehicle 
number i visits vertex j as k-th on its route. The following term ensures that each point is 
visited by exactly one vehicle exactly once:

In this paper, we treat TSP as a special case of VRP, where the number of both vehicles 
and warehouses is 1. Instead of the binary variables xi,j,k defined above, we will continue 
to use the notation xi,j , where xi,j is 1 then and only then the salesman visits vertex i as 
j-th in sequence. Since M = 1 , we can simplify C to the following form:

On the other hand, term Q, which ensures that every point on the traveling salesman’s 
route is visited and that it is visited exactly once, has the form:

(2)QUBOVRP = A1C + A2Q

(3)

C =

M∑

m=1

N∑

n=1

xm,n,1CN+1,n +

M∑

m=1

N∑

n=1

xm,n,NCn,N+1

+

M∑

m=1

N−1∑

n=1

N+1∑

i=1

N+1∑

j=1

xm,i,nxm,j,n+1Ci,j

(4)

Q =

N∑

k=1

A(x1,k ,1, x2,k ,1, . . . , x1,k ,2, . . . , xM,k ,N )

+

M∑

m=1

N∑

n=1

A(xm,1,n, xm,2,n, . . . , xm,N+1,n)

(5)C =

N∑

n=1

xn,1CN+1,n +

N∑

n=1

xn,NCn,N+1 +

N−1∑

n=1

N+1∑

i=1

N+1∑

j=1

xi,nxj,n+1Ci,j

(6)Q =

N∑

k=1

A(xk ,1, xk ,1, . . . , xk ,2, . . . , xk ,N )+

N∑

n=1

A(x1,n, x2,n, . . . , xN+1,n)
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Due to the size of the considered graphs (the described tool should enable solving TSP 
for N > 50 ), it was necessary to divide it into sub-problems. A problem of size N trans-
lates to a QUBO model of size N 2 , which means that for problem N = 50 it cannot be 
embedded directly into the QPU. According to [23], the largest fully connected problem 
that can be embedded onto the 2000Q has approximately 60 spins, while the limit in prac-
tice depends on the number of faulty physical qubits in the device. This means that the 
largest possible TSP problem to be solved directly in the 2000Q architecture is N = 7 
(because already for N = 8 we have N 2 = 64 > 60 ). It raises a necessity to decompose 
and use a hybrid approach.

DBScanSolver, based on the recursive DBSCAN algorithm [24], was selected from 
among the four possible solvers. The algorithm uses DBSCAN as clustering algorithm, 
where the number of clusters is limited. For each cluster TSP problem is solved sepa-
rately and then results are merged. The division into sub-problems is done on the CPU, 
while the search for traveling salesman path for a given sub-problem is performed on 
QPU.

The default configuration of D-Wave-VRP tool has not been changed. The quantum 
annealing algorithm uses two branches—tabu search and a sample of subproblems 
returned from the D-Wave system that “compete” with each other; a state with mini-
mum energy is selected. There is no maximum computation time per QPU or maximum 
number of iterations. The convergence parameter takes the value 1, which means that 
the process ends after one iteration of the calculations, during which the values obtained 
on the output have not changed. for every algorithm and on every test case we ran 5 
experiments.

Dividing the TSP path into contigs

Having the solution to the TSP problem—the optimal or near-optimal path passing 
through all the vertices in the graph—it is necessary to proceed to the last step of the 
algorithm, which is the contigs detection. This step is necessary since the algorithm 
could make a choice that was not a de facto overlap while looking for successive passes 
for a travelling salesman. In other words, the resulting path may combine reads that do 
not overlap each other. Therefore, it is necessary to detect such places and divide the path 
into smaller fragments, constituting a series of overlapping reads of the DNA sequence. 
For this purpose, calculations based on the knowledge of the degree of sequence cover-
age were used. For each link in the path, it is checked whether the value of the estimate 
function in the distance matrix exceeds a certain fixed threshold level. Based on the 
knowledge of coverage value COV, we know that a given read should coincide on aver-
age with COV − 1 other reads. Exceeding the threshold determined in this way is con-
sidered a break. By reducing the value of the threshold parameter, we can increase the 
number of contigs while reducing the probability of a false positive rate. The result of the 
described method is a set of contigs understood as a list of reads, each of which overlaps.

Data preparation

The experiments were carried out for both artificially generated data (dataset A) and 
actual sequences of organisms with small DNA sizes (dataset B)—lambda phage (48k 
bp) and E. coli bacteria (for the first 50k bp), being widely used model organisms, as 
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well as additionally on the SARS COVID-19 (29k bp) sequence. A summary of infor-
mation about the datasets used is provided in the Table 1.

Random sequences were generated as follows: for different overlap values 
{2700, 2500, 2300} , coverages{5, 10, 15} and percentage of errors {0, 0.5, 1, 1.5} a 
sequence was created DNA as a random string of characters from the A,  G,  C,  T 
alphabet, selected with equal probability. This method of generating sequences elim-
inated the risk of repeated regions, to which—as indicated in section Preliminary 
assumptions—the discussed algorithm is not resistant. The reads length was 3000 
bp (before introducing point mutations simulating errors). A total of 50 reads were 
generated for each sequence. A given coverage was obtained by a different length of 
the input sequence. It was decided to treat the starting sequence as a cyclic buffer 
so that the beginning and the end of the sequence would not be distinguished in any 
way. An exemplary set of reads from dataset A and their arrangement on the output 
sequence is shown in the Fig. 3.

The msbar tool from the EMBOSS [25] package was used to simulate sequencing 
errors, introducing a specific percentage of point mutations (insertions, deletions, 
substitutions, duplications) into each simulated read of a DNA sequence.

In the case of dataset B, all selected genome sequences were input for ReadSim 
[26]. Although this long-reads simulator, easy to install and use, is not the latest (the 
current version is from November 2014), it fits this paper’s needs well. In line with 
the assumptions mentioned in Preliminary assumptions, it was limited to single-end 
reads, setting a predetermined coverage value and error percentage. The lengths of 
the reads were generated with a uniform distribution.

Results
This section presents the results of research aimed at comparing the classical algo-
rithm implemented with the use of GOT and the algorithm implemented in a hybrid 
(classical and quantum) paradigm, where the quantum part was realized on the QA 
by D-Wave (designated as DWVRP).

Fig. 3  Arrangement of reads in relation to the input sequence for exemplary sequence (COVID-19) from 
dataset B
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Table 1  Parameters of sequences used for experiments

datasetA

Overlap length Length Coverage % of errors Average 
read 
length

2300 30,000 5 0 3000

2500 30,000 5 0 3000

2700 30,000 5 0 3000

2300 30,000 5 0.5 3000

2500 30,000 5 0.5 3000

2700 30,000 5 0.5 3000

2300 30,000 5 1.0 3000

2500 30,000 5 1.0 3000

2700 30,000 5 1.0 3000

2300 30,000 5 1.5 3000

2500 30,000 5 1.5 3000

2700 30,000 5 1.5 3000

2300 15,000 10 0 3000

2500 15,000 10 0 3000

2700 15,000 10 0 3000

2300 15,000 10 0.5 3000

2500 15,000 10 0.5 3000

2700 15,000 10 0.5 3000

2300 15,000 10 1.0 3000

2500 15,000 10 1.0 3000

2700 15,000 10 1.0 3000

2300 15,000 10 1.5 3000

2500 15,000 10 1.5 3000

2700 15,000 10 1.5 3000

2300 10,000 15 0 3000

2500 10,000 15 0 3000

2700 10,000 15 0 3000

2300 10,000 15 0.5 3000

2500 10,000 15 0.5 3000

2700 10,000 15 0.5 3000

2300 10,000 15 1.0 3000

2500 10,000 15 1.0 3000

2700 10,000 15 1.0 3000

2300 10,000 15 1.5 3000

2500 10,000 15 1.5 3000

2700 10,000 15 1.5 3000

datasetB

Sequence name Length Coverage % of errors Average 
read 
length

Covid19 29,903 10 0.33 5000

lambda_phage 48,502 10 0.33 5000

NC_000913_cov5 50,000 5 0.33 5000

NC_000913_cov10 50,000 10 0.33 5000

NC_000913_cov15 50,000 15 0.33 5000
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Algorithms evaluation

The developed pipeline is by no means a complete, ready-made assembler, which makes 
it impossible to use standard methods of comparing it with existing tools. Follow-
ing [12], to evaluate the operation of the tested algorithms (classical-GOT and hybrid-
DWVRP), the measure of checking the number of correctly and incorrectly detected 
overlaps was used. Accuracy and travelling salesman path cost were also calculated (it 
should be remembered that the lower the cost, the better the result). In particular, it was 
possible to find the optimal path with a cost of zero for error-free reads. In Tables 2, 3, 4, 
the real overlaps column shows the actual number of contigs for a given path (the inde-
pendent coherent fragments into which it should be divided). This number was obtained 
based on the knowledge of the location of each read in the target sequence. On the other 
hand, the calculated contigs column contains the number of contigs calculated using the 
algorithm described in section Dividing the TSP path into contigs. It is more desirable 
to have a situation in which, despite the more significant number of contigs, no false 
overlaps are detected (false positive rate equal to zero) than the case where the number 
of contigs will be lower, but the result will contain a false overlap (resulting in lower 

Table 2  Results of experiments for circular random sequences (datasetA), coverage = 5

Overlap length Method Path cost Real contigs Calculated 
contigs

Correct 
overlaps

Incorrect 
overlaps

Accuracy

0% errors

2300 GOT 0 0 0 51 0 1.00

DWVRP 268 2 2 49 0 1.00

2500 GOT 0 0 0 51 0 1.00

DWVRP 309 2 2 49 0 1.00

2700 GOT 0 0 0 51 0 1.00

DWVRP 113 1 1 50 0 1.00

0.5% errors

2300 GOT 449 2 2 49 0 1.00

DWVRP 648 1 6 45 0 0.90

2500 GOT 350 2 3 48 0 0.98

DWVRP 390 1 7 44 0 0.88

2700 GOT 349 0 3 48 0 0.94

DWVRP 484 0 10 41 0 0.80

1.0% errors

2300 GOT 507 0 2 49 0 0.96

DWVRP 965 3 6 45 0 0.94

2500 GOT 469 1 4 47 0 0.94

DWVRP 892 3 7 44 0 0.92

2700 GOT 648 1 5 46 0 0.92

DWVRP 881 2 8 43 0 0.88

1.5% errors

2300 GOT 912 0 3 48 0 0.94

DWVRP 1331 2 5 46 0 0.94

2500 GOT 1054 3 5 45 1 0.92

DWVRP 2233 10 12 39 0 0.96

2700 GOT 724 0 8 43 0 0.84

DWVRP 1124 2 10 41 0 0.84
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reliability of individual contigs). Then, the next processing step (going beyond the scope 
of the described algorithm) may be combining the contigs calculated in this way, using 
more precise matching algorithms (e.g. Smith-Waterman algorithm). In turn, the pres-
ence of false overlaps in the results may result in errors in the final DNA sequence.

Experiments for dataset A

The first part of the research was to check the algorithm’s operation for artificially gen-
erated data (random circular sequences from dataset A). The aim was to compare the 
results obtained by these algorithms for different overlap values, different error percent-
ages and three different coverage values. Better results (lower path cost, fewer contigs 
and higher accuracy) were expected for longer overlap lengths, but no such relation-
ship was observed. However, as expected, with the increase in errors in DNA reads, a 
decrease in accuracy and an increase in the number of contigs were observed. For error-
free sequences, accuracy = 1 was achieved in all three cases (Tables 2, 3 and 4), with 
both GOT and DWVRP achieving the optimal path for the two highest coverage values 
(with one exception). Moreover, the dependence of the quality of the obtained results 

Table 3  Results of experiments for circular random sequences (datasetA), coverage=10

Overlap length Method Path cost Real contigs Calculated 
contigs

Correct 
overlaps

Incorrect 
overlaps

Accuracy

0% errors

2300 GOT 0 0 0 51 0 1.00

DWVRP 0 0 0 51 0 1.00

2500 GOT 0 0 0 51 0 1.00

DWVRP 65 1 1 50 0 1.00

2700 GOT 0 0 0 51 0 1.00

DWVRP 0 0 0 51 0 1.00

0.5% errors

2300 GOT 127 0 0 51 0 1.00

DWVRP 176 0 1 50 0 0.98

2500 GOT 138 0 1 50 0 0.98

DWVRP 300 1 3 48 0 0.96

2700 GOT 150 0 0 51 0 1.00

DWVRP 196 0 1 50 0 0.98

1.0% errors

2300 GOT 325 0 0 51 0 1.00

DWVRP 482 0 3 48 0 0.94

2500 GOT 380 0 1 50 0 0.98

DWVRP 719 2 6 45 0 0.92

2700 GOT 288 0 1 50 0 0.98

DWVRP 509 1 4 47 0 0.94

1.5% errors

2300 GOT 422 1 0 50 1 0.98

DWVRP 578 0 4 47 0 0.92

2500 GOT 483 0 0 51 0 1.00

DWVRP 581 0 2 49 0 0.96

2700 GOT 363 0 1 50 0 0.98

DWVRP 636 1 3 48 0 0.96
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on the value of the coverage parameter is clearly visible. Also, as expected, in all cases, 
better results were achieved by the algorithms performed on the classic computer - only 
once the accuracy value dropped below 0.85. However, what is essential, the results 
achieved by DWVRP were not much worse.

Experiments for dataset B

The second stage of the research was to check the operation of the GOT and DWVRP 
algorithms for five actual genomic sequences (covid, lambda phage and three sequences 
obtained in the first 50k nucleotides of the E. coli genome, for the same three different 
coverage values as in the previous study). The obtained results, presented in table 5, do 
not differ significantly in quality from those obtained in previous experiments—the low-
est calculated accuracy value is 0.92, and only in two cases one overlap was incorrectly 
detected. Also, the number of fragments (contigs) into which the travelling salesman 
path was divided, ranging from 0 to 10 (for the case with the highest number of read-
ings-vertices), does not differ significantly from that observed for artificial sequences, 
increasing—obviously—with the complexity of the graph. Similar to results obtained for 

Table 4  Results of experiments for circular random sequences (datasetA), coverage=15

Overlap length Method Path cost Real contigs Calculated 
contigs

Correct 
overlaps

Incorrect 
overlaps

Accuracy

0% errors

2300 GOT 0 0 0 51 0 1.00

DWVRP 0 0 0 51 0 1.00

2500 GOT 0 0 0 51 0 1.00

DWVRP 0 0 0 51 0 1.00

2700 GOT 0 0 0 51 0 1.00

DWVRP 0 0 0 51 0 1.00

0.5% errors

2300 GOT 285 0 0 51 0 1.00

DWVRP 461 0 3 48 0 0.94

2500 GOT 450 0 3 48 0 0.94

DWVRP 574 0 3 48 0 0.94

2700 GOT 272 0 4 47 0 0.92

DWVRP 403 0 7 44 0 0.86

1.0% errors

2300 GOT 640 0 0 51 0 1.00

DWVRP 779 0 3 48 0 0.94

2500 GOT 716 0 2 49 0 0.96

DWVRP 903 0 3 48 0 0.94

2700 GOT 509 0 2 49 0 0.96

DWVRP 816 1 10 41 0 0.82

1.5% errors

2300 GOT 917 0 1 50 0 0.98

DWVRP 1994 1 8 43 0 0.86

2500 GOT 789 1 0 50 1 0.98

DWVRP 1048 0 2 49 0 0.96

2700 GOT 837 0 3 48 0 0.94

DWVRP 1353 2 6 45 0 0.92
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dataset A, the GOT achieved better results, but here, too, the DWVRP was only slightly 
worse. For the last three sequences in table 5 for the GOT, a slight increase in quality can 
be seen with increasing coverage; for DWVRP, there is no such dependency.

Discussion
The aim of this study, which was to test the method proposed by Jugas et al. [12] and 
evaluate its operation in the classical and hybrid (using quantum annealer calcula-
tions) computational model, has been achieved. The experiments carried out for both 
randomly generated and actual DNA data (using actual genomic sequences and reads 
from the simulator) confirmed the usefulness of the overlaps detection algorithm based 
on the Pearson correlation coefficient, as well as the proposed method of dividing the 
path obtained by the travelling salesman algorithm into coherent fragments of DNA 
sequences (contigs) in the de novo assembly task. The high efficiency of the algorithm 
was demonstrated for sequences with sufficient coverage and low error content.

The presented algorithm fits in with the approach of searching for the most accurate 
(error-free) contigs, where we accept obtaining a set of consistent genome fragments 
instead of one resulting sequence, not necessarily covering the entire genome of inter-
est. By appropriately selecting the threshold of the evaluation function for the algorithm 
that detects false overlaps, we can obtain high-quality contigs with a low (or even zero) 
probability of an error. This approach can be used, for example, in the case of assem-
bling genomes of large organisms, where we are primarily interested in coding regions. 
In addition, the use of alternative forms of DNA sequence representation (other than 
cumulative phase representation) would be worth considering.

The presented research is preliminary, as this work - as already mentioned—is a proof 
of concept. It is necessary to conduct experiments for a more significant number of test 
cases of organisms that differ in terms of belonging to a specific kingdom or phylum 
and genome size and verify the scalability of the method. In addition, the study would 
be worth extending to sequences obtained by other sequencers, such as Oxford Nanop-
ore (utilising long-read sequences similar to the tested PacBio). The problem of repeated 
regions in DNA sequences should also be solved, e.g. by appropriate methods of filtering 
out erroneous reads (as proposed in [17]).

Table 5  Results of experiments for datasetB

Sequence Method Path cost Real contigs Calculated 
contigs

Correct 
overlaps

Incorrect 
overlaps

Accuracy

covid19 GOT 524 0 0 52 0 1.00

DWVRP 756 0 2 50 0 0.96

lambda_phage GOT 99 1 5 85 0 0.96

DWVRP 174 2 9 81 0 0.92

NC_000913_cov5 GOT 282 2 1 45 1 0.98

DWVRP 518 5 7 40 0 0.96

NC_000913_cov10 GOT 282 1 2 90 0 0.99

DWVRP 678 4 6 85 1 0.96

NC_000913_cov15 GOT 229 1 1 137 0 1.00

DWVRP 526 3 10 128 0 0.95
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Several improvements can be made in the implementation of the developed pipeline. 
It would be worth considering optimising part of the calculations performed on a classic 
computer, e.g. parallelisation using GPU. In addition, the part responsible for finding the 
travelling salesman using quantum annealer was based on a ready-made tool dedicated 
to VRP, not TSP. Willing to apply the discussed method in practice, it would be worth 
developing a dedicated tool optimised for TSP (as a particular case of VRP).

In order to be able to state whether the computations on quantum annealer—quan-
tum or hybrid—applied to de novo assembly task compete with the classical ones, fur-
ther research is needed. Since the presented algorithm can by no means be considered a 
complete assembler, it is difficult to compare the obtained results with the existing tools. 
In order to be able to actually compare the results obtained with the use of the hybrid 
approach (QPU + CPU) with classical algorithms, an appropriate method of evaluating 
the results should be developed, taking into account the specificity of calculations made 
on the QA. Besides, as it was mentioned in Preliminary assumptions section, a few sim-
plifying assumptions were made in the conducted experiments—the next necessary step 
in further research is their removal or at least easing of the restrictions. The algorithm 
would also need to be scaled up in order to be able to analyze genomes larger than viral 
ones. Only then will it be known whether we should wait for more computing power or 
whether the current version of quantum annealers can be helpful in practical applica-
tions. It should be remembered that quantum computers are still immature in hardware 
and the number of dedicated algorithms available, be it for quantum annealer or gen-
eral-purpose quantum computers. In the case of the latter, the gap between theoretical 
possibilities and hardware development is even more comprehensive. If the computing 
power would allow the travelling salesman problem to be embedded for thousands of 
vertices (and not several as today), the possibilities offered by the quantum annealing 
algorithm could be used directly. For now, however, we are forced to use hybrid methods 
for problems of the size we have for the de novo assembly issue.

In our opinion, a worth exploring direction is a completely different approach to the de 
novo assembly problem, i.e. the use of overlap-layout-consensus graphs and an attempt 
to assemble—by solving the TSP problem-sequences on quantum annealer using the 
fact that these are sparse, bounded degree graphs. The question posed in this way should 
be formulated as QUBO. The number of variables necessary for quantum annealer to be 
considered will be many times lower than for the complete graph.

Conclusions
The effectiveness of the algorithm proposed by Jugas et al. [12] for artificial and actual 
DNA sequences was confirmed. The usefulness of quantum annealer for solving the 
travelling salesman problem was tested for actual sequences (with simulated reads). The 
algorithm was scaled to the size of viral genomes.

We developed a new algorithm for de-novo assembly that uses both: quantum com-
puter (quantum annealer) and classical electronics computer (CPU). The linear com-
plexity parts of our algorithm are deployed on CPU, the parts with higher complexity 
on QA. We tested this algorithm on real data, and we used D-Wave VRP implementing 
hybrid approach.
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Our research confirms that computing with the use of quantum annealer can be 
an alternative to other methods, such as large computing clusters or parallelisation with 
the use of GPU. This direction is worth exploring by developing dedicated algorithms 
based on the quantum paradigm.

Our goal was to show a new computational paradigm, using quantum annealing, to 
solve the practical problem of de novo assembly. Indeed, the results achieved by our 
algorithm are (in most cases) slightly worse than those achieved by the classical algo-
rithm. However, since these differences are small, it can be assumed after further work 
on the development of the described method (such as the selection of appropriate pro-
cessing parameters for QPU strictly for the assembly task, as the current experiments 
were carried out for the default values used in the D-Wave-VRP tool) and, above all, with 
the development of QA technology, the chances of these results will be better.
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