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Abstract 

Background:  Human protein kinases play important roles in cancers, are highly co-
regulated by kinase families rather than a single kinase, and complementarily regulate 
signaling pathways. Even though there are > 100,000 protein kinase inhibitors, only 67 
kinase drugs are currently approved by the Food and Drug Administration (FDA).

Results:  In this study, we used “merged moiety-based interpretable features (MMIFs),” 
which merged four moiety-based compound features, including Checkmol fingerprint, 
PubChem fingerprint, rings in drugs, and in-house moieties as the input features for 
building random forest (RF) models. By using > 200,000 bioactivity test data, we classi‑
fied inhibitors as kinase family inhibitors or non-inhibitors in the machine learning. The 
results showed that our RF models achieved good accuracy (> 0.8) for the 10 kinase 
families. In addition, we found kinase common and specific moieties across families 
using the Shapley Additive exPlanations (SHAP) approach. We also verified our results 
using protein kinase complex structures containing important interactions of the 
hinges, DFGs, or P-loops in the ATP pocket of active sites.

Conclusions:  In summary, we not only constructed highly accurate prediction models 
for predicting inhibitors of kinase families but also discovered common and specific 
inhibitor moieties between different kinase families, providing new opportunities for 
designing protein kinase inhibitors.

Keywords:  Kinase family inhibitor, Random forest, Shapley Additive exPlanations 
(SHAP) approach, Merged moiety-based interpretable features (MMIFs), Kinase 
inhibitors

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH 

Huang et al. BMC Bioinformatics  2022, 23(Suppl 4):130 
https://doi.org/10.1186/s12859-022-04663-5 BMC Bioinformatics

*Correspondence:   
moon@faculty.nctu.edu.tw 
†Yu-Wei Huang and Yen-Chao 
Hsu contributed equally to 
this work
2 Institute of Bioinformatics 
and Systems Biology, 
National Yang Ming Chiao 
Tung University, Hsinchu, 
Taiwan
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0002-3205-4391
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04663-5&domain=pdf


Page 2 of 13Huang et al. BMC Bioinformatics  2022, 23(Suppl 4):130

Introduction
Human cancer, immune diseases, and complex diseases are related to protein kinase 
signaling pathways; therefore, protein kinases have become the second-largest drug tar-
get family [1]. There are > 100,000 recorded protein kinase inhibitors, however only 67 
small molecule kinase drugs have been approved by the Food and Drug Administration 
(FDA) [2]. The highly conserved ATP-binding pocket of kinases is a major limitation for 
development of drug-resistance [3]. During the progression of drug resistance, diseases 
are regulated by kinase families rather than by a single kinase, which is in line with our 
previous research [4]. Another study also indicated that three protein kinases in the JAK 
family co-regulate and transmit signals in the biological pathways of inflammation and 
immune regulation. Therefore, there is a strategy to treat complex diseases by develop-
ing inhibitors of the protein kinase family. Some FDA-approved drugs are kinase family 
inhibitors, such as baricitinib, a JAK1 and JAK2 inhibitor, which stop the growth of can-
cer cells, thus reducing downstream immune cell function [5, 6]. However, the exper-
imental analysis of large compounds on protein kinases is time-consuming and costly 
[7]. Currently, machine learning methods provide a faster method for drug develop-
ment. Some studies have developed classifiers of inhibitors and non-inhibitors of a single 
protein with chemical and biological descriptors as input features. Benjamin et al. con-
structed ~ 200 kinase inhibitor prediction models using a random forest. DEEPScreen 
used deep convolutional neural networks to train the 704 proteins prediction model, and 
Minjian et al. developed a JAK2 kinase inhibitor prediction model for the treatment of 
myeloproliferative neoplasm [8–10]. However, there is a lack of kinase family inhibitor 
prediction models and strategies to open the black box of machine learning.

In this study, we identified kinase family inhibitors by kinase profiling and using the 
ChEMBL database. We proposed a random forest (RF) model to predict protein kinase 
family inhibitors that utilize moiety-based interpretable features (MMIFs) as input fea-
tures. The 10 kinase family prediction models were independently constructed. Further-
more, we aim to open the black box of the model and explain the prediction result of the 
model using the Shapley Additive exPlanations (SHAP) methodology [11]. Moreover, we 
identified common and specific moieties, which are important moieties interacting with 
key motifs of kinases, such as hinge, DFGs, or P-loops in the ATP pockets, across kinase 
families, and verified the results by protein kinase-inhibitor structure complexes.

Results
Figure 1 shows the major steps for establishing a kinase family inhibitor model and iden-
tifying the workflow of the key features. We approached kinase family inhibitor pre-
diction as a binary classification problem, with each of them treated as an individual 
predictor for a target protein kinase family. First, we collected kinase-inhibitor data from 
the kinase profiling of Metz et al. [12] and ChEMBL version 25 [13]. Then, we defined 
the inhibitor sets for kinase families. Second, we represented compounds in the form of 
518 descriptors, which combined Checkmol moieties [14], ring section of PubChem fin-
gerprints, rings in drugs [15], and in-housed predefined moieties from metabolites and 
approved small molecular drugs. Next, we utilized 518 binary descriptors and built RF 
models for kinase family inhibitor prediction. Finally, to interpret the black box, we used 
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the Shapley value to reveal the contribution of each moiety and validate the significance 
of moieties with protein–ligand complexes from protein data bank (PDB).

Features comparation and model performance

In order to evaluate whether MMIFs improve the model performances compared to 
the features separately (e.g., Checkmol, PubChem, in-housed, and ring in drugs), we 
built an RF model with different features. Moreover, to further assess the quality of the 
models with MMIFs, we also built models of ECFP4 and MACCS. The boxplot results 
were based on the testing results of the average of 10 kinase families with 50 predic-
tion models (Fig. 2). The RF models yielded reasonable prediction results compared to 
the MMF features with an average accuracy of 0.85 ± 0.12, a sensitivity of 0.76 ± 0.23, a 
specificity of 0.93 ± 0.05, and an MCC of 0.72 ± 0.21. Notably, the models with MMIFs 

Fig. 1  Overview of establishing kinase family inhibitor model and identifying key features. A Main procedure. 
B Dataset collection and identification of kinase family inhibitors. C Feature encoding with the MMIFs, which 
combined the moieties of Checkmol, ring moiety, PubChem, and in-housed moieties. D Identification of 
important moieties by Shapley value and validation by kinase-inhibitor structure complexes
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show a significant improvement compared to that with separated features (e.g., Check-
mol, PubChem, in-housed, and ring in drugs) in most of the performance indexes. On 
average, models with MMIFs showed an improvement of approximately 10% in accu-
racy, 15% in specificity, and 10% in MCC. In addition, the performance improvements of 
MMIFs over that of separated features are statistically significant (for example p values 
of accuracy for MMIFs vs Checkmol: 0.001; MMIFs vs PubChem: 0.0003; MMIFs vs In-
house: 0.0005; MMIFs vs Ring in drugs: 0.004). Despite the fact that when comparing 
models with other features, such as ECFP4 and MACCS, which are commonly used in 
machine learning for representing compounds, the performance of models with MMIFs 
is slightly lower than that of models with ECFP4. However, the features of ECFP4 cannot 
illustrate and compare the same or different kinase families by the same moiety because 
the features were generated by each compound surrounding the environment. On the 
other hand, predefined moiety features could explain and compare with the same or dif-
ferent families and indicate common or specific moiety preferences. In summary, mod-
els with MMIFs show the best performance compared to that of models with predefined 
substructure moieties and have the ability to interpret the black-box machine learning in 
the model.

2.2. Interpretation of model by SHAP

In this study, we utilized SHAP to identify important features and to open the black box 
of the RF model. However, the question is aroused whether SHAP prefers to identify 
the high occurrences moieties and therefore not the exact important moieties. To test 
whether the SHAP is meant to indicate the important features of the inhibitors, we col-
lected nearly 100,000 kinase inhibitors from the BindingDB database [16]. We calculated 
the frequency of 518 MMIFs moieties occurring in over 100,000 kinase inhibitors and 
compared it with the Shapley value of each moiety. The scatter plot results of the TK, 

Fig. 2  Boxplots of Random Forest (RF) model quality metrics and comparison of different features. The 
performance indexes were the average of 50 RF models. The result indicated that MMIFs show significant 
improvement compared to the separated features (e.g. Checkmol, PubChem, in-housed, and ring in drugs). 
Although models based on MMIFs show slightly lower results compared to the model with ECFP4, MMIFs 
are able to explain the model results with the substructure features on compounds. Statistical analysis was 
performed by student T-test with p values compared to the MMIFs. Single stars denote 0.01 < p < 0.05, double 
stars 0.001 < p < 0.01
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AGC, and CAMK groups are shown in Fig. 3A. Surprisingly, we found that the SHAP of 
each moiety is not correlated to the frequency of the moiety (i.e., the moieties with high 
Shapley value do not contribute to the moiety with high frequency). We further exam-
ined the importance of the moieties with high SHAP (top 30 in each family) and low 
frequency (less than 0.2) that appeared on kinase inhibitors, which were identified in the 
TK (e.g., Checkmol #51, and Checkmol #38), AGC (e.g., Checkmol #30, Checkmol #28, 
and in-housed #8), and CAMK group (e.g., in-housed #8 and Checkmol #30). To further 
verify the moieties with the roles in structure complexes, we collected the complexes 
in PDB with the following criteria: (a) protein with Pfam ID of kinase domain, PF00069 
(Pkinase), PF07714 (Pkinase_Tyr), and PF00433 (Pkinase_C, Pkinase) and (b) structures 
with ligand complexed. In total, 3,569 kinase-inhibitor complexes were collected and for 
further investigation.

Moreover, we found that the inhibitors, 0S8 and XL9, are complexes with the FGFR 
family with Checkmol #51 and Checkmol #38, respectively. Both of the Checkmol #51 
moiety form the hydrogen bond with crucial residues on the hinge motif of the kinase, 

Fig. 3  Validation of important moieties identified by Shapley value. A Scatter plot of Shapley value and the 
occurrence ratio of kinase inhibitors for each moiety. The indicated features are with high Shapley value and 
low occurrence ratio. Example of important moieties validated in the protein kinase inhibitor complexes of 
(B) TK group, FGFR1, and FGFR4 in the FGFR family, C AGC group, AKT1, and PRKG1 in the PKG kinase family, 
and D CAMK group and PIM1 in the PIM kinase family. The label title of B–D indicate [kinase group, kinase 
family, PDB code, Ligand ID]
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A584 of FGFR1 and A553 of FGFR4, respectively. Also, Checkmol fingerprint #38 inter-
acts with D621 on the DFG motif of FGFR4 (Fig. 3B). Similarly, Fig. 3C shows the AGC 
family complexed with ligands SMH and EE4, that with Checkmol #28 and Checkmol 
#30, which are have high SHAP but the low frequency, forming key interactions to the 
important motifs, such as DFG motif and P-loop. The same observation on the PIM 
family is shown in Fig. 3D. In conclusion, the moieties with high Shapley values are not 
dependent on the frequency of occurrence and are important in interacting with key 
motifs of protein kinases, such as hinge, DFG, and P-loop.

Identification of common and specific moieties across kinase families

We first investigated the SHAP and proposed that the value shows biological value. We 
then further asked whether these families have common or specific moieties, which is 
crucial for further kinase inhibitor design. Hierarchical clustering was performed with 
the top 30 SHAP moieties of 10 kinase families (Fig.  4A). We further identified eight 
common moieties with high SHAP for each kinase family and validated the com-
mon moieties by the complex structures (Fig. 4B). Surprisingly, four out of eight com-
mon moieties were in-housed moieties and formed a key interaction on the structure 

Fig. 4  Identification of common and specific moieties of 10 kinase families. A Hierarchical clustering of top 
30 Shapely value (SHAP) moieties on 10 kinase families and the identified common/specific moieties. B List 
of 8 common moieties across 10 kinase families. Example of common moieties of (C) the JAK kinase family 
validated by complex structure, which interact with hinge and p-loop, and D on the CLK kinase family, which 
interact with hinge and DFG. E Specific moieties, Checkmol moiety #41, on the GSK family was identified and 
validated by the contribution of the Shapley value. F Specific moieties, Checkmol moiety #31, on the AKT 
family was identified and validated by the contribution of the Shapley value
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complexes. For example, in the Jak1 complex with inhibitor G4J (PDB code: 6DBN), the 
common moiety with nitrogen, in-housed moiety #21, while in-housed moiety #6, forms 
a hydrogen bond with hinge residue L959 (Fig. 4C). Similarly, in-house moiety #21 in the 
ligand HQB complexed with CLK1 (PDB code: 6Q8P) forms a hydrogen bond with hinge 
residue L244, and the Checkmol fingerprint #21 interacts with the DFG motif (Fig. 4D). 
In summary, eight common moieties play the important roles in ligands and could be 
critical for drug design.

Two identified specific moieties, specifically for one family out of 10 kinase families, 
were identified in the GSK and AKT families. The Checkmol moiety #41 was also veri-
fied in the complex of GSK3B with 34O (PDB code: 3F7Z) and formed a van der Waals 
force with the DFG motif (Fig. 4E). In addition, we utilized our model to predict 34O 
and discovered the contribution of the Shapley value. Interestingly, our model success-
fully predicted 34O as an inhibitor (IC50: 65 nM in BindingDB) and the moiety contri-
bution of 34O indicated that the specific moiety Checkmol moiety #41 had the highest 
SHAP. On the other hand, the specific moiety Checkmol moiety #31 in the AKT family 
also could be found on the complex of AKT2 and the ligand G93 (PDB code: 3D0E and 
IC50 is 0.4 nM in BindingDB) (Fig. 4F). G93 also contains a common moiety, in-house 
moiety #20, and the specific moiety forms a hydrogen bond with the main chain of F294 
in the DFG motif. Moreover, the specific moiety Checkmol moiety #31 showed the sec-
ond contribution based on the Shapley value.

These results suggest that the common and specific moieties identified by our model 
were verified by the protein structure complexes and SHAP model. Furthermore, moie-
ties play an important role in interacting with key motifs on the kinase and make a huge 
contribution as shown by the calculated SHAP.

Conclusion and discussion
This study is the first to establish a RF prediction model for the kinase family. In the 
selected 10 kinase families, the prediction ability of the model was more than 80%. Fur-
thermore, the moiety preference of kinase family inhibitors with important motifs (such 
as hinge, DFG motif, and P-loop) in the ATP pocket of protein kinase complexes was 
identified and validated. This research is helpful for the rapid screening of compounds 
suitable for experiments, and also provides some important moieties that can be con-
sidered when designing effective inhibitors. Finally, this study can help rapidly filter 
compounds and aid in drug discovery and design. In the future, we hope to improve 
black-box machine learning and discover more drug candidates.

Methods
Data sets

To identify the data set of kinase family inhibitors, we first collected bioactivity data of 
kinase inhibitors from two data sets, for example, kinase profiling of Metz and ChEMBL 
database version 25. The former with 172 kinases, 421 compounds, and 100,786 data 
points in the form of Ki values, and only the data points with bioactivity data were con-
sidered. The latter was collected from ChEMBL and the assay which met the following 
criteria: (1) an IC50 value and (2) a confidence score of 9, was considered. This contained 
384 kinases, 62,126 compounds, and 122,247 data points. To combine the two data sets, 
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we converted the data points into binary labeling with the criteria Ki or IC50 < 1000 nM 
as active and Ki or IC50 > 1000  nM as non-active. To further prepare the robust data-
set, when processing the multiple test results in the same protein kinase – compound 
pair, the labels were decided by voting. We collected a total of 384 kinases (including 103 
kinase families); 60,122 compounds; and 195,802 data points (Fig. 5A).

Next, in order to achieve the predicted goal of kinase family inhibitors, we defined the 
criteria for whether the compound is a kinase family inhibitor and for those select kinase 
families that contain inhibitors that are enough in line with this research for modeling. 
To label a robust kinase family inhibitor (Fig. 5B), we annotated the following criteria: (1) 
compound Ci must be measured for more than half of the members of the target kinase 
family fj; (2) compound Ci must be in the same label type (active or non-active) for all the 
target kinase family fj, for example, Ci active for all the kinase family members is defined 
as a kinase family inhibitor, where i is the compound number of collected kinase com-
pounds, and j is the number of kinases in the target kinase family. To ensure a predic-
tive model with enough data to learn and explain interactions with protein complexes, 
we processed the kinase families with the following criteria: (1) the number of kinase 
members in the family ≥ 2; (2) dataset of kinase family inhibitor is sufficient for machine 
learning, the number of collected kinase family inhibitors ≥ 500; (3) kinase families were 
preserved when PDB complex structures (e.g., kinase bound with ligand) are available.

Finally, 10 kinase families were selected, including TK (PDGFR, VEGFR, JAK, FGFR 
families), CAMK (PIM, PKD families), CMGC (CLK, GSK families), and AGC (AKT, 

Fig. 5  Strategies for processing and labeling of kinase family inhibitors. A Collection of kinase inhibitors. 
B Labelling of kinase family inhibitor. C Collected kinase family inhibitor data for RF model training and 
prediction. D Steps for filtering kinase family data set
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PKG families) groups. In total, 10,058 kinase inhibitors were collected. The detailed 
numbers of inhibitors or non-inhibitors are listed in Fig. 5D.

Moieties representation

To build an interpretable model, the features of the machine learning method are key. 
Therefore, our work define “merged moiety-based interpretable features (MMIFs)” as 
features, which merged four moiety-based compound features, including Checkmol 
fingerprint [14], PubChem fingerprint, rings in drugs [15], and in-housed moieties. The 
Checkmol fingerprint includes 204 molecular fingerprint descriptions, including oxygen, 
nitrogen, sulfur, and other atoms with different bonds of surrounding atoms and differ-
ent small substructures on small molecules. However, the Checkmol fingerprint lacks 
diverse rings (i.e., only aromatic and heterocyclic rings). Consequently, we added ring 
moieties from two resources: the PubChem fingerprint, which consists of 168 molecu-
lar fingerprints, including 4–6 carbon rings and resonance rings connected with carbon, 
oxygen, nitrogen, chlorine, or sulfur atoms. The PubChem fingerprint considers only 
pure carbon rings. The other ring source is from rings in drugs, and 139 ring structures 
commonly appear in drugs. Moreover, to improve the moiety inheritability, we gener-
ated in-housed moieties from metabolites and approved small-molecule drugs. We col-
lected 18,028 metabolites from the KEGG compound database [17] and 2448 approved 
small-molecule drugs from the DRUGBANK database [18] to generate fragments from 
the pipeline pilot. Over 3,000 moieties were generated, and the top moieties were pre-
defined as in-housed moieties by statistical analysis of the frequency of each moiety. 
Finally, we chose the top 34 common moieties as our in-housed features, as shown in 
Fig. 6. Finally, the MMIFs combine three public fingerprints and housed moieties. After 
removing duplicate moieties, a total of 518 moieties were considered as MMIFs. The 
kinase family inhibitors were converted into a binary sequence of MMIFs as input for 
the RF model.

To evaluate the performance and interpretability of different features, we also trained 
the model with widely used features, the extended-connectivity fingerprint of diam-
eter 4 (ECFP4) [19], which encoded presence or absence by layered atom environments 
accounting for molecular topology using a hash function, and MACCS [20], encoded by 
161 predefined substructures that are frequently used as molecular representations [10, 
21–23].

Kinase family classification RF model

The RF methodology was used on the MMIFs to create a kinase family inhibitor binary 
prediction model for each kinase family. The RF architecture proposed by Breiman in 
2001 [24] is currently the most popular ensemble in machine learning.

In our study, we used an RF classifier from Scikit-learn of Python [25]. General param-
eters were set and tested, including the number of estimators (decision trees) being 
twofold from 50 to 2,000, maximum number of features (consider how many features 
on split each node): sqrt or log2 of all feature numbers, max depth as none, 20, 30, …, 
100, min samples split as 2, 5, 10, bootstrap method as true (used) and false, and the 
class weight as none, balanced subsample, or balanced. Through hyperparameter grid 
searches on 1,296 combinations, the best hyperparameter was selected based on the 
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cross-validation accuracy for each kinase family model. After hyperparameter grid 
searches, we calculated the average performance by tenfold cross validation and decided 
parameters: the number of estimators used was 1000, the maximum number of features 
was log2 of all feature numbers, the bootstrap method was used, class weight was bal-
anced, and other hyperparameters used default values from scikit-learn.

For each kinase family predictive classification model, compounds were divided into 
80% training and 20% test data, and model performance was estimated on the test set 
using accuracy, sensitivity (true positive), specificity (true negative), and Matthew’s cor-
relation coefficient (MCC) [26]. The results of the performance indexes of the model are 
summarized in Table 1.

Shapley value for identification of important moieties

The concept of the Shapely value (SHAP) was developed to estimate the importance 
of an individual player in a collaborative team, and distributed the total gain between 
players depending on the contributions of the final outcome of a game [27]. Currently, 
the SHAP provides a new solution for estimating the feature importance of applying a 

Fig. 6  The list of the in-housed moieties collected from approved small molecule drugs from DRUGBANK 
and metabolites from KEGG
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machine learning explanation. Therefore, in our study, we utilized the SHAP to open 
the black box of the RF model. The Python library SHAP was used to obtain the Shap-
ley value of the predicted inhibitors.

Identification of common and specific moieties

To infer common and specific moieties, we calculated common and specific scores. 
First, we created a union set of the top 30 important moieties of all families, and 69 
moieties became candidate moieties. Then, we normalized the absolute SHAP value 
for each family to 0–1. Third, to compare the degree of importance across families, 
we calculated the average ( AvgNSHAP ) and standard deviation value ( StdNSHAP ) of 
normalized SHAP across families. AvgNSHAP and StdNSHAP are defined as follows:

where NF is the number of families, NSHAPi is the normalized SHAP of moiety i, and ui 
is the average of the SHAP.

Next, we identified the common and specific moieties criteria as follows: For com-
mon moieties, the moiety should be of the same degree of importance across all fami-
lies and therefore satisfy criteria (1) and (2). Therefore, we define two criteria: (1) and 
(2).

Criteria (1) means that moiety i should be greater than the third quartile (Q3) of 
AvgNSHAPall moiety and criteria (2) means moiety i on all families should have a simi-
lar degree of importance. Finally, eight common moieties were identified.

AvgNSHAPi =
NF
1 NSHAPi

NF

StdNSHAPi =

√

1

NF

∑NF

i=1
(NSHAPi − ui)

2

(1)AvgNSHAPi ≥ third quartile of AvgNSHAPall moieties

(2)StdNSHAPi ≥ Average of StdNSHAPall moieties

Table 1  Summary of the performance tables and collected data sets for 10 kinase families

Group Family Accuracy Sensitivity Specificity MCC No. of inhibitors No. of non-
inhibitor

TK VEGFR 0.86 ± 0.06 0.73 ± 0.12 0.93 ± 0.06 0.68 ± 0.16 387 744

PDGFR 0.92 ± 0.06 0.75 ± 0.22 0.94 ± 0.02 0.78 ± 0.17 150 499

JAK 0.94 ± 0.02 0.95 ± 0.05 0.91 ± 0.03 0.86 ± 0.07 1551 874

FGFR 0.9 ± 0.06 0.76 ± 0.13 0.93 ± 0.04 0.75 ± 0.13 263 584

AGC​ AKT 0.94 ± 0.03 0.94 ± 0.06 0.95 ± 0.04 0.87 ± 0.08 391 768

PKG 0.92 ± 0.07 0.62 ± 0.08 0.96 ± 0.02 0.6 ± 0.25 61 390

CAMK PIM 0.92 ± 0.03 0.92 ± 0.06 0.91 ± 0.06 0.84 ± 0.07 766 617

PKD 0.86 ± 0.09 0.56 ± 0.07 0.92 ± 0.04 0.63 ± 0.11 79 442

CMGC CLK 0.8 ± 0.08 0.63 ± 0.08 0.89 ± 0.1 0.57 ± 0.06 201 392

GSK 0.81 ± 0.07 0.57 ± 0.04 0.91 ± 0.05 0.59 ± 0.07 260 639
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To identify specific moieties, moiety i should be distinguished across families, for exam-
ple, only important in a specific family. We set criteria (3) and (4) to show the maximum on 
NSHAPi to be significant.

where Max1stNSHAP
NF
i  is the 1st significant value of moiety i across the families, and 

Max2ndNSHAP
NF
i  is the 2nd significant value of moiety i across the families. Criteria 

(3) and (4) were greater than 7 were statistically analyzed and two specific moieties were 
identified.
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