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Introduction
Modern high-throughput technologies, in particular massively parallel sequencing [1] 
and high-resolution mass spectrometry [2], enable omics technologies, i.e. the determi-
nation of bioanalytes on the genome-wide scale. Many of of these omics technologies 
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are increasingly being applied in clinical settings and publicly available large-scale data 
resources such as The Cancer Genome Atlas (TCGA) [3] provide ample opportunity 
for research. These resources can provide valuable reference data sets in the analysis of 
molecular profiles of individual patients and patient groups. However, one of the big-
gest challenges in the analysis of omics data remains functional annotation/interpreta-
tion. The interpretation of the experimental read-outs with the goal of understanding 
the underlying known or unknown biological processes and functions is a vital step in 
providing personalized, precise, and focused molecular therapies.

One of the most widely used approaches for functional annotation of large omics 
datasets is gene set enrichment (GSE) [4]. In its most basic form, GSE entails hyper-
geometric and Fisher test-based approaches to detect the overrepresentation of differ-
entially expressed genes. GSE requires a set of predefined gene sets (typically obtained 
from pathway databases [5] such as KEGG [6], WikiPathways [7] or Reactome [8]) and a 
measure of “deregulation” (e.g., a binary indication of differential gene expression). The 
goal of the GSE analysis is to identify those gene sets from the collection which show 
“high” deregulation. Here, the term “high” is defined by the method’s specific underlying 
statistical model. In the simplest case, the method examines if each gene set contains 
a higher number of differentially expressed genes than would be expected by chance, 
under the assumption that differentially expressed genes are represented uniformly 
across all genes. Many adaptations and variations of GSE exist [4, 9].

Classical GSE methods treat pathways as an unstructured collection of genes and do 
not explicitly account for the extensive biological knowledge encoded in biological net-
works. Networks as an abstraction for biological knowledge can be represent signaling 
networks, metabolic networks [10], gene regulatory networks [11], or protein-protein 
interaction networks [12, 13], and more.

There has been extensive research into the possibility of designing enrichment meth-
ods which take into account the topology of the pathways [14–16]. An example of such 
approach is the calculation of topology-dependent perturbation scores for each gene 
[17]. A further aspect usually ignored by GSE methods is the issue of pathway crosstalks. 
While ’textbook pathways’ have a solid base in biological findings and can provide use-
ful guidance for functional interpretation of omics experiments, molecular and cellular 
events are often more complicated and involve the direct interaction of molecular enti-
ties across predefined pathway boundaries. Correspondingly, a range of methods were 
proposed which aim to extract “deregulated” patterns from larger regulatory networks 
without relying on predefined pathways [18, 19]. These methods are often referred to as 
de novo pathway enrichment (de novo pathway identification, de novo subnetwork/sub-
graph enrichment/identification/detection) methods, emphasizing that the pathways are 
defined/extracted from the data itself and are not given as fixed gene sets. Here, we also 
call algorithms of this flavor deregulated subnetwork/subgraph detection/identification/
enrichment methods.

A way to categorize these methods is based on how they handle undirected or directed 
interaction networks. A lot of biomolecular interactions are directed in nature, e.g. pro-
tein A phosphorylates protein B, enzyme A precedes enzyme B in a metabolic pathway 
in contrast to symmetric interactions such as physical interactions of proteins in protein 
complexes.
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Some methods designed for undirected networks are described in the following stud-
ies: [20–31]. More detailed review of these method is available in [19]. These methods, 
while achieving similar results on an abstract level, vary greatly in terms of suitable 
underlying networks, interpretation of outcomes and algorithmic strategies employed. 
Algorithmic approaches employed include ant colony optimization [31], dynamic pro-
gramming [27], simulated annealing [20], integer programming [23, 24], Markov ran-
dom fields [32] or message passing approaches [28].

Also, some methods are tailored to the characteristics of a particular data type. An 
example are methods attempting to find significantly mutated pathways/networks [33–
38], trying to factor in the pecularities of mutation data in a network context.

While methods which work natively with directed networks are rarer [39–44], it 
is instrumental to be able to capture the effects of directed biomolecular interactions 
in the process of discovering deregulated networks. One particular approach is the 
one described in [40] which utilized an integer programming approach in order to 
find deregulated subnetworks. It uncovers deregulated subnetworks downstream or 
upstream of a so called root node where the latter can be fixed a priori or determined by 
the algorithm itself.

In this paper, we present an algorithm for de novo subnetwork identification which can 
conceptually be characterized as a mixture of the approach presented by [40] and the 
prize-collecting Steiner tree methods proposed in [45–48]. Our method natively handles 
directed interaction networks and adapts from [40] the general integer programming 
approach in such a way that it can encapsulate the general idea of sources and targets as 
put forward in the prize-collecting Steiner tree/forest (PCST/PCSF) approaches [45–48] 
which capture the idea of deregulated networks starting or ending at certain types of 
nodes, for example membrane receptors and transcription factors. Methodologically, 
we extend the integer programming approach of [40] (Backes et al.) to fractional integer 
programming to allow for the necessary flexibility to incorporate sources and targets. 
Furthermore, we show that our algorithm, DeRegNet, can be interpreted as maximum 
likelihood estimation under a certain natural statistical model. We demonstrate DeReg-
Net’s suitability as an exploratory hypothesis generation tool by applying it to TCGA 
liver cancer data. We introduce a personalized approach to interpreting cancer data and 
introduce the notion of network-defined cancer genes which allow to identify patient 
groups based on their similarity of their detected personalized subgraphs. The appendix 
Additional file 1: Supplementary Material and Methods furthermore contains a demon-
stration of the usefulness of subgraph-derived features for survival prediction. In par-
ticular, these features outperform comparable features derived from gene set enrichment 
indicated pathways and also improve classifiers based on clinical data alone.

Methods and materials
DeRegNet: a de‑novo subnetwork identification algorithm

Formal setting and definitions

Formally, it is given a directed graph G = (V ,E) , i.e. E ⊂ V × V  , representing knowl-
edge about biomolecular interactions in some way. To avoid certain pathologies in 
the models defined below, it is assumed that G has no self-loops, i.e. (v, v) /∈ E 
∀v ∈ V  . For a subset S ⊂ V  , one defines δ+(S) = {u ∈ V \S : ∃v ∈ S : (v,u) ∈ E} and 
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δ−(S) = {u ∈ V \S : ∃v ∈ S : (u, v) ∈ E} , i.e. the sets of outgoing nodes from and 
incoming nodes into a set of nodes S. For a node v ∈ V  one writes δ±(v) := δ±({v}) . 
Furthermore, it is given a score function s : V → R , describing some summary of 
experimental data available for the biomolecular entities represented by the nodes. 
For a given graph G = (V ,E) any node labeling function f : V → R is implicitly 
implied to be a vector f ∈ R

|V | , subject to an arbitrary but fixed ordering of the 
nodes (shared across all node labeling functions). In particular, with fv := f (v) for 
v ∈ V  , given f , g : V → R , one can write f T g =

∑

v∈V

fvgv . For S ⊂ V  and f : V → R 

one defines fS : V → R via fS(v) := 0 for all v ∈ V \ S and fS(v) := f (v) for all v ∈ S . 
Defining e : V → R with e(v) := 1 for all v ∈ V  , one further can write eTS f =

∑

v∈S

fv for 

S ⊂ V  and f : V → R . Comparison of node labeling functions f, g are meant to be 
understood element-wise, e.g. f ≤ g  means fv ≤ gv for all v ∈ V  . Apart from the 
graph G and node scores s, there are given possibly empty subsets of nodes R ⊂ V  
and T ⊂ V  . It is referred to R as receptors (or sometimes sources) and to T as termi-
nals (or sometimes targets), independent of the biological semantics underlying the 
definition of these sets (see below). For enforcing the topology of the subnetworks 
later on, strongly connected components will play a decisive role and it is said that a 
subset of nodes V ′ ⊂ V  induces a strongly connected subgraph ( V ′ iscs, for short) if 
the subgraph induced by V ′ is strongly connected.

Probabilistic model for deregulated subgraphs

The mathematical optimization model which is at the heart of the DeRegNet algo-
rithm and presented in the next subsection amounts to maximum likelihood esti-
mation under a certain canonical statistical model. The model assumes binary 
node scores s : V → {0, 1} which are realizations of random variables S = (Sv)v∈V  . 
Here, Sv = 1 is interpreted as node v ∈ V  being deregulated. Further it is assumed 
the existence of a subset of vertices V ′ ⊂ V  such that Sv|v ∈ V ′ ∼ Ber(p′) and 
Sv|v ∈ V \V ′ ∼ Ber(p) with p, p′ ∈ (0, 1) denoting probabilites of deregulation outside 
and inside of the deregulated subgraph encoded by V ′ respectively. It is assumed that 
p′ > p to reflect the idea of higher deregulation (probability) in the deregulated sub-
graph, whereas p represents a certain amount of background deregulation. The net-
work context (dependency) is introduced via the restriction that V ′ ∈ C(V ) ⊂ P(V ) . 
Here, P(V ) is the power set of V (the set of subsets of V) while C(V ) as a subset of 
P(V ) represents the set of feasible substructures and should (can) reflect topologies 
inspired by known biomolecular pathway topologies like the one described in Backes 
et  al. [40] and the next subsection. Furthermore it is assumed, that the (Sv) , given 
a network context and deregulation probabilities p, p′ , are independent. We show 
in the appendix that under this model and the constraints given by the fractional 
integer programming problem formulated in the next subsection (defining C(V ) in 
the above notation) DeRegNet amounts to maximum likelihood estimation. Fur-
thermore, we also show that the model put forward in Backes et al. [40] amounts to 
maximum likelihood estimation only under the assumption of a fixed subgraph size.
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Finding deregulated subgraphs by fractional integer programming

Given the definitions of the preceding sections, we can now formulate the main model 
underlying DeRegNet. The DeRegNet model and also the model of Backes et al. [40] can 
be placed in the context of the so called Maximum Weight Connected Subgraph Prob-
lem (MWCSP), see Additional file 1: Supplementary Material and Methods. Note that 
in the following we formulate all problems as maximization problems and minimization 
may, depending on the semantics of the node score, be the proper choice. Minimiza-
tion may for example be prudent in case the node scores represent p-values originat-
ing from some statistical significance test. As Backes et al. [40] we model the problem 
of finding deregulated subnetworks in terms of indicator variables xv = I(v ∈ V ′) and 
yv = I(v is the root node) where V ′ ⊂ V  is a set of nodes inducing a subgraph such that 
one can reach every node in that subgraph by means of a directed path from the root 
node. Here, I(P) = 1 if P, I(P) = 0 if not P for some predicate P. In addition the root is 
supposed to be a source node and all nodes in the subgraph with no outgoing edges are 
supposed to be terminal nodes. The proposed model then reads like this: 

 The model derives from the corresponding integer linear programming model in [40] 
and adapts it for the fractional case, most notably here are the constraints involving the 
receptors R (1g) and the terminals T (1h). (1g) just ensures that the root node is a recep-
tor while (1h) ensures that any node in the subgraph with no outgoing edges is a termi-
nal node. (1b) means that a node can only be the root if it is included in the subgraph, 
(1c) means that there is exactly one root, (1d) means that the size of subgraph has to be 

(1a)max
x,y∈{0,1}V

sT x

eT x

(1b)s.t. y ≤ x

(1c)eT y = 1

(1d)kmin ≤ eT x ≤ kmax

(1e)xv − yv − eTδ−(v)x ≤ 0 ∀v ∈ V

(1f )eTS (x − y)− eTδ−(S)x ≤ |S| − 1 ∀S ⊂ V iscs, |S| > 1

(1g)yv = 0 ∀v ∈ V \ R if R �= ∅

(1h)xv − eTδ+(v)x ≤ 0 ∀v ∈ V \ T if T �= ∅

(1i)eTIncx = |Inc|

(1j)eTExx = 0
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within the bound given by kmin, kmax ∈ N , (1e) says that a node v ∈ V  in the subgraph is 
either the root node or there is another node u ∈ V  in the subgraph such that there is 
an edge (u, v) ∈ E . Moreover, the constraints (1i) and (1j) trivially allow to include and 
exclude specific nodes from given node sets Inc ⊂ V  and Ex ⊂ V  respectively. In many 
situations specific nodes, i.e. genes in the case of gene regulatory networks, may be of 
interest in other topological positions than in a receptor or terminal role. In that case 
just requiring a certain gene to be part of the subgraph without any special constraints 
on its inclusion in topological terms can be of value. The constraint (1f ) is the most 
involved one and actually describes exponentially many constraints which ensure that 
there are no disconnected directed circles [40] by requiring that any strongly connected 
component in the subgraph either contains the root node or has an incoming edge from 
another node which is part of the subgraph but not part the given strongly connected 
component. Finally, the objective (1a) describes the notion of maximizing the average 
score of the subgraph. This is crucial for allowing the model the flexibility to connect 
source nodes to target nodes and also is at the heart of DeRegNet being able to do Maxi-
mum Likelihood estimation given the presented statistical model. We summarize some 
crucial terminology next, before proceeding in the next subsection to describe the solu-
tion algorithms for DeRegNet.

Definition 1  (DeRegNet instances, data, and subgraphs) A tuple (G,  R,  T,  Ex,  Inc,  s) 
is called an instance of DeRegNet (a DeRegNet instance, an instance of the DeRegNet 
model). Here, G = (V ,E) is the underlying graph, R ⊂ V  is the receptor set, T ⊂ V  is the 
terminal set, Ex ⊂ V  is the exclude set, Inc ⊂ V  is the include set and s : V → R is the 
node score (the score). Further, xv : V → {0, 1} is called a subgraph with the understand-
ing that it is referred to the subgraph of G induced by V ∗ = {v ∈ V : xv = 1} . Equiva-
lently to xv : V → {0, 1} , it is also referred to the corresponding V ∗ = {v ∈ V : xv = 1} 
as a subgraph. A subgraph is feasible for DeRegNet (for the DeRegNet instance), if it 
satisfies DeRegNet’s constraints (1b-j). A subgraph satisfying these constraints is called a 
feasible subgraph. A feasible subgraph which optimizes problem (1) is called an optimal 
subgraph.

Some formal properties of DeRegNet and its solutions can be found in the Additional 
file 1: Supplementary Material and Methods. A high-level depiction of the overall logic 
of DeRegNet can be found in Fig. 1 while an overview of DeRegNet’s position within the 
range of functional enrichment methods is conceptually depicted in Fig. 2. A conceptual 
view of the particular types of subgraphs determined by DeRegNet can be seen in Fig. 3 
whereas the high-level algorithm of DeRegNet is summarized by Algorithm 1.
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Fig. 1  DeRegNet’s inputs are a biomolecular network (A), such as a signaling or gene regulatory network, 
and omics measurements (B), such as gene expression data. The latter are mapped onto the nodes of the 
network acting as node-level measures of deregulation. DeRegNet then extracts the most deregulated 
subnetwork (C) from the larger regulatory network according to some definition of most deregulated. For a 
conceptual view of the progression from set enrichment to de novo subnetwork methods we refer to Fig. 2
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Solving the fractional integer programming model

We solve the integer fractional linear programming problems introduced in the previ-
ous sections by one out of two implemented methods. Firstly, a generalization of the 
Charnes–Cooper transformation [49] for fractional linear programs described by [50] 
and secondly an iterative scheme as introduced generally by Dinkelbach [51, 52] and 

Fig. 2  Conceptual progression from gene set enrichment to de-novo subnetwork enrichment. A Classical 
gene set enrichment. See Additional file 2: Fig. S1 for additional details. B Topological pathway enrichment. 
See Additional file 2: Fig. S2 for additional details. C Topological pathway enrichment with pathway cross-talk. 
See Additional file 2: Fig. S3 for additional details. D De-novo subnetwork/pathway enrichment like 
DeRegNet. See Additional file 2: Fig. S4 for additional details.

Fig. 3  Conceptual view of subgraphs extracted by DeRegNet. A From a receptor node/root node (green 
cube) one can reach any node in the subnetwork. Nodes without any edges leading to other nodes (red 
triangles) of the subnetwork need to be elements of the so called terminal nodes. Generally, all nodes in 
the subgraph can be reached from the root node. B By reversing the orientation of the underlying network 
before applying DeRegNet, one can find subgraphs with only one terminal “root” node and multiple receptor 
nodes such that the terminal node can be reached from any other node in the subgraph. See Additional 
file 1: Supplementary Material and Methods for further details on applying DeRegNet in reverse mode
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subsequently applied in the context of integer fractional programming by [53, 54]. While 
the Dinkelbach-type algorithm solves the problem by iteratively solving certain non-
fractional versions of the original problem until some convergence criterion is met, the 
generalization of the Charnes–Cooper method is based on reformulation of the entire 
fractional model to a quadratic problem and requires subsequent linearization of artifi-
cally introduced quadratic constraints. The latter is implemented in terms of the meth-
ods described by [55–57].

As in [40] the exponentially many constraints forbidding any strongly connected com-
ponents not containing the root and with no incoming edges are handled by lazy con-
straints. Every time an integer solution is found the Kosaraju-Sharir algorithm [58] is 
employed (as implemented by the Lemon graph library) to check for violating compo-
nents and, in the case of violating components, the corresponding constraints are added 
to the model. Both solution approaches, the generalized Charnes–Cooper method and 
the Dinkelbach-type algorithm, allow for the lazy constraints to be handled in terms of 
the original formulation since both retain the relevant variables of the model within the 
transformed model(s).

For more details on the theoretical underpinnings and the practical implementation of 
DeRegNet’s solution algorithms consult Additional file 1: Supplementary Material and 
Methods.

Assessment of inference quality for known ground truths

The evaluation and benchmarking of de novo pathway enrichment or deregulated sub-
network detection algorithms and implementations remains a big challenge. While 
many of the methods cited in the introduction can be applied to reveal useful biologi-
cal insight, there are limited studies concerning the comparison of formal and statisti-
cal properties of the methods. The two main obstacles are a lack of well-defined gold 
standard datasets as well as the differences concerning the exact output of the meth-
ods. For example, it is not immediately clear how to compare algorithms which produce 
undirected subnetworks to those which elicit directed networks of a certain structure. 
An important first step toward atoning the issue in general is described in [19] which 
focuses on benchmarking approaches for undirected networks. For the purposes of this 
paper, we designed and performed benchmarks of DeRegNet relative to its closest rela-
tive, namely the algorithm described in [40], henceforth referred to as Backes et al.. Note 
however, while we are comparing the integer programming based algorithm of Backes 
et  al. to the fractional integer programming algorithm of DeRegNet, we are using the 
former as implemented in the DeRegNet software package. This renders the benchmark 
less dependent on implementation technology since both algorithms have been imple-
mented with the same general stack of languages and libraries. For the benchmark we 
always utilize the human KEGG network as the underlying regulatory network. We then 
repeatedly simulate subgraphs which match the structure of both models (DeRegNet 
and Backes et al.). The simulation procedure is described more formally in Additional 
file 1: Supplementary Material and Methods. Initially, the simulated subgraph consists 
of one randomly selected root node, to which we iteratively add a random “outgoing” 
neighbor of a randomly selected current node in the subgraph until the size of the sub-
graph matches a randomly chosen value. The latter is uniformly chosen to be an integer 



Page 10 of 28Winkler et al. BMC Bioinformatics          (2022) 23:139 

between a given lower and an upper bound. “Outgoing” neighbors of v ∈ V  are any 
nodes from the set δ+(v) = {u ∈ V \{v} : (v,u) ∈ E} . All nodes in the simulated “real” 
subgraph are assigned a node score of 1 with a certain probability p′ > 0 , while all nodes 
which are not contained in the subgraph are assigned a node score of 1 with probabil-
ity p where 0 < p < p′ . In summary, we obtain random “real” subgraphs and simulated 
scores where the latter reflect the different likelihood of a node being deregulated given 
whether it is contained in the subgraph or not. In terms of the probabilistic interpre-
tation of DeRegNet presented above, the simulation scheme corresponds directly to a 
deregulation probability of p′ for nodes in the “real” subgraph and of p for nodes not part 
of the “real” subgraph. The appendix in Additional file 1: Supplementary Material and 
Methods provides further details on the simulation of benchmark instances.

Given a sequence of N ∈ N of these simulated instances, the algorithms are run in 
order to find subgraphs which can then be compared to the known simulated real sub-
graph. Here, a hit (true positive, tp) is defined as a node appearing in a subgraph calcu-
lated by some algorithm which is also an element of the real subgraph. A false positive 
(fp) is a node which appears in a subgraph calculated by an algorithm but is not part of 
the real subgraph. A false negative is defined as a node which is part of the true subgraph 
but not part of the subgraph detected by an algorithm. Furthermore, we can compare 
the sizes of the calculated subgraphs with the size of the real subgraph. In general, given 
an algorithm A , which on a given instance with true subgraph V ′ ⊂ V  finds a subgraph 
VA , one can adopt all standard evaluation metrics for predictive classification models 
with the understanding that nodes in VA are predicted positive and nodes in V ′ are true 
positive. Examples are the true positive rate (sensitivity) TPR :=

|V ′∩VA|
|V ′|

 , i.e. the number 
of actual hits divided by the number of possible hits, or the Jaccard index (intersection 
over union) J = |V ′∩VA|

|V ′∪VA|
 . Specifically, we utilize the Matthews correlation coefficient 

(MCC), the F1 score, the Jaccard index, precision and sensitivity to compare subgraphs 
found by DeRegNet and Backes et  al. The only non-standard metric we employ com-
pares the closeness of an inferred subgraph to a real subgraph and is referred to as size 
efficiency SE :=

|VA|
|V ′|

 , i.e. the proportion  of algorithm subgraph size to real subgraph 
size. Another comparison metric is the running time of the algorithms.

Furthermore, the benchmark is based on the realistic assumption that we do not 
know the exact size of the real subgraph and that one can only assume lower and upper 
bounds on the subgraph size instead. Since the Backes et al. algorithm does need a fixed 
a priori specified subgraph size we employ a strategy suggested in [40] to circumvent 
that fact. Namely, we iterate from the lower to the upper bound, find a subgraph for each 
subgraph size and then regard the union graph of all found subgraphs as the one sub-
graph emitted by the algorithm. DeRegNet natively requires only a lower and an upper 
bound on subgraph size as parameters. All benchmarks have been carried out with the 
following setup: software: Ubuntu 18.04, Gurobi 9.5.0, hardware: 12x Intel i7-8750H 
@ 4.1 GHz, 32 GB RAM, Samsung SSD 970 EVO Plus. See Additional file  1: Supple-
mentary Material and Methods for more formal details. Finally, in order to assess the 
comparative advantage of deregulated subgraphs to pre-defined pathways (gene sets) 
we calculated GSE P-values for optimal DeRegNet subgraphs (interpreted as gene sets) 
based on the simulated scores, as well as for the standard KEGG gene sets and compared 
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the distribution of subgraph P-values with those of significant KEGG gene sets across all 
simulation runs.

Network and omics data

KEGG network

While many sources for directed biomolecular networks are available, e.g. [59], in this 
paper we here utilize a directed gene-level network constructed from the KEGG data-
base [60–62] with the KEGGgraph R-package [63]. The script used to generate the net-
work as well as the network itself can be found in the DeRegNet GitHub repository. See 
the subsection on Software Availability for details.

RNA‑Seq and 450k methylation array derived node scores for TCGA‑LIHC

Gene expression and methylation data was downloaded for hepatocellular carcinoma 
TCGA project from the Genomic Data Commons Portal (https://​portal.​gdc.​cancer.​gov/​
proje​cts/​TCGA-​LIHC). Raw quantified RNA-Seq counts were normalized with DESeq2 
[64] which was also used for calculating log2 fold changes for every gene with respect to 
the entire cohort. We also used DESeq2 to calculate P-Values for differential expression 
between tumor and control samples. Personalized log2 fold changes were calculated by 
dividing a patients tumor sample expression by the mean of all available control sam-
ples (adding a pseudo count of 1) before taking the log. The following node scores are 
defined:

•	 Global RNA-Seq score s: sv = RNA-Seq log2-fold change for a gene v ∈ V  as calcu-
lated by DESeq2 for the TCGA-TCGA-LIHC cohort

•	 Trinary global RNA-Seq score: 

•	 Trinary personalized RNA-Seq score sc for case c: 

From the 450k methylation array [65, 66] data available for the TCGA-LIHC cohort we 
derive (global) methylation node/gene scores mv ∈ {−1, 0, 1} for every gene v ∈ V  rep-
resenting binary methylation status as follows. First signed differentially methylated 
probes (DMPs) were inferred using subset quantile normalization (SQN) [66] between 
tumor and control samples. With signed we express the fact, that we keep track whether 
the median difference between tumor and control was positive or negative. Correspond-
ingly, median(β1, . . . ,βT )−median(β ′

1, . . . ,β
′
C) > 0.2 defines a upregulated DMP 

while median(β1, . . . ,βT )−median(β ′
1, . . . ,β

′
C) < −0.2 defines a downregulated DMP. 

Here, β1, . . . ,βT ∈ [0, 1] denote all beta values from tumor samples for a given array 
probe while β ′

1, . . . ,β
′
C ∈ [0, 1] denote all beta values from control samples for that same 

probe. From the DMPs’ metadata contained in the TCGA-LIHC 450k data one obtains 

(2)stv :=







+1 sv > 2.0 and DESeq2 P-Value < 0.05
−1 sv < 2.0 and DESeq2 P-Value < 0.05
0 otherwise

(3)scv :=







+1 if personalized log2 fold > 2
−1 if personalized log2 fold < −2
0 else

https://portal.gdc.cancer.gov/projects/TCGA-LIHC
https://portal.gdc.cancer.gov/projects/TCGA-LIHC
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a mapping from any DMP to genes to whose promoter region the DMP lies close to (up 
to 1500 base pairs upstream of a genes transcription start site). Any gene v ∈ V  which 
is indicated by at least one upregulated DMP and no downregulated DMPs is consid-
ered upregulated and we set mv := 1 . Any gene v ∈ V  which is indicated by at least one 
downregulated DMP but no upregulated DMPs is considered downregulated and we set 
mv := −1 . For genes which are not up- or downregulated we set mv := 0.

Global and personalized deregulated subgraphs

We refer to subgraphs found with the global RNA-Seq score s as global subgraphs. A 
global subgraph can further be subdivided as being upregulated or downregulated 
depending on whether the subgraphs were found by employing a maximization or mini-
mization objective respectively. For (any) node score s : V → R we define |s| : V → R by 
|s|(v) := |s(v)| for all v ∈ V  . Dysregulated global subgraphs are those which were found 
by using the score |s| under a maximization objective. Similarily subgraphs found with 
any of the scores sc with a maximization objective are called upregulated while those 
found with minimization objective are called downregulated (personalized subgraphs 
for case/patient c). Subgraphs found with a |sc| score under maximization are called dys-
regulated (personalized subgraphs for case/patient c). Any of the above subgraph types 
is called a deregulated subgraph. Subgraphs were inferred with minimal subgraph size of 
kmin = 10 and maximal subgraph size of kmax = 50 as this represents a reasonable range 
of expected pathway sizes, compare Additional file 2: Fig. S24. The optimal and four next 
best suboptimal global subgraphs were calculated for every modality. The subgraphs 
were then summarized as a subgraph of the union graph of optimal and suboptimal sub-
graphs in order to allow streamlined interpretation. See the supplementary figures refer-
enced in the respective figures for references to the direct output of DeRegNet.

Network‑defined cancer genes

Genes, gene products or biomolecular agents are likely to bring about their various 
phenotypic effects only in conjunction with other agents via their shared biomolecular 
network context. By that token, one can search for genes which convey phenotypic dif-
ferences by means of some defined network context. Here, we propose DeRegNet sub-
graphs as network context for a given case/patient in order to find genes whose inclusion 
into a case’s deregulated subgraph associates with a significant difference in overall sur-
vival as assessed by standard survival analysis techniques [67, 68]. Algorithm 2 describes 
the procedure more formally. Genes implicated by the outlined procedure are termed 
network-defined cancer genes. The next section provides details on a specific network-
defined cancer gene obtained by application of the procedure to personalized upregu-
lated subgraphs in the TCGA-LIHC cohort. 
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Nodes scores representing consistent methylation and transcription patterns

In general one considers a consistent methylation and transcription pattern for a given 
gene a situation where one observes increased methylation (hypermethylation) close 
to/in the gene’s promoter region and decreased transcription of the gene or decreased 
methylation (hypomethylation) close to/in the gene’s promoter region and increased 
transcription of the gene [69, 70]. For a node/gene v ∈ V  we define a node score sm-t

v  
which captures these patterns by sm-t

v := I(stv ·mv < 0) , i.e.

We then infer deregulated subgraphs with nodes scores sm-t
v  for v ∈ V  in order to capture 

subnetworks which consist largely of nodes which show consistent methylation-tran-
scription patterns, thus representing de-novo pathways which may be largely regulated 
by epigenetic modulation of transcription.

Results and discussion
In the following we present multiple results relating to the application of the DeReg-
Net algorithm. Firstly, we present benchmark results for synthetic data which compares 
DeRegNet to its closest methodological relative [40]. Next, we present applications of 
DeRegNet on a TCGA liver cancer dataset. More specifically, we present global sub-
graphs for the TCGA representing deregulated subnetworks summarizing the cohort 
under study as a whole, as well as a personalized application of DeRegNet, i.e. the deri-
vation of patient-specific subgraphs.

(4)sm-t
v :=

{

+1 if stv ·mv < 0
0 otherwise
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Performance comparison on data with a known ground truth

As outlined in the introduction, the field of statistical functional annotation needs ade-
quate known ground truths (gold standards) against which one can evaluate correspond-
ing methods, see for example [19]. Since actual ground truths are hard to come by for 
fundamental reasons, research for functional annotation algorithms justifiably focuses 
on simulated/synthetic ground truths. The latter are then generated such that they rep-
resent the assumed or postulated data-generating process. We compared DeRegNet to 
its closest methodological relative introduced in [40] based on simulated instances as 
described in Material and Methods.

Figures 4 and 5 show results of simulation runs carried out according to the described 
procedure. As can be seen in Fig. 4, DeRegNet outperforms [40] in terms of Matthews 
correlation coefficient (MCC), F1 Score, Jaccard index, Precision, subgraph size effi-
ciency (i.e. closeness to true subgraph size) and running time. Backes et al. has almost 
perfect sensitivity but DeRegNet generally also performs close to optimal with only a 
few outliers with lower sensitivity compared to Backes et al.. The Backes et al. algorithm 
achieves these slight sensitivity advantages with considerable cost with respect to pre-
cision as can be seen in Fig.  5. In order to assess the dependence of these simulation 
results on certain simulation parameters, in particular the noise level p, Additional file 2: 
Figs. S18–S23 can be consulted. For a wide range of noise settings, DeRegNet outper-
forms Backes et al. with the described patterns for the evaluation metrics. With increas-
ing noise levels both algorithms start to perform less convincing.

Furthermore, all optimal subgraphs (interpreted as gene sets) found by DeRegNet (or 
Backes et al.) are significant w.r.t classical GSE analysis and considerably more so than 
pre-defined KEGG gene sets. This underlines the suitablility of de-novo subnetwork/
pathway detection algorithms to find significant data-dependent “pathways” in the con-
text of the outlined simulation studies. See Fig. 6.

Less quantitatively, note that DeRegNet allows for subgraphs which originate from 
so called source (root, receptor) nodes and end at so called terminal nodes. This is not 
readily possible with the Backes et al. algorithm due to the necessity to specify a fixed 
subgraph size a priori and the resulting lack of flexibility to connect receptors to tar-
gets. Also note that DeRegNet is available as open-source software and also provides an 
open-source implementation of the Backes et al. algorithm. Currently the implementa-
tion supports the commercial Gurobi ILP solver as a solver backend. Gurobi readily pro-
vides free academic licenses though. Furthermore, given the statistical model introduced 
in Material and Methods, Backes et al. solves only a special case of the maximum likeli-
hood estimation problem which is solved by DeRegNet in its general form.

Global deregulated subgraphs TCGA‑LIHC

Using the DeRegNet algorithm we determined the upregulated global subgraphs 
obtained from running the algorithm with the global RNA-Seq score defined above. The 
optimal and four next best suboptimal subgraphs were calculated for every modality. 
The subgraphs were then summarized as a subgraph of the union graph of optimal and 
suboptimal subgraphs in order to allow streamlined interpretation. The global subgraph 
comprised of upregulated genes as nodes is shown in Fig. 7.
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Fig. 4  Benchmark patterns for DeRegNet and Backes et al. [40]. A Distributions of the Matthews correlation 
coefficients of DeRegNet and Backes et al. subgraphs. B Distributions of the F1 scores of DeRegNet and 
Backes et al. subgraphs. C Distributions of the Jaccard indices of DeRegNet and Backes et al. subgraphs. D 
Running time (in s) of DeRegNet (Dinkelbach algorithm) and kmax − kmin + 1 ( kmax = 50 , kmin = 25 ) runs 
of the Backes et al. algorithm [40]. Benchmark parameters: in-subgraph deregulation probability p′ = 0.99 , 
out-of-subgraph deregulation probability p = 0.01 , kmin = 25 , kmax = 50 , minimal size of simulated true 
subgraph = 30 , maximal size of simulated true subgraph = 45 , number of simulated instances = 100 , time 
limit = 600 s. See Additional file 1: Supplementary Material and Methods for further formal details on the 
simulation procedure and Additional file 2: Figs. S18–S24 for simulation results for different parameter value 
settings

Fig. 5  Benchmark patterns for DeRegNet and [40]. A Distributions of the precision of DeRegNet versus 
Backes et al. subgraphs. B Distributions of the sensitivity of DeRegNet versus Backes et al. subgraphs. C 
Distributions of the size efficiency of DeRegNet versus Backes et al. subgraphs. D Distributions of subgraph 
sizes of DeRegNet versus Backes et al. subgraphs. Benchmark parameters: As in Fig. 4. See Additional file 1: 
Supplementary Material and Methods for further formal details on the simulation procedure
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Reconstruction of transcriptional activation of WNT signaling

The subgraphs shows the activation of the WNT signaling pathway by means of over-
expressed Glypican-3 (GPC3), which represents a membrane-bound heparin sulphate 
proteoglycan [71]. GPC3 has been extensively researched as a early biomarker and 
potential therapy target in HCC [72–77] (see Additional file 2: Fig. S5).

Genomic analysis conducted over the past decade have identified mutations affecting 
Telomere Reverse Transcriptase (TERT), β-catenin (CTNNB1) and cellular tumor anti-
gen p53 (TP53) [78] as common driver mutations in HCC. Mutations in the TERT pro-
moter are a well-studied factor in liver cancer development [79, 80] and lead to TERT 
overexpression while mutations in CTNNB1, activate CTNNB1 and result in activation 
of WNT signaling. Previous studies have determined that TERT promoter mutations 
significantly co-occur with CTNNB1 alternation and both mutations represent events in 
early HCC malignant transformation [81]. In agreement, the DeRegNet algorithm reca-
tures the importance of a CTNNB1:TERT connection on a transcriptional level.

The subgraphs further show a possible alternative mechanism of CTNNB1 activation 
through upregulated GPC3, an early marker of HCC, as well as Wnt Family member 
3a (WNT3A) and Frizzled 10 (FZD10). WNT3A promotes the stablization of CTNNB1 
and consequently expression of genes that are important for growth, proliferation and 
survival [82] through activity of transcription factor Lymphoid Enhancer-Binding Fac-
tor 1 (LEF1). As shown in the subgraph Fig. 7, LEF1’s known targets SRY-box 2 (SOX2) 
(Sex-Determining Region Y (SRY)) and Baculoviral IAP Repeat Containing 5 (BIRC5) 
are likely important contributers to WNT pathway driven WNT proliferation. SOX2 is a 
pluripotency-associated transcription factor with known role in HCC development [83–
85] and BIRC5 (survinin) is an anti-apoptotic factor often implicated in chronic liver 
disease and liver cancer [86–88].

In summary, our algorithm reconstructed important components of the canonical 
WNT signaling pathway activation in liver cancer [89–93] from TCGA-LIHC RNA-Seq 
data and pairwise gene-gene interaction information from KEGG.

Fig. 6  DeRegNet subgraphs versus pre-defined KEGG subgraphs. Distributions of significant p values 
for optimal deregulated subgraphs found by DeRegNet and pre-defined KEGG gene sets. Note that 
DeRegNet subgraphs (interpreted as gene sets) are considerably more significant than pre-defined (non 
data-dependent) KEGG gene sets in light of classical GSE. Additionally, all DeRegNet subgraphs were 
significantly enriched without exception
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Crosstalk between integrin and WNT signaling

Another interesting pattern emerging in the upregulated subgraphs is the crosstalk 
between the WNT signaling cascade and integrin signaling. Over-expression of Secreted 
Phosphoprotein 1 (SPP1) has been shown to be a common feature for most known 
human malignancies and it is commonly associated with poor overall survival [94]. The 
binding of SPP1 to integrins (e.g. integrin αVβ 3) leads to further activation of kinases 
associated with proliferation, epithelial-mesenchymal-transition, migration and invasion 
in HCC, such as Mitogen Activated Kinase-like Protein (MAPK), Phosphatidylinositol-
4,5-bisphosphate 3-kinase (PI3K), Protein Tyrosine Kinase (PTK2), and SRC proto-
oncogene/Non-receptor tyrosine kinase (SRC) [95]. Further captured by the subgraphs 
is that elevated expression of PTK2 and MAPK12 are accompanied with elevated expres-
sion of cell cycle related genes (Cell Division Cycle 25 Homolog C / M-phase inducer 
phosphatase 1 (CDC25C), Cyclin-dependent Kinase 1 (CDK1) and Polo-like Kinase 1 
(PLK1)) thus connecting over-expression of kinases with cell proliferation.

Fig. 7  Global upregulated subgraph for TCGA-LIHC reconstructs transcriptional activation of WNT signaling. 
The Color of nodes indicates the average log2 fold change of tumor samples compared to controls as 
represented in the color bar. The color of rims around nodes indicates genes contained in the integrin 
pathway (blue), the WNT pathway (yellow) and diverse other pathways (no rim). The color of edges indicates 
following interactions: activation (red), inhibition (dark blue), compound (brown), binding/association 
(yellow), indirect effect (dashed grey), phosphorylation (pink), dephosphorylation (light green), expression 
(green) and ubiquitination (light purple). See also Additional file 2: Figs. S6–S10
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Although KEGG lists the interaction between SRC and CTNNB1 as inhibitory in 
nature, other studies have concluded that activated Src enhances the accumulation of 
nuclear beta-catenin and therefore through their interaction contributes to an oncogenic 
phenotype [96].

In conclusion, the upregulated subgraphs capture the interaction of SPP1 with integrin 
and consequent activation of PTK2 and SRC together with their connection to the WNT 
signaling pathway (via CTNNB1) and cell cycle genes.

Downregulated oncogenes FOS and JUN and drug metabolism

The global downregulated subgraphs are centered around down-regulation of transcrip-
tion factors FOS and JUN. The subgraph summary is depicted in Fig. 8. FOS and JUN, 
which form AP-1 transcription complex are considered to be oncogenic factors and nec-
essary for development of liver tumors [97]. Considering their prominent role in liver 
tumorigenesis, further experimental study of the significance of Jun and Fos downregu-
lation on HCC development could be of great interest. Interestingly, RNA-seq data show 
that all FOS (FOS, FOSB, FOSL1, FOSL2) and JUN (JUN, JUNB, JUND) isoforms are 
downregulated in a majority of liver tumors of the TCGA cohort (see Additional file 2: 
Fig. S11 ).

Furthermore, the subgraphs show a number of downregulated Cytochrome P450 
(CYP) enzymes as part of the most downregulated network of genes. CYP3A4 is mainly 
expressed in the liver and has an important role in the conversion of carcinogens, such 
as aflatoxin B1 toward their ultimate DNA-reactive metabolites [98], as well as, in detoxi-
fication of anticancer drugs [99]. Although the downregulation of CYP enzymes could 
potentially render HCC tumors sensitive to chemotherapy, liver tumors are notoriu-
osly irresponsive to chemotherapy [78]. Therefore, it is unclear how the gene pattern of 
CYP enzymes captured by the presented subgraphs could influence the HCC response 
to therapy and which compensatory mechanism is employed to counteract CYP 
downregulation.

Personalized deregulated subgraphs for TCGA‑LIHC

Finding deregulated subgraphs in a patient-resolved manner enables steps toward per-
sonalized medicine. In this section we introduce a case study where we employed our 
algorithm to find an upregulated subgraph for every TCGA-LIHC patient. Stratifying 
patients according to whether their subgraph contains a gene or not, one can identify 
genes whose inclusion into a patient’s inferred subgraph provides a survival handicap 
or advantage. Additional file 2: Fig. S17 shows the survival effect for further identified 
network-defined cancer genes. Here, we concentrate on one particular such gene, namely 
Spleen Tyrosine Kinase (SYK).

Spleen tyrosine kinase (SYK) as a network‑defined cancer gene

Patients whose subgraph contained the spleen tyrosine kinase (SYK) showed compara-
tively bad survival outlook (see Figs. 9, 10).

SYK is most commonly expressed in immune cells and its deregulation has been origi-
nally associated with hematopoietic cancers [100–102]. However, it has been shown 
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that SYK plays a role in various other cancer types and its respective roles seem to vary 
significantly depending on the molecular (i.e. ultimately network) context [101]. SYK 
comes in the form of two splice variants, SYK(L) and SYK(S) [103]. In the context of 
liver cancer, SYK promoter hypermethylation and corresponding SYK downregula-
tion has been associated with poor survival [104]. Furthermore, Checkpoint Kinase 1 
(CHK1) mediated phosphorylation of SYK(L) and associated SYK degradation has been 
considered an oncogenic process [105], associating low levels of SYK as a factor of poor 
survival. On the other hand, [103] SYK(S) expression promotes metastasis development 
in HCC and thus leads to poor survival outcome. Furthermore, high SYK expression has 
been shown to promote liver fibrosis [106]. The development of HCC is closely related 
to formation and progression of fibrosis. Fibrosis represents excessive accumulation of 
extracellular matrix (ECM) and scarring tissue in an organ. A fibrotic environment pro-
motes development of dysplastic nodules which can gradually progress to liver tumors 
[107]. In short, a somewhat inconsistent role of SYK as a tumor supressor or oncogene 
can be observed in many cancers [101], including liver cancer.

By employing DeRegNet, we identified by means of the approach defined as algo-
rithm  2 a subgroup of HCC patients from the TCGA-LIHC cohort which show poor 
survival and a distinguished SYK-signaling pattern shown in Fig. 10. The depicted net-
work is manually extracted from the union graph of all the patient’s subgraphs which 
contained SYK. The network shows SRC-SYK-mediated activation of PI3K-Akt signaling 

Fig. 8  Global downregulated subgraph for TCGA-LIHC are centered on FOS and JUN transcription factors 
and drug metabolism. Color of nodes indicates the average log2 fold change of tumor samples compared to 
controls as represented by the color bar. The color of edges indicates the following interactions: activation 
(red), compound (brown), binding/association (yellow), indirect effect (dashed grey) and expression (green). 
Also noteworthy it the general connection of transcriptional activators and inhibitors to signaling as well as 
metabolic networks. Transcription regulators have been highlighted with an orange rim. See also Additional 
file 2: Figs. S12–S16
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Fig. 9  SYK signaling indicates poor survival. TCGA-LIHC cases TCGA-5C-AAPD, TCGA-CC-A3MA, 
TCGA-ED-A5KG, TCGA-DD-AACH, TCGA-YA-A8S7, TCGA-CC-5261, TCGA-CC-A3M9 show activated SYK 
signaling and poor survival. Survival difference is significant at p = 0.0002 (Kaplan–Meier estimates and 
log-rank test)

Fig. 10  Consistent upregulation of SYK signaling components and downstream targets in subgraph of 
patients with poor survival. Inner node color represents the average log2 fold change across the “SYK-positive” 
patients and node rim color represent average log2 fold change across the rest of the TCGA-LIHC cohort. 
Color of edges indicates following interactions: activation (red), inhibition (dark blue), compound (brown), 
indirect effect (dark grey) and expression (blue green)
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via B-lymphocyte antigen CD19 (CD19) and Phosphatidyl-inositol 4,5-bisphosphate 
3-kinase catalytic subunit delta (PI3KCD) (p110δ ) [108]. Furthermore, SYK also feeds 
into mitogen-activated protein kinase 11-13 (p38) signaling (only MAPK13 shown) 
through GTPase Hras (HRAS) and aspase recruitment domain-containing protein 9 
(CASP9). p38 signaling promotes cytokine expression via Growth-regulated alphapro-
tein (CXCL1). Increased cytokine expression and activation is another canonical effect 
of SYK signaling [102]. This in turn, activates JAK signaling through Januskinase 3 
(JAK3) activity, thereby reinforcing PI3K activation. Interestingly, SYK signaling is con-
sistently linked to the upregulation of the guanine nucleotide exchange factors VAV1 
and VAV3 [100, 102] [Guanine nucleotide exchange factor (VAV)]. The proto-oncogene 
VAV3 is associated to adverse outcomes in colorectal [109] and breast cancer [110, 111]. 
Furthermore, VAV3 mutations have been profiled to be potential drivers for liver can-
cer [112]. VAV signaling is mediated by forming a complex with Lymphocyte cytosolic 
protein 2 (LCP2) (SLP-76) upon activation of SYK signaling. VAV-meditated Ras-related 
C3 botulinum toxin substrate 2 (RAC2) activation may play a role in intravastation and 
motility [113]. Additionally, the subgraph shows upregulation of the B-cell lymphoma 
2 (BCL2) gene, a known regulator of apoptosis [114], and vascular endothelial growth 
factor-C (VEGGC) which can promote metastasis [115] and angiogenesis [116, 117].

Multi‑omics subgraphs with consistent methylation and transcription patterns

To demonstrate a multi-omics application of DeRegNet (i.e. simultaneously using dif-
ferent omics layers) we have utilized RNA-seq and methylation data of the TCGA-
LIHC cohort. With the transcriptome-methylome node scores defined in Materials and 
Methods we inferred a deregulated subgraph showing consistent patterns of methyla-
tion and transcription. In mammals, hyporegulation of the gene promoter typically leads 
to downregulation of gene expression and hypermethylation to upregulation of gene 
expression and hence the optimal subgraph we found represents a functional module 
which shows consistent patterns of gene regulation by means of promoter methyla-
tion [69]. The optimal subgraph depicted in Fig. 11 is centered around protein kinase 
cAMP-activated catalytic subunit beta (PRKACB) gene. This gene is a catalytic subunit 
of cAMP (cyclic AMP)-dependent protein kinase. As such, it regulates signalling though 
cAMP. cAMP signaling is crucial to a large number of processes involved in carcinogen-
esis, including cell proliferation and differentiation [118]. As visible from the subgraph 
PRKACB gene is connected to a large number of downstream proteins, that could be 
potentially regulated through promoter methylation.

Conclusion
We have shown DeRegNet’s capability to infer relevant patterns to a high degree of 
accuracy based on simulation benchmarks and showed that it compares favorably to 
related algorithms. Furthermore, application of DeRegNet to publically available data in 
a global fashion identified driving factors of liver cancer such as a transcriptionally acti-
vated WNT-pathway, thus showing that DeRegNet can provide valuable insight into a 
given omics experiment and may lead to novel and so far uncharacterized discoveries 
of genes/pathways involved in carcinogenesis and other biological contexts. An exam-
ple of such discovery are the outlined insights into the global interaction of integrin 
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and WNT signaling, as well as drug metabolism in liver cancer. In fact, profiling of such 
interaction between pathways is one of the main strengths of our algorithm over classi-
cal gene enrichment methods. Additionally, the application of our subgraph algorithm 
in a patient-specific manner could identify a consistent subgroup of patients showing 
poor prognosis potentially due to aberrant SYK signaling and therefore can generate 
meaningful hypotheses suitable for further experimental follow-up. Given that the SYK 
example is just one example case of a network-defined cancer gene, this indicates that 
DeRegNet is a useful hypothesis generation tool for network-guided personalized cancer 
research. In addition, further modes of application of the DeRegNet algorithm increase 
the spectrum of meaningful exploratory directions. Note, for example, that we only pre-
sented and discussed network-defined cancer genes (i.e. SYK in our subgraph example) 
for upregulated subgraphs, while we have not presented the results of an analysis based 
on downregulated or generically deregulated (either up- or downregulated) subgraphs 
which would lead to similar opportunities. Furthermore, we demonstrated DeRegNet’s 
explicit multi-omics capability by inferring consistent methylome-transcriptome sub-
graphs for the TCGA-LIHC dataset. Another venue of further research is the utilization 
of deregulated subnetworks as features for phenotype prediction tasks. See Additional 
file  1: Supplementary Material and Methods for some computational experiments 
regarding survival predictions within the TCGA-LIHC cohort based on subnetwork fea-
tures. Furthermore, DeRegNet promises to be usable in single cell data analysis. One 
example of such application can be a construction of cell-type specific subgraphs. For 
example, genes up- or downregulated in one cell type in comparison to other cell types 
can be used to define suitable node scores leading to identification of the most active 
subnetwork in a given cell type relative to other cell types. In conclusion, together with 
a solid underlying statistical model for which DeRegNet is shown to infer Maximum 
Likelihood estimates and its open-source implementation, this makes DeRegNet a via-
ble option for any researcher interested in network interactions in an high-throughput 
omics context.

Availability of data and materials

•	 Project name: DeRegNet
•	 Project home page: https://​github.​com/​Kohlb​acher​Lab/​dereg​net
•	 Operating system: Linux, OSX and Windows via Docker
•	 Programming language: C++, Python
•	 Other requirements: Lemon Graph Library 1.3.1, Gurobi ≥ 8
•	 License: BSD-3-Clause
•	 Any restrictions to use by non-academics: Gurobi license required

Our implementation is written in C++ and Python and utilizes the Gurobi optmiza-
tion libary (http://​www.​gurobi.​com/​index) and the Lemon graph library (https://​
lemon.​cs.​elte.​hu/​trac/​lemon). Our software is open source under a BSD-3-Clause OSI-
approved license and is available at https://​github.​com/​Kohlb​acher​Lab/​dereg​net where 
you can also find installation instructions and usage examples. The algorithm can be 

https://github.com/KohlbacherLab/deregnet
http://www.gurobi.com/index
https://lemon.cs.elte.hu/trac/lemon
https://lemon.cs.elte.hu/trac/lemon
https://github.com/KohlbacherLab/deregnet
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run either by using a Python package or a command line tool via Docker images. The 
Docker images sebwink/deregnet are available at Docker Hub (https://​hub.​docker.​com/r/​
sebwi​nk/​dereg​net) and bundle all necessary dependencies. Additionaly Docker images 
are also provided via https://​github.​com/​orgs/​Kohlb​acher​Lab/​packa​ges?​repo_​name=​
dereg​net. Furthermore, in order to run DeRegNet, a license for the Gurobi optimization 
library is required. For academic purposes these licences are readily obtained at https://​
www.​gurobi.​com/​downl​oads/. The applications of DeRegNet to TCGA data appearing 
in this paper can be found at https://​github.​com/​Kohlb​acher​Lab/​dereg​net-​tcga. DeReg-
Net depends on a C++ library called libgrbfrc (https://​github.​com/​Kohlb​acher​Lab/​
libgr​bfrc) to solve fractional integer programs with Gurobi which was implemented by 
the authors of DeRegNet which is also available under the BSD-3-Clause open source 
license. Finally, to run the synthetic benchmarks presented in this paper, one can fol-
low the instructions at https://​github.​com/​Kohlb​acher​Lab/​dereg​net/​tree/​master/​examp​
les/​custom-​python-​script. The benchmark code and results as obtained by the authors 
and presented in Fig. 4 are available here: https://​github.​com/​Kohlb​acher​Lab/​dereg​net/​
tree/0.​99.​999/​bench​mark.

For more information, see Additional file 1: Supplementary Material and Methods.
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definition and derivation of the probabilistic model underlying DeRegNet, as well as the proof that DeRegNet 
corresponds to maximum likelihood estimation under outlined model, DeRegNet in the context of the general 
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