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Abstract 

Background:  Gene co-expression networks (GCNs) can be used to determine gene 
regulation and attribute gene function to biological processes. Different high through-
put technologies, including one and two-channel microarrays and RNA-sequencing, 
allow evaluating thousands of gene expression data simultaneously, but these meth-
odologies provide results that cannot be directly compared. Thus, it is complex to 
analyze co-expression relations between genes, especially when there are missing 
values arising for experimental reasons. Networks are a helpful tool for studying gene 
co-expression, where nodes represent genes and edges represent co-expression of 
pairs of genes.

Results:  In this paper, we establish a method for constructing a gene co-expression 
network for the Anopheles gambiae transcriptome from 257 unique studies obtained 
with different methodologies and experimental designs. We introduce the sliding 
threshold approach to select node pairs with high Pearson correlation coefficients. The 
resulting network, which we name AgGCN1.0, is robust to random removal of condi-
tions and has similar characteristics to small-world and scale-free networks. Analysis of 
network sub-graphs revealed that the core is largely comprised of genes that encode 
components of the mitochondrial respiratory chain and the ribosome, while different 
communities are enriched for genes involved in distinct biological processes.

Conclusion:  Analysis of the network reveals that both the architecture of the core 
sub-network and the network communities are based on gene function, supporting 
the power of the proposed method for GCN construction. Application of network sci-
ence methodology reveals that the overall network structure is driven to maximize the 
integration of essential cellular functions, possibly allowing the flexibility to add novel 
functions.
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Introduction
The African malaria mosquito, Anopheles gambiae sensu strictu and its sister species 
Anopheles coluzzii, formerly An. gambiae S and M forms [1], continue to be major vec-
tors of human malaria-causing parasites in sub-Saharan Africa [2, 3]. Even with the first 
malaria vaccine now approved by the World Health Organization, malaria prevention 
continues to rely largely on vector control, mainly through insecticide use [4, 5]. Insecti-
cide resistance threatens the efficacy of these approaches [5], requiring insecticide resist-
ance management [6] and new vector control strategies to be designed and implemented 
[7]. Systems biology approaches can help to identify new molecular targets for novel 
control strategies and provide a global view of the consequences of their implementa-
tion on mosquito biology. Systems biology approaches are considered in malaria host-
pathogen interactions [8, 9]. They also have been applied to vector biology to determine 
the evolutionary constraints of the mosquito immune system [10], a critical factor in the 
mosquito’s ability to serve as a competent vector for malaria parasites [11]. To facilitate 
systems biology approaches in mosquitoes and building on previous work by MacCal-
lum and colleagues [12], we report here the construction and analysis of a global gene 
co-expression network (GCN) for An. gambiae.

Network analysis has been used widely in different areas of science [13–24], includ-
ing for the construction of GCNs to predict gene function and regulation. A GCN is 
composed of genes represented as nodes, and significant co-expression of pairs of genes 
is indicated by links. Links are determined by measuring the co-expression patterns of 
genes under different conditions [13, 25]. High throughput technologies, such as micro-
array and RNA-seq, allow measuring simultaneously the expression levels for thousands 
of genes. Network construction and analysis of gene expression data then provides a 
system-level view of gene expression relationships, identifying the connection between 
each pair of genes.

Gene expression data are commonly organized into a gene expression matrix that con-
sists of rows representing m genes and columns representing n conditions (or samples). 
To construct a gene expression network, first, a similarity score is calculated for each 
gene pair. If the expression matrix is complete, the matrix consists of m× n data points, 
and each gene has an expression vector of length n. Thus, comparison of the expression 
of any given gene pair is based on n number of paired elements between their expression 
vectors, with a paired element between gene a and b defined as the expression value pair 
aibi , where i is a specific condition, with i = [1, 2, . . . , n] . The similarity score between 
gene pairs in GCNs is commonly calculated by the Pearson correlation coefficient (PCC) 
[13, 26, 27]. The PCC outperformed other means of similarity scores when constructing 
large gene co-expression networks [28]. Once the similarity score is calculated between 
all gene pairs, a similarity matrix m×m is assembled, with sab elements representing 
the similarity score between genes a and b. Second, based on the similarity matrix, an 
adjacency matrix is built, which defines network links using a threshold T, with a link 
existing if the similarity score is greater than T.

Several studies used the PCC to construct a GCN by setting a fixed threshold to deter-
mine co-expression between genes, which is appropriate for homogeneous expression 
data sets, where (1) expression values were obtained with the same technology, (2) the 
expression value distribution is comparable across all conditions, and (3) the number of 
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paired elements is similar for all gene pairs [13, 25, 27]. However, neither of these three 
prerequisites are likely to be met, when assembling a GCN based on a large number of 
data sets that were obtained with different technologies and under distinct experimental 
conditions. A striking example of such a heterogeneous gene expression data set is that 
of An. gambiae, which underlies the global expression map constructed by MacCallum et 
al. [12]. This data set does not fulfill any of the three prerequisites detailed above for the 
following reasons: (1) The types of expression values obtained from distinct technologies 
and downstream analyses are different [12]. For example, in two-channel microarrays, 
expression values are expressed as ratios between experimental and control conditions. 
In contrast, in single-channel microarrays and RNA-seq, intensity of read numbers pre-
sent expression values. (2) As a consequence, the distributions of expression values vary 
widely between the different technologies. For instance, the expression values obtained 
with RNA-seq are overdispersed, ranging from zero to tens of thousands [29]. (3) Miss-
ing values are ubiquitous in experiments. In some data sets, the expression of only a sub-
set of genes was sampled for specific purposes (e.g., the An. gambiae detox chip [30]). 
The fact that biological data sets do not meet these criteria presents a major challenge to 
network biology in general.

Prerequisites (1) and (2) can be met by applying normalization methodologies, includ-
ing median shift [12] and z-score normalization. However, the missing value problem 
poses a separate challenge for the following reason. According to [31], under the null 
hypothesis that two genes are not correlated, the number of paired elements between 
their expression vectors significantly affects the PCC density distribution. The theoreti-
cal analysis shows that the PCC distribution with 50 paired elements has a much lower 
variance than the distribution with ten conditions, which means that the PCC for any 
given gene pair tends to be lower when there are more paired elements in a given data 
set. In the An. gambiae expression matrix, the number of paired elements for each gene 
pair is not identical. Thus, a fixed threshold to determine links introduces a bias, as co-
expression of genes with a smaller number of paired elements is favored. One way to 
overcome this challenge was proposed by Lee et al. [26]. In their two-step protocol, ini-
tially individual networks are constructed for each homogeneous sub-data set, by calcu-
lating PCC similarity matrices and using a fixed threshold to select links. The final GCN 
is then aggregated from the individual networks, by confirming a link if it exists multiple 
times across the individual networks.

In this paper, we propose a novel method to construct a GCN for An. gambiae genes 
based on several hundred conditions from different publications and platforms. Spe-
cifically, to avoid favoring links between gene pairs with a low number of paired ele-
ments, we propose a sliding threshold-based method to construct a global An. gambiae 
GCN. To construct the network, we first apply z-score normalization to produce equal 
variances and means across all conditions. Second, we compute the PCCs of all gene 
pairs and divide the gene pairs into 26 different groups according to their number of 
paired elements. Third, we select links based on a sliding threshold, such that, for each 
group, only the gene pairs within the top 0.5th percentile of PCCs will be connected 
by a link. The resulting network, which we name AgGCN1.0, remains robust with ran-
dom removal of up to 15% of conditions. The AgGCN1.0 has similar characteristics to 
small-world and scale-free networks, as it contains hub genes that are co-expressed with 
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many other genes. Analysis of the network reveals that both the architecture of the core 
sub-network and the network communities are based on gene function, supporting the 
power of the proposed method for GCN construction.

Method
This section presents a brief overview of the expression matrix, and describes the steps 
to construct the AgGCN1.0 based on hundreds of conditions from 30 publications [29, 
32–60], including (1) data pre-processing, (2) PCC thresholding, (3) edge weight assign-
ment, and (4) final network selection.

Description of the gene expression data set

The data set used for constructing the An. gambiae GCN, Anopheles-gambiae_EXPR-
STATS_VB-2019-02, is based on the data set used by MacCallum et al. [12], which was 
updated by addition of several new conditions. Anopheles-gambiae_EXPR-STATS_
VB-2019-02 is available through Vectorbase (vectorbase.org; [61, 62]) at https://​tinyu​
rl.​com/​mr38a​7hj. Anopheles-gambiae_EXPR-STATS_VB-2019-02 is based on the 
AgamP4.11 annotation of the An. gambiae PEST genome, and includes log2-trans-
formed expression values of 13,080 genes across 291 conditions, collected from 35 data 
sets [29, 32–50, 50–60, 63–67]. Each publication contributed on average of eight condi-
tions to the data set, ranging from 1 [53] to 52 [39].

The experimental methodologies varied widely among publications, exploring gene 
expression changes using different experimental platforms that sampled either across 
the entire or various sub-sections of An. gambiae transcriptome, using total RNA col-
lected from various life stages, tissues, and physiological conditions. Expression data 
obtained with single-channel microarrays represented 62% of the data set [33–35, 
37–41, 44–47, 50], of which 84% were obtained with the Affymetrix GeneChip� Plas-
modium/Anopheles Genome Array [33, 35, 37–39, 41, 44–47]. Expression data for the 
remainder of the conditions were assessed with either dual-channel microarrays (23% 
of conditions, [32, 36, 42, 43, 48, 50–55, 58, 63–67]) or by RNAseq (15% of conditions, 
[56–60]). With regards to life stages, 84% of all conditions were analyzed using samples 
derived from adults, 91% of those from female mosquitoes, a bias that is easily explained 
by the fact that only adult female mosquitoes transmit vector-borne disease pathogens 
[11]. Similarly, tissue-specific analyses focused most commonly on the adult female mid-
gut (33% of the conditions that sampled individual tissues [32, 33, 36, 38, 42, 43, 57, 65]), 
as it constitutes a major bottle-neck for vector-borne pathogens after being ingested by 
the mosquito with a blood meal from an infected individual [68, 69]. Likewise, the con-
ditions sampled a variety of physiologies that are integral to vector biology and its con-
trol, including blood feeding (9% of conditions, [33, 56, 59, 63]), parasite infection (14% 
of conditions, [36, 42, 43, 47, 48, 57, 65], and insecticide resistance (6% of conditions, 
[29, 51–53, 55, 64, 66, 67].

Expression data set pre‑processing and normalization

This initial data set was partially conflated as it contained 21 conditions [32, 34, 50] 
that were combined from other conditions in the same data set (e.g., a conflated con-
dition presented a ratio of two other conditions in the data set). Therefore, these 21 

https://tinyurl.com/mr38a7hj
https://tinyurl.com/mr38a7hj
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conditions did not represent new data, and thus were removed from further analysis. 
In addition, one platform, the dual-channel microarray LIV A. gambiae DETOX 0.25k 
[30], interrogated the expression of only 226 genes or 1.7% of the An. gambiae tran-
scriptome. The inclusion of the 13 conditions that used the LIV A. gambiae DETOX 
0.25k microarray [63–67] led to a large number of missing values in the data set, and 
therefore were excluded from the analyses. After their removal, the final data set 
(Table  S1, in Supplementary Materials https://​github.​com/​KSUNe​tSE/​AgGCN1.0) 
consisted of gene expression data across 257 conditions collected from 30 publica-
tions [29, 32–60].

However, direct comparison of expression values across the 257 conditions in the data 
set was not possible, as the data distribution varied among conditions, not only due to 
the platforms used, but also due variations between experimental designs and proce-
dures (Table  S4, in Supplementary Materials https://​github.​com/​KSUNe​tSE/​AgGCN1.​
0/). Figure 1 shows the means and variances of expression values in each of the 257 con-
ditions. The log2 mean gene expression values ranged from -0.9 to 10.9, with means for 
dual-channel microarray data usually around 0, single-channel microarray data rang-
ing between 4.2 and 10.9, and RNAseq data ranging from -0.9 to 2.5 (Table S2, in Sup-
plementary Materials https://​github.​com/​KSUNe​tSE/​AgGCN1.​0/). The variance of 
log2-transformed expression values ranged between 0.01 and 16.5, with no correlation 
between mean and variance across the data set or data obtained by RNAseq. However, 
expression data obtained with dual-channel microarray platforms showed a strong posi-
tive correlation between expression mean and variance across conditions, while data 
from single-channel microarrays showed a strong negative correlation. This negative 
correlation can be largely explained by the data characteristics of individual dual-chan-
nel microarray platforms. Data obtained with both the OXFORD Anopheles gambiae 
Agilent 13k v1 and the Agilent A. gambiae 020449 44k v2 microarray had low means and 
high variance within conditions, data obtained with the Affymetrix GeneChip� Plas-
modium/Anopheles Genome Array showed means and variances in the middle range, 
and those obtained with the ND Anopheles gambiae Nimblegen 65k v1 microarray had 
high means and low variance. These observed differences in means and variance across 
experiments would result in gene expression correlation based on experimental design 
rather than on underlying gene regulation.

a b

Fig. 1  Mean and variance distributions of gene expression values in the data set. Means of expression values 
for each condition are shown in increasing order (a). The corresponding variance of each mean is shown in 
(b)

https://github.com/KSUNetSE/AgGCN1.0
https://github.com/KSUNetSE/AgGCN1.0/
https://github.com/KSUNetSE/AgGCN1.0/
https://github.com/KSUNetSE/AgGCN1.0/
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To equalize the means and variance of the data across all conditions, we performed a 
normalization step using the z-score, which is expressed as follows

where x̂i(k) is the normalized expression value of gene k under condition i, xi(k) is the 
raw expression value of gene k under condition i, ui and δi are the mean and the standard 
deviation of the expression value for all values in condition i, respectively.

Another property of the An. gambiae gene expression matrix was the highly variable 
number of paired elements between all possible gene pairs (Fig.  2). A paired element 
between gene a and b is defined as the expression value pair aibi , where i is a specific 
condition, with i = [1, 2, . . . , n] . If either ai or bi is missing in the expression matrix, 
there is no paired element between gene a and b for condition i. The distribution of 
paired elements across the entire z-score-normalized data set was highly heterogene-
ous, displaying a bimodal distribution with a gap between 118-139 paired elements. This 
gap is explained by the properties of the platforms used to obtain the gene expression 
data. The transcripts of 2,813 annotated genes in the data set were not represented on 
the Affymetrix GeneChip� Plasmodium/Anopheles Genome Array, which was used to 
analyze gene expression in 139 out of 257 total conditions [33, 35, 37–39, 41, 44–47]. 
Therefore, each of these 2,813 genes in the data set had an expression vector length that 
is ≤118, and the 10,433 genes represented on the array had a vector length ≥139. While 
z-score normalization addressed the differences in means and variance of the expression 
matrix, the variable paired element length remained and had important implications on 
edge selection and edge weight assignment, which are discussed below.

Edge selection based on a sliding Pearson correlation coefficient threshold

To determine the edges of the AgGCN1.0, we used the Pearson correlation coefficient 
(PCC), which is a co-expression measure used commonly to detect edges for nodes 
in gene co-expression networks [26, 31, 70]. We calculated PCCs for all possible gene 
pairs in the data set, and constructed an initial gene expression correlation matrix, 

(1)x̂i(k) =
xi(k)− ui

δi
,

number of paired elements
Fig. 2  The distribution of the number of paired elements of all the gene pairs
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which included all PCCs. From this matrix, we removed the PCCs from all gene pairs 
whose expression vectors had a paired element length of ≤4.

The PCC rxy was calculated as

where n is the number of paired elements between gene x and y, x̂i is the normalized 
expression value of gene x under condition i, ux is the mean of gene x across all paired 
elements, ŷi is the normalized expression value of gene y under condition i, uy is the 
mean of gene y across all paired elements.

From Eq. (2), it is apparent that the range of the PCC is [-1, 1]. It is assumed that the 
two vectors are negatively and positively correlated when rxy close to -1 or 1, respec-
tively. If the two node-vectors are assumed independent, the density function of PCC 
is then expressed as

where Ŵ() is the gamma function, and v = n− 2 is the degrees of freedom.
Figure  3 shows the probability density distribution of the PCC as a function of 

paired element length. The standard deviation of PCCs decreases with an increase 
in the number of paired elements. As an example, selecting the top 3rd percentile of 
all PCCs at a given paired element number lead to a threshold PCC of ≥0.61 for ten 
paired elements, and a threshold PCC of ≥0.12 for 250 paired elements (Fig. 3).

In GCN construction, an edge between a gene pair is included if their expression 
vectors are deemed to have a high PCC, most commonly using a fixed threshold, such 
as 0.8 [26]. However, a fixed threshold is only valid when the number of paired ele-
ments in the expression matrix is constant. Given the heterogeneous distribution of 
paired element length in the An. gambiae expression matrix, a fixed threshold of PCC 
would favor edges between gene pairs with fewer paired elements and not capture the 
edges with larger numbers of paired elements, which arguably have stronger experi-
mental support.

(2)rxy =
∑n

i=1(x̂i − ux)(ŷi − uy)
√

∑n
i=1(x̂i − ux)2

√

∑n
i=1(ŷi − uy)2

,

(3)P(r) = 1√
π

Ŵ( v+1
2 )

Ŵ( v2 )
(1− r2xy)

v−2
2 ,

Fig. 3  Comparison of probability density function of PCCs with 10, 50, 150 and 250 paired elements. a 
Probability density functions of PCC, where the vertical lines are the top 3% thresholds. b The top 3% PCC 
with respect to the number of paired elements
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To avoid this problem, we selected gene pairs among the top percentages of PCC values 
and used a sliding threshold based on the number of paired elements. To do so, we divided 
the PCCs into 26 groups according to the interval of the paired element length values, i.e., 
[4, 10], [11, 20], [21, 30], ..., [251, 257]. The scattered points in Fig. 4 show the top 0.5%, 1%, 
2%, and 3% of PCCs of all gene pairs in the 26 intervals. To assign a threshold of correlation 
between the expression vectors of any given paired element length, we used a curve that 
fitted the scattered points. The gene pairs with PCCs above the fitted curve were assigned 
edges in the GCN. The equation for the curve is

where α , η , � , and β are the four parameters that were fitted, and x is the number of 
paired elements. This equation provided a good trade-off between the accuracy of the 
fitting and the number of parameters to estimate. We optimized the four parameters α , 
η , � , and β iteratively, by (1) fixing parameters � and β , and optimizing α and η , and (2) 
fixing α and η , and optimizing � and β . We evaluated the performance of the four param-
eters by maximizing the coefficient of determination, R2 . The solid lines in Fig. 5 show 
the fitted curves for the top 0.5%, 1%, 2%, and 3% points, and the optimized parameters 
α , η , � , and β are shown in Table 1. Optimized parameters did not change substantially 
when a higher interval number was chosen. For example, using 52 instead of 26 intervals 
to calculate the top 3% sliding threshold curve resulted in the same values for the α , η , 
and minimally changed � , and β (52 intervals: 7.6 and 21.1; 26 intervals: 7.5 and 21.2).

(4)f thres(x) = α − 1

η + �e
− x

β

,

Fig. 4  Top 0.5%, 1%, 2%, and 3% PCC points with respect to different numbers of paired elements. Scattered 
points are the top percentages computed from the data set, solid blue lines are the fitted curves

Table 1  Optimized parameters

Parameters α η � β

0.5% 1.28 1.61 2.0 30

1% 1.14 1.90 4.3 23.7

2% 1.10 1.80 4.3 24.0

3% 1.00 2.00 7.5 21.2
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Edges were included in the network if their PCC (1) was above the sliding threshold, 
and (2) had a p-value smaller than δ/m , where δ and m are the significance level equal to 
0.05, and the number of gene pairs of each interval, respectively (Bonferroni-correction, 
[71, 72]).

Edge weight assignment

With the goal to provide a more informative network structure that identifies the relative 
strength of co-expression between gene pairs, we constructed a weighted network. To 
do so, we assigned a weight to every detected edge, representing the similarity score of 
co-expression based on PCC and the number of paired elements. As the edges detected 
with fewer paired elements tended to have higher PCCs than the edges with more paired 
elements (Fig. 4), we rescaled the PCCs to equalize the means and medians of the PCCs 
across the 26 intervals. Figure 5 shows the PCC-rescaling curves for the sliding thresh-
olds. The dashed lines are the PCC-sliding threshold curves represented by Eq. 4, and 
the solid lines are the corresponding rescaling curves, given by the following equation

where z ∈ [4, 257] , z is the range of the number of paired elements. This curve reduced 
the weight of those edges that were detected with a smaller number of paired elements. 
The edge weight was computed as

We assigned weights to all edges that were selected based on the sliding thresholds of 
top 0.5%, 1%, 2%, and 3% PCCs. Figure 6 confirms that the rescaling curve normalized 
the means and medians of edge weights across all intervals. As expected, the distribution 
of the PCC means and medians of the selected edges across the 26 intervals of paired 
element lengths followed a similar pattern to those observed for the PCC threshold 
curves (Figs. 6a and 4). After the rescaling of edge weights using Eq. (6), the means and 

(5)f rescale(x) = min(f thres(z))+max(f thres(z))− f thres(x),

(6)Weightedge(x) = PCC × f rescale(x).

Fig. 5  Edge weight rescaling. Sliding PCC-threshold curve (dashed lines) and rescaling curves (solid lines)
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medians of the edge weights in each interval were indeed similar, and thus comparable 
across the intervals (Fig. 6b), confirming the validity of the rescaling approach.

Network selection

To determine the PCC threshold for final network construction, we built and analyzed 
four networks with the top 0.5%, 1%, 2%, and 3% sliding thresholds as introduced in 
Sect. 2.3. Table 2 shows the statistical properties of the four networks. The curated data 
set contained expression data for 13,080 genes (nodes) annotated in the An. gambiae 
genome. Table 2 shows the number of nodes connected with at least one edge, and the 
node percentage represents the corresponding percentage of genes present in the net-
work. The LCC is the largest connected component of the network. The network density 
is defined as

where n is the number of nodes in the network.
All four networks contained more than 90% of nodes, with small node percentage 

increase with increasing thresholds. In contrast, the number of edges and network den-
sity nearly doubled with each threshold increase. Based on these results, we selected the 
network with the most stringent edge selection criterion (top 0.5% sliding threshold), 

(7)density = number of edges
n(n−1)

2

,

Fig. 6  Means and medians of the PCCs above the threshold in each interval. a Unnormalized means and 
medians of PCCs. b Means and medians of rescaled edge weights

Table 2  Properties of the entire network with different sliding thresholds

Sliding threshold 0.5% 1% 2% 3%

No. of nodes 11825 12290 12415 12431

Node percentage 90.4% 94.0% 94.9% 95%

No. of edges 382168 685759 1307104 1896825

Network density 0.55% 0.91% 1.70% 2.46%

No. of connected components 13 4 5 5

No. of nodes in LCC 11794 12278 12401 12417

LCC node percentage 90.2% 93.9% 94.8% 94.9%

No. of edges in LCC 382144 685745 1307089 1896810

LCC density 0.55% 0.91% 1.70% 2.46%
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as the AgGCN1.0 network. This network maintains its structure with a large number of 
nodes connected with the smallest number of edges. The AgGCN1.0 network, therefore, 
contains nearly all genes encoded in the Ag. gambiae genome and shows co-expression 
between pairs of genes only when their expression vectors have very high correlation.

Methodology verification and robustness test
Next, we validated the methodology of network construction by testing for systematic 
errors in the procedure and studied the robustness of the AgGCN1.0 network by ran-
domly removing different percentages of conditions from the data set.

Methodology verification

With the construction of the AgGCN1.0 completed, we next verified that the network 
structure was based on the underlying expression matrix rather than based on a sys-
tematic error in the method of construction. To this end, we randomized the expression 
values under the same condition and reconstructed the network with the method intro-
duced in Sect. 2 using the following procedure:

Step 1: Randomly reshuffle the expression values for each condition.
Step 2: Compute the PCCs for all of the gene pairs.
Step 3: Use the top 0.5% PCCs fitted sliding threshold to select edges.
Step 4: Repeat step 1 to step 3 100 times.
Figure  7 shows the distribution of the number of edges of the 100 networks. The 

AgGCN1.0 network contains 382,168 edges, while the number of edges recovered in the 
reconstructed networks is smaller or equal to ten. Based on this result, we did not detect 
a systematic error in the proposed network construction method and concluded that the 
structure of AgGCN1.0 is indeed based on its expression matrix.

Robustness test

The AgGCN1.0 network is based on a meta-analysis of expression data obtained 
from many conditions, and it is unclear how sensitive the overall network struc-
ture is to the number of conditions included in the data set. To evaluate network 
structure sensitivity, we randomly removed an increasing number of conditions and 

Fig. 7  The number of edges from the reshuffled data sets
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reconstructed the network. The network is considered robust if the edges in the 
reconstructed networks recapitulate the majority of those in the original network.

Specifically, we randomly and iteratively (100x) removed 3 (1%), 13 (5%), and 
39 (15%) conditions and used the top 0.5% PCCs fitted sliding threshold of the 
AgGCN1.0 to detect edges. Table 3 shows the comparison between the original net-
work and the reconstructed networks. The average number of edges in the recon-
structed networks dropped with an increasing number of removed conditions, with 
a 15% decrease in conditions leading to a reduction of 11.3% in the number of edges. 
Over 90% of the edges present in the AgGCN1.0 network continued to be detected 
with 13 conditions removed. However, the number of overlapping edges decreased 
on average by 22.3% when 39 conditions were removed. To compare more specifi-
cally how the removal of conditions influenced edge loss in the AgGCN1.0 network, 
we determined which AgGCN1.0 edges in each of the 26 paired element length 
intervals were retained in a sample network that was constructed after removal 
of 3 (1%), 13 (5%), and 39 (15%) conditions, respectively (Fig.  8). Overall, edges 
were largely retained as long as the paired element length was greater than 50. As 
expected, removal of 39 conditions did not recover edges with fewer paired elements 
and thus overall low experimental support. Together, these results show that the net-
work construction methodology is robust with respect to random removal of up to 
15% conditions. These results also demonstrate that the sensitivity of the AgGCN1.0 
structure to the underlying number of conditions is mostly limited to the loss of 
those edges derived from correlation of expression vectors with few paired elements.

Table 3  Statistical results of the original and removed networks

Removed conditions Gene pairs Ave. edges Ave. edges in common (%)

0 83,781,071 382,168 382,168 (100%)

3 83,768,208 381,010 366,104 (95.8%)

13 83,706,380 373,820 347,205 (90.9%)

39 83,511,993 350,306 300,939 (78.7%)

Fig. 8  The distribution of remaining edges in the network after removing 1%, 5% and 15% conditions. The 
horizontal axis is the number of paired elements and the vertical axis is the number of edges
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Analysis of the AgGCN1.0 largest connected component
The AgGCN1.0 network constructed through the method introduced in Sec. 2 using a 
top 0.5% sliding threshold is composed of 13 connected components (Table 2), the larg-
est of which (the LCC) consists of 11,794 nodes and 382,144 edges. In this section, we 
characterized the LCC network by computing node centralities and detecting its core 
and communities.

Node centralities

Centralities of network nodes are calculated to detect nodes that can potentially play 
a critical role in network connectivity, evolution, and dynamics. This general feature 
extends to GCNs, where node centrality measures have been used successfully to iden-
tify genes essential for organism survival [73, 74]. The simplest node centrality is the 
node degree, which is defined as the number of links incident on a node. When links are 
weighted, the node degree becomes the node strength, defined as the sum of the weights 
of all node’s edges. The LCC node strength has an average of 45.7 and spans a wide range 
of values, included between 0.65 and 965.4. To better understand the characteristics of 
the AgGCN1.0 LCC, we compared its centralities with the corresponding centralities of 
two networks generated using the Erdos-Renyi (ER) [75] and the Barabasi-Albert (BA) 
[76] random network models. The ER network is the simplest network model, where for 
any pair of nodes a link is built with a given probability. The BA network is a model of 
a scale-free growing network, where new nodes connect based on preferential attach-
ment, and was used here to build a network with nodes with large degrees (hubs). By 
design, the ER and BA networks had the same number of nodes and a similar number of 
links as the LCC (Table 4). Since the AgGCN1.0 LLC is a weighted network with weights 
approximately in the interval [0.65, 0.97], in the generation of the two random networks, 
we assigned weights to the links uniformly at random from the interval [0.65, 0.97].

Table 4 shows the average, minimum, and maximum node strengths of the three net-
works. While the average value remained similar across the three networks, the range of 
variability of the ER network was much smaller than those of the two other networks. 
The similarity of the LCC network with the BA network was also confirmed by compar-
ing the corresponding node strength distributions (Fig. 9). These distributions were sim-
ilar, both showing the presence of hubs, i.e., nodes with very large strength values. The 
presence of hubs is a characteristic of many real networks and provides robustness to 
the structure with respect to random perturbations of nodes. To measure quantitatively 
how well the AgGCN1.0 network satisfied the scale-free property, we adopted the model 
fitting index R2 on the log-log strength distribution, obtaining values of 0.884 for the 
AgGCN1.0 LCC and 0.967 for the BA network. The latter value is close to one because 
the BA network is scale-free by construction. This numerical test confirmed that the 
AgGCN1.0 LCC can be considered approximately a scale-free network.

Two other properties of the three networks are computed and compared in Table 4, 
namely the average clustering coefficient and the average shortest path length. While the 
clustering coefficient shows how well connected are the neighbors of a given node, the 
average shortest path length is a measure of the distance of node pairs in the network. 
The AgGCN1.0 LCC had a much higher clustering coefficient than the ER network and 
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the BA network, which is typical of real networks with communities. In computing the 
classical shortest path, a small edge weight represents a shorter distance between two 
nodes. In contrast, in the AgGCN1.0 LCC, higher edge weights represent closer con-
nections. Therefore, the reciprocal of the edge (link) weight is used as the link length 
to calculate all shortest paths. We then used these shortest paths to compute the aver-
age shortest path length, betweenness, and closeness. In Table  4, the average shortest 
path length of the AgGCN1.0 LCC is compared with that of the ER network and the 
BA network. The average shortest path of the AgGCN1.0 LCC was only slightly longer 
in comparison. The two random network models are characterized by the small-world 
property, which means that there is a path between a pair of nodes that involves only a 
few short edges and the clustering coefficient is not small. Overall, we can conclude that 
the AgGCN1.0 LCC also presents some small-world characteristics. Many biological 
networks, including GCNs show some degree of this property (e.g. [77–79], and it may 
reflect an evolutionary advantage of such a structure. One possibility is that small-world 

Fig. 9  Node strength distribution of the network. a The strength distribution of the AgGCN1.0 LCC network. 
b The strength distribution of the ER random network. c The strength distribution of the BA random network

Table 4  Topological properties of the co-expression network

Properties AgGCN1.0 LCC ER network BA network

Edges 382,144 382,723 376,384

Ave. node strength 45.7 52.6 51.7

Min. node strength 0.65 27.0 24.3

Max. node strength 965.4 82.0 875.3

Ave. clustering coefficient 0.24 0.0046 0.019

Ave. shortest path 4.8 3.1 2.9
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networks are more robust to random perturbations than other networks and this would 
provide an advantage to biological systems that are subject to damages, such as gene 
mutations.

Other centrality measures computed in this analysis, in addition to the node strength, 
are the following three [80]:

•	 Eigenvector centrality: the centrality of a node is determined by the entry of the 
eigenvector corresponding to the largest eigenvalue of the adjacency matrix repre-
senting the AgGCN1.0 LCC.

•	 Betweenness centrality: the centrality of a node is determined by the number of 
shortest paths that pass through the node itself.

•	 Harmonic closeness centrality: the centrality of a node is based on its distance to all 
other nodes. Closeness centrality is the sum of shortest path distance reciprocals of a 
node to all other nodes. It is calculated as 

 where C(x) and d(x, y) are the closeness of node x and the shortest path distance 
between node y and x, respectively.

Figure  10 shows the four node centralities in the network by visualizing the size of 
the node proportionally to its centrality. High-strength nodes were distributed in the 
areas where nodes are tightly connected (Fig. 10a, the left and right clusters). However, 
only nodes in the right cluster also had relatively high node eigenvector centrality, as 
indicated by their bigger node size (Fig.  10b). In contrast, only few nodes had a high 
betweenness centrality (Fig. 10c), while many nodes had a similar harmonic closeness 
centrality (Fig. 10d).

Overall, we did not identify any correlation between gene expression level and either 
of the four centrality measures reported here (data not shown). Thus, these centrality 
measures can potentially be used as additional node characteristics. However, since the 
AgGCN1.0 did not contain a single group of nodes that is characterized by high central-
ity for all four measures, it will be critical to define the gene property to be studied and 
determine which measure more closely represents such property to detect the key nodes 
(genes). Additionally, if an evolutionary process would target the top central nodes in 
the AgGCN1.0 LCC network, these nodes would be different on the basis of the selected 
centrality, providing a diversity advantage (AgGCN1.0_properties, in Supplementary 
Materials https://​github.​com/​KSUNe​tSE/​AgGCN1.​0/).

Communities

A community in a network is a subgraph that is highly connected internally and loosely 
connected with other subgraphs. Community detection for the AgGCN1.0 LCC is 
essential, since the identified communities can help discover the underlying biological 
processes that shape the network. In recent years, various community detection algo-
rithms have been proposed. According to [27, 82, 83], the Louvain algorithm and the 
Infomap perform better than other methods, with the extra advantage of low compu-
tational complexity. However, the Infomap method tends to cut leaf nodes into isolated 

(8)C(x) =
∑

y

1

d(x, y)
,

https://github.com/KSUNetSE/AgGCN1.0/
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communities, which results in numerous tiny communities. For this reason, in this work, 
we adopted the Louvain algorithm to detect the communities. The Louvain algorithm 
is a modularity optimization method that hierarchically identifies how nodes are clus-
tered. Modularity measures the difference between the AgGCN1.0 LCC and a random 
network in terms of community existence. The modularity Q of a network is calculated 
as follows [82]:

where Q, ki , kj , m and Aij are the modularity, the degrees of node i and j, total number 
of edges in the network and the weight of the edge between node i and j respectively. 
The Kronecker delta function δ is equal to 1 if ci equals cj , which mean the two nodes 
are in the same community, while δ is equal to 0 when the two nodes are in different 
communities.

In the AgGCN1.0 LCC, we detected 15 communities using the Louvain algorithm, as 
shown in Fig.  11. Most of the nodes are included in 13 large communities, while two 
small communities contain less than 1% of nodes. In the network visualization shown 
in Fig. 11, nodes belonging to the same community were visualized in proximity, due to 

(9)Q = 1

2m

∑

i, j

(Aij −
kikj

2m
)δ(ci, cj),

Fig. 10  Centrality measures for the AgGCN1.0 LCC. The layout of the network is generated through Gephi 
with ForceAtlas 2.0 algorithm [81]. a Node strength centrality. b Eigenvector centrality. c Betweenness 
centrality. d Harmonic closeness centrality. The size of a node is proportional to its centrality value
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the algorithm selected to visualize the network. In particular, the layout of the network 
is based on the ForceAtlas 2.0 algorithm, which produces visual densities that denote 
structural densities [81]. Visualization of the force-directed layout of the AgGCN1.0 
LCC confirmed the existence of well-defined communities. Computing the average 
shortest path between pairs of communities revealed that communities visualized in 
proximity are also characterized by a relatively shorter average path length. For example, 
the average shortest path length between community 11 and community 2 was 3.276, as 
compared to 4.764 between community 11 and community 15.

Cores

The k-core of a graph is a maximal subgraph in which each node has at least k neigh-
bors after removing nodes with degrees less than k repeatedly by starting with k = 1 
and increasing k until no nodes are left in the network. The core of the network is the 
subgraph obtained with the maximum k such that there are still nodes in the sub-
graph, but with k + 1 , all nodes are removed. In the case of a weighted network, node 
strength substitutes node degree, and the definition of coreness needs to be adapted. 
In the s-core decomposition, the s-core subgraph consists of all nodes i with node 
strengths s(i) > s , where s is a threshold value. We define the threshold value of the 
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23.63%
16.42%
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13.13%
7.62%
6.54%
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1.83%
1.81%
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1.06% 
0.27%
0.24%

Fig. 11  The 15 major communities of the LCC in AgGCN1.0. The network was visualized with Gephi 0.9.2 
using the ForceAtlas 2.0 algorithm [81]. Communities are numbered consecutively based on the number of 
nodes they contain and colored according to the panel on the left
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sn-core as sn−1=min s(i), among all nodes i belonging to the sn−1-core network. The 
sn-core is found by the iterative removal of all nodes with strengths s(i) ≤ sn−1 . Like 
k-core analysis, where node degrees are recalculated for every removal, the remaining 
nodes’ strengths must also be recalculated in the weighted core [84].

The distribution of s-core sizes is shown in Fig.  12a, while in Fig.  12b, the red 
nodes are the subgraph corresponding to the final s-core. If the threshold was above 
s=74.64, all nodes were removed, showing the nodes within the final s-core are tightly 
connected. Green nodes remained at a threshold s=48.54, corresponding to the first 
discontinuous drop distribution of s-core sizes (Fig. 12a). When s=69.20, two sepa-
rate components were maintained, representing two densely connected parts in the 
network (blue nodes). After we increased the threshold s, the blue node component in 
the bottom-right disappeared. Note that cores with higher thresholds were included 
in those with lower thresholds. Nodes in the final core are the ones that remain in 
the network even when many redundant connections, i.e., many connections to 
other nodes with equal or smaller strength, were iteratively removed. The final core 
can be seen as the most critical and internal set of nodes that guarantee network 
connectivity.

The analysis of node characteristics in the final core revealed the following. Core 
nodes were, on average, highly expressed across most conditions, as compared to 
all nodes in the LCC, and also sampled across most conditions ( ≥ 230). The central-
ity measures (strength, eigenvector, closeness, betweenness) of the core nodes were 
also, on average, significantly higher than those of the LCC. However, the core nodes 
did not include any of the top central nodes under any of the four centrality meas-
ures (strength, eigenvector, closeness, betweenness). Taken together, these results 
show that the co-expression of core nodes is supported by strong expression across 
the majority of conditions in the network. In addition, overall gene regulation across 
the An. gambiae transcriptome results in a network structure that at its core maxi-
mizes all centrality measures rather than a specific one for each core node. This 
structure stabilizes the GCN, because a targeted perturbation of the highest central-
ity nodes would not affect the network core, thus providing another layer of network 
robustness.

Fig. 12  Coreness. a The number of nodes left with respect to the s-core threshold. b Core subgraphs for 
different strength thresholds. Core s=48.54 consists of 2122 nodes (green, blue and red nodes), and core 
s=69.20 consists of 416 nodes (blue and red nodes). The final core s=74.64 consists of 153 nodes (red nodes)
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Network architecture is based on biological function
The analyses of the properties of the largest component of the AgGCN1.0 network 
identified a small-world, scale-free network with a small final core and distinct com-
munities. This suggests coordinated behavior of gene expression across a large num-
ber of distinct experimental conditions, independent of any single specific condition. 
Previous studies have identified network architecture of GCNs to be based on gene 
function, where co-expression modules represented sets of genes that function within 
the same biological processes (e.g. [85, 86]). To determine whether individual sub-
graphs of the network were enriched for particular biological processes, we per-
formed a Gene Ontology (GO) and KEGG pathway enrichment analysis in R using 
topGO [87].

The network core is enriched in genes required for oxidative phosphorylation 

and translation

The first subgraph we analyzed for GO and KEGG pathway enrichment was the final 
core s = 74.64 , which consists of 153 genes, representing 1.3% of genes that comprise 
the largest connected component. The top GO categories significantly enriched in the 
s-core group encompass the biological processes of translation and oxidative phos-
phorylation (Fig. 13, Table S1, in Supplementary Materials https://​github.​com/​KSUNe​
tSE/​AgGCN1.0). Indeed, the s-core contains 64 of the 131 genes identified to make 
up the ribosome of An. gambiae (KEGG pathway aga03010), and 38 of the 107 genes 
that comprise oxidative phosphorylation (KEGG pathway aga00190). We next ana-
lyzed GO enrichment in the two larger cores, Core s = 48.54 and core s = 69.20 (Fig. 
S2 and 3, in Supplementary Materials https://​github.​com/​KSUNe​tSE/​AgGCN1.0). 
Similarly to the final Core 74.64, the GO terms enriched the most belonged to the 
biological processes of mitochondrial electron transport and translation (Table  S1). 
However, the enrichment was largely due to the presence of genes in the final core, 
with the larger cores adding less than half of the enriched genes that make up the 
ribosome and mitochondrial electron transport chain. Given the fundamental need 
for ATP and proteins for all cellular function, it is perhaps not too surprising that the 

Fig. 13  The network core is enriched for genes that function in oxidative phosphorylation and translation. 
The X-axis represents the statistical significance of the gene ontology (GO) categories (y-axis) after 
adjustment for multiple testing. Size of the dot is proportional to number of genes in the given GO category

https://github.com/KSUNetSE/AgGCN1.0
https://github.com/KSUNetSE/AgGCN1.0
https://github.com/KSUNetSE/AgGCN1.0
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expression of these genes is most central and integrated across the entire An. gambiae 
transcriptome.

Network communities are enriched for gene sets with functions in distinct biological 

processes

We next analyzed the community subgraphs for enrichment of GO terms and KEGG 
pathways among their annotated genes (results are summarized in Table 5, all data in 
Table  S2, Fig. S3-S17,  in Supplementary Materials https://​github.​com/​KSUNe​tSE/​
AgGCN1.0). We found each community enriched for distinct biological processes, 
which dependent on community, ranged from fundamental cell functions to specialized 
physiologies executed by specific organs or tissues.

Manual analysis of enriched GO and KEGG terms within each community revealed 
an additional clustering of individual biological processes that together are required for 
fundamental cellular functions. For example, Community 1 is enriched for genes with 
GO terms that broadly fall into the biological processes of DNA repair, Transcription, 
RNA processing, and Translation, indicating co-expression of genes that belong to the 
functionally related cellular functions of gene expression (Fig. S3,  in Supplementary 
Materials https://​github.​com/​KSUNe​tSE/​AgGCN1.0). A second example is Community 
5, which contains an overrepresentation of genes with GO term annotations belonging 
to glycolysis, tricarboxylic acid (TCA) cycle, and Oxidative phosphorylation, and cell 
redox homeostasis, indicating that that the genes required for oxidative energy produc-
tion are co-regulated (Fig. S7,  in Supplementary Materials https://​github.​com/​KSUNe​
tSE/​AgGCN1.0). In addition, Community 5 is also enriched for genes with function in 
translation and protein processing, suggesting that the generation of proteins and their 
turn-over are co-regulated on a transcriptional level (Fig. S7, in Supplementary Materi-
als https://​github.​com/​KSUNe​tSE/​AgGCN1.0). A third example is Community 8, which 

Table 5  Nodes distribution in each community and GO term enrichment

∗ GO term “smell” due to enrichment of the D7 family salivary gland protein genes, which are odorant binding proteins

Community (% of 
network)

Enriched Biological Functions

1 (23.6) DNA repair, transcription, RNA processing, translation

2 (16.4) Neurogenesis/neuronal function, sensory perception

3 (13.6) Cuticle metabolism, cytoskeleton organization, muscle development

4 (7.62) Intracellular signal transduction, protein phosphorylation, neuron function

5 (6.54) Aerobic respiration, glycolysis/TCA cycle, redox homeostasis, translation, protein processing

6 (4.15) Neuronal function, signal transduction, sensory perception

7 (3.97) Innate immunity, lipid metabolism

8 (3.65) DNA replication/repair, cell cycle, cell division, meiosis/oogenesis

9 (1.83) Digestion, drug metabolism, chitin metabolism, transmembrane transport, innate immunity

10 (1.81) Chitin metabolism, lipid metabolism, proteolysis

11 (1.08) Cytoskeleton, axoneme

12 (1.06) Gluconate shunt, signaling

13 (1.01) Cuticle metabolism

14 (0.27) Proteolysis

15 (0.24) Salivary gland proteins, smell∗

https://github.com/KSUNetSE/AgGCN1.0
https://github.com/KSUNetSE/AgGCN1.0
https://github.com/KSUNetSE/AgGCN1.0
https://github.com/KSUNetSE/AgGCN1.0
https://github.com/KSUNetSE/AgGCN1.0
https://github.com/KSUNetSE/AgGCN1.0
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is enriched for genes that encode nuclear proteins that function in DNA replication and 
repair, Cytokinesis, and Cell cycle.

Community 15 presents the most striking example of a set of co-expressed genes that 
have a highly specialized function, as it is enriched for genes with known function in 
blood feeding (Fig. S17,  in Supplementary Materials https://​github.​com/​KSUNe​tSE/​
AgGCN1.0). About 93% of all genes in Community 15 encode known salivary gland 
proteins. Indeed, this community contains 51% of all genes identified by Arca et al. as 
salivary gland protein genes [88]. Furthermore, Community 15 is enriched specifically 
in salivary gland proteins that are expressed in adult female salivary glands, including 
the majority of the D7 family, all members of the SG1 family and SG7/SG7-2 family, as 
well as gVAG (g ambiae Venom AllerGen), apyrase and 5’-nucleotidase. In contrast, sali-
vary gland protein genes expressed in male and female salivary glands, including salivary 
gland amylase, maltase, members of the SG2 protein family, SG9, and the gene encoding 
the 55.3 kDa salivary gland protein are located in community 9.

Community 7 presents a second example of a set of co-expressed genes that have a 
highly specialized function, as it is highly enriched for genes encoding proteins with 
known function in innate immunity (Fig. S9, in Supplementary Materials https://​github.​
com/​KSUNe​tSE/​AgGCN1.0). The An. gambiae genome encodes 347 canonical immu-
nity genes belonging to the immune modules of recognition, modulation, signal trans-
duction, and effectors [89]. Of these, 23.6% (82 genes) are part of community 7, while 
the entire community only represents 4.1% of the network. Community 7 includes 20.5% 
of putative recognition genes, 37.9% of modulation genes, and 26.7% of effector genes, 
but only 1 (TOLL5D) of 53 annotated immune signal transduction genes. The largest 
immune protein family to be overrepresented is the CLIP-domain containing serine pro-
teases (CLIPs) [90], with 37 of 88 of annotated CLIPs are present in Community 7.

In addition to higher-order clustering of biological processes within communities, 
we also compared enriched GO terms between communities. We found that in many 
instances, related biological processes are enriched in neighboring communities. For 
example, Communities 3, 10, and 13 map to the same region of the 2D visualized net-
work (Fig. 12) and are enriched for genes with GO term annotations related to chitin 
metabolism. These GO terms are partially explained by the enrichment of Communi-
ties 3 and 10 for genes encoding CPR proteins, which are characterized by a Rebers and 
Riddiford Consensus (RR) domain and are major components of the insect cuticle. CPR 
proteins fall into two evolutionary subgroups, based on their RR domain type, which 
are referred to as RR1 and RR2. The An. gambiae genome encodes 55 RR1 and 102 RR2 
genes [91], of which 47 RR1 and 92 RR2 genes are present in the AgGCN1.0. Commu-
nity 3 contains 45% of CPR genes, while only containing 13.6% of genes in the network. 
Community 13 contains 19% of RR1 genes, while only containing 1.0% of genes in the 
network.

Other examples are of shared GO terms across neighboring communities are the 
enrichment of innate immunity genes in communities 7 and 9, as well as the enrichment 
of salivary gland protein genes in communities 15 and 9 (Fig. 11). The algorithm of the 
Force Atlas 2.0 network layout pulls together nodes that are connected by links, while 
repelling nodes [81], thus the expression of genes within neighboring communities is 
likely more similar than to communities that are more distant to each other.

https://github.com/KSUNetSE/AgGCN1.0
https://github.com/KSUNetSE/AgGCN1.0
https://github.com/KSUNetSE/AgGCN1.0
https://github.com/KSUNetSE/AgGCN1.0
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Conclusion
In this paper, we constructed a global gene co-expression network for An. gambiae based 
on the meta-analysis of 30 gene expression studies. The rich information produced by 
different experiments made it challenging with existing methodologies to analyze the 
relations of genes based on co-expression, as different methodologies were used to pro-
cess the data. Current approaches cannot directly construct a GCN from many con-
ditions that are tested with various methodologies. The raw expression values of each 
condition therefore required normalization before applying any network construction 
methods. In this work, we adopted the z-score normalization, by which the expression 
values in different conditions are normalized with zero mean and unity variance. The 
co-expression of genes was then quantified by the Pearson correlation coefficient, which 
is computed for each pair of genes based on the normalized expression. However, the 
number of paired elements between genes was heterogeneously distributed, given that 
only a subset of genes was tested under each condition, and missing values are ubiqui-
tous in experimental data. Thus, a unique threshold or criterion was not appropriate for 
selecting edges. Instead, we categorized the PCCs into different intervals according to 
the number of paired elements, and the fitted sliding threshold was used to select edges 
for the GCN. In addition, the PCCs were rescaled by the reversed curve of the fitted slid-
ing thresholds to obtain the edge weights.

Analyses of the resulting AgGCN1.0 network showed that it is robust with respect to 
random removal of up to 15% conditions. In addition, the sensitivity of the AgGCN1.0 
structure to the underlying number of conditions mostly affected the loss of those edges 
derived from few experimental data. Studies of the topological properties of the network 
showed that AgGCN1.0 is dominated by hub nodes and approximates a scale-free prop-
erty. Scale-free properties are typical for real-world networks [92, 93], including GCNs 
and other biological networks [79, 94]. This property likely provides network robustness 
and protects against random perturbations, e.g., mutations that protect the global archi-
tecture of the network. In addition, the global architecture is also protected against tar-
geted perturbations, due to the node properties of the AgGCN1.0 network core, where 
all centrality measures are maximized rather than a specific one for each core node. 
It will be interesting to compare whether this feature is common of global GCNs, and 
whether it is a consequence of specific biological gene properties or functions.

Scale-free and small-world networks are characterized by the existence of communi-
ties, which are groups of nodes that are well-connected insides and loosely connected 
with other communities. This translates to GCNs, in which genes are often grouped 
into modules that are characterized by a similar function. The 15 communities of the 
AgGCN1.0 are indeed enriched for different GO and KEGG terms, thus constitut-
ing biologically meaningful groups. This finding provides additional validation of the 
updated GCN construction methodology reported in this study. Not surprisingly, many 
communities were enriched functions that constitute fundamental biological processes 
required for cellular function regardless of cell or tissue type. This is largely explained 
by the non-model organism status of mosquitoes. With limited functional characteriza-
tion of lineage-specific genes, gene annotation often relies on orthology and thus biasing 
even further the inherent incompleteness of gene ontology [95]. While mosquito-spe-
cific GO terms have been defined based on anatomy [96], several physiologies highly 
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relevant to mosquito biology are either not included in the GO database (e.g., hematopa-
ghy) or are underutilized in annotations (e.g., host-seeking). Nevertheless, community 
structure in the AgGCN1.0 is clearly defined by functional clustering of genes.

The GO term and KEGG pathway enrichment analysis also revealed an interesting pat-
tern that may extend beyond the AgGCN1.0 to other gene co-expression networks. The 
architecture of the AgGCN1.0 at its s-core is defined by genes required for respiration 
and translation, both fundamental processes required for survival at the cellular level. 
The expression of these genes is further integrated into the expression of genes required 
for aerobic energy production and cellular protein genesis and homeostasis. Not sur-
prisingly, these genes are well-conserved evolutionarily at the metazoa and arthopoda 
level [97]. This not only demonstrates integration of these processes at the transcrip-
tional level, but also perhaps that the transcriptional regulation of these genes evolved 
early and has been maintained throughout evolution. In contrast, communities at the 
periphery of the network (e.g., communities 11 and 15) are enriched in genes that con-
tribute to specialized biological processes, including blood feeding [88] and potentially 
sensory neuron and/or sperm function [98]. Genes in these communities also tended to 
be more lineage-specific, suggesting that integration of novel biological processes into 
the An. gambiae transcriptome may not require rewiring of the regulatory circuity. In 
the future, it will be interesting to determine whether gene age is a principle that governs 
global gene co-expression patterns in An. gambiae and beyond.

In summary, this manuscript provides a correlation-based methodology to build 
GCNs from highly heterogeneous expression data. This methodology was then applied 
successfully to build a robust global GCN for An. gambiae, updating the previous meta-
analysis performed by [12]. This network is available freely to the scientific community 
at https://​github.​com/​KSUNe​tSE/​AgGCN1.0. Analysis of the AgGCN1.0 LCC suggests 
that the architecture of the An. gambiae transcriptome maximizes integration of essen-
tial cellular processes and enables evolutionary flexibility to integrate the expression of 
novel biological functions.
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