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Background
In order to grasp the heterogeneous information of cells and cut costs of material and 
time, Tang et al. [1] first proposed the single-cell RNA sequencing (scRNA-seq) technol-
ogy in 2009 which can describe the transcriptional profiles from the perspective of a sin-
gle cell rather than the average of all cells. With the rapid development in recent years, 
modern single-cell sequencing platforms such as SmartSeq [2] and Chromium 10X [3] 
have emerged and the number of gene expression profiles has surged to hundreds of 
thousands [4], which has aroused much interest of researchers. Through analyzing these 
data, not only can we find cell types [5] and detect rare cell populations [6], but also 
identify differentially expressed genes and construct differentiation trajectory [7].

However, opportunities and challenges coexist. Due to plenty of genes assayed and 
major of them not being portrayed in scRNA-seq data, distances between data points 
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(i.e., cells) become similar, which leads to small differences in the distances between 
cells and unreliable consequences in downstream analysis, such as the identification of 
cell subpopulations [8]. Thus, it is essential to apply dimensionality reduction methods 
which can learn the representations of data in a low-dimensional space. Principal com-
ponent analysis (PCA) [9] is one of typical methods, which can find a set of principal 
components to explain the most variance of the data, and many tools such as Seurat [10] 
use variants of it. In addition, non-negative matrix factorization (NMF) [11] has shown 
its ability to identify interpretable factors from high-dimensional and sparse datasets 
under the constraint of no negative element. These two belong to linear methods that 
are insufficient in scRNA-seq data with high noise and complex structures. Deep learn-
ing could alleviate these difficulties since it derives from non-linear mapping functions. 
Recently many deep learning methods have been developed such as single-cell Varia-
tional Inference (scVI) [12], which design a generative model aiming at the distribution 
characteristics of scRNA-seq data.

After dimensionality reduction, the next step is to identify and annotate cell popula-
tions, which is also a pre-step of differential expression analysis. In most cases, clus-
tering algorithms are employed to identify distinct groups of cells, such as K-means, 
hierarchical clustering, community-detection-based algorithms [13]. This strategy could 
detect new cell subpopulations. Alternatively, some supervised methods are developed 
to annotate cell subpopulations. Since these models are trained based on scRNA-seq 
data with cell type labels, biological information implied in these training data could be 
transferred to target datasets to improve the accuracy of cell type annotation. Though 
this strategy cannot identify new cell type, with the emergence of single cell atlas [14], 
tsunamic data with cell type labels could definitely provide much prior information 
which is valuable for the identification of cell subpopulations.

In this paper, we present a semi-supervised dimensionality reduction approach named 
scSemiAE aiming at the identification of cell subpopulations for scRNA-seq data analy-
sis, which leverage partial cells with labels to guide the learning of an autoencoder for 
the target datasets (The framework of scSemiAE is shown in Fig. 1). It first employs a 
classifier trained from scRNA-seq data with known cell type labels to annotate cell types 
for target datasets and selects predictions being true with high probability, and then 
learns low-dimensional representations of target datasets guided by partial cells with 
predicted cell types. The partially labeled cells could transfer the information from other 
available datasets, guide to learn efficient coding of target datasets, and consequently 
improve the accuracy of downstream analysis. To our knowledge, netAE [15] is a semi-
supervised method which uses a softmax layer to calculate classification loss. Moreover, 
scANVI [16] is an extension of scVI which adjusts model distribution to amplify label 
signals after training a basic model. We choose them as two of the baseline models.

In our experiments, we compare the latent space learned by scSemiAE with the spaces 
learned by netAE, scANVI, autoencoder (AE), scVI as well as principal components got 
from PCA in both classification and clustering tasks. When the proportion of labeled 
cells or the number of labeled cell subpopulations varies, the latent space learned by 
scSemiAE performs outstandingly in most cases, which implies that it can simplify fur-
ther analysis. In addition, we show its ability to remove batch effects, which makes it 
more applicable in scRNA-seq data analysis.
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Results
To evaluate scSemiAE comprehensively, we implement several experiments on real data-
sets and compare it with both semi-supervised methods and unsupervised methods. 
We test the performance of scSemiAE under three scenarios, the different proportions 
of labeled cells, the different numbers of labeled cell subpopulations and batch effects 
existing. Since the datasets in these experiments must be labeled with true cell subpopu-
lations in advance to give a standard evaluation criterion, we omit the step of cell anno-
tation, but in real applications, cell annotation may be necessary to get partial labels with 
high confidence.

The methods in comparison include PCA, semi-supervised methods netAE and 
scANVI as well as unsupervised methods AE and scVI. Among them, AE refers to the 
pretraining model of scSemiAE. For fairness, we use similar network structure for all 
deep models in comparison. Encoder and decoder are both with two fully connected 
layers and the dimension of latent space is 50. The training epoch of all deep models is 
set to 50. Besides, to reduce the effect on performance caused by parameter regulation, 
these methods in comparison are tested under their default parameters and algorithm 
procedures. Consequently, we do not tune the hyperparameters of scSemiAE separately 
for each dataset but use the default settings.

Since scSemiAE can be treated as a dimensionality reduction algorithm, to show the 
performance, we select two representative metrics from classification field and clus-
tering field respectively. (1) Accuracy (ACC): This one is mainly to evaluate the per-
formance of classification. We select the k-nearest neighbor (kNN) classifier with k = 
10, which is one of the simplest models for classification. For deep models, scSemiAE, 
AE, scVI, scANVI and netAE, embedding vectors mapping from labeled cells are used 
to train a kNN classifier and prediction accuracy is calculated on the unlabeled set. 
For PCA method, kNN is trained on principal components [15]. (2) Adjusted Rand 
Index (ARI) [17]: This one is mainly to evaluate the performance of clustering. We 

Fig. 1  Framework of scSemiAE. (1) Annotation: predicting cell type via a classifier and labeling partial cells 
with high confidence; (2) Pretraining: training an autoencoder with all cells; (3) Fine-tuning: adjusting the 
weights of encoder using labeled cells
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select Louvain and K-means that are two most popular clustering algorithms. They 
are used to group only unlabeled cells on a low-dimensional space directly and ARI 
is also calculated on the unlabeled cells. Louvain will stop at the best split. The size 
of groups, k in K-means algorithm will be set to the exact number of cell subpopu-
lations. Besides, Uniform Manifold Approximation and Projection (UMAP) [18] are 
employed to give visualizations by projecting embedding into two dimensions.

scSemiAE performs best for tests with different proportions of labeled cells

The first experiment is to test the performance of scSemiAE when the proportion of 
labeled cells is various. We set the proportion of labeled cells to 0.05, 0.1, 0.2, 0.4 
respectively. In Fig. 2, we present the results for the first four datasets of all methods 
in comparison, where all the mean and standard deviation of ARI and ACC values are 
counted from 20 randomly sampling of labeled cells (its corresponding numerical val-
ues being shown in Additional file 1).

As shown in Fig.  2, it is very clear that scSemiAE performs best. In most tests, 
scSemiAE achieves the best score and especially the ARI values calculated from Lou-
vain, scSemiAE exceeds other algorithms by 10–30%. For K-means, scSemiAE is the 
most stable method on multiple datasets. Though it is the second best on Cortex 
and Limbs Muscle datasets, scSemiAE performs much better than others in Heart 
and Embryos datasets. PCA fluctuates a lot and all the other models are worse than 
scSemiAE on ARI values. Naturally, scSemiAE should be a better choice for cluster-
ing of scRNA-seq data. Besides, the performance of scSemiAE is far beyond it of AE 
which is the pretraining part of scSemiAE and it demonstrates that the fine-tuning 
part of scSemiAE does help great. By the way, though K-means seemly performs bet-
ter than Louvain, we cannot come to the conclusion quickly. Usually, the true size 
of cell subpopulations cannot be known beforehand and it is an important param-
eter for K-means. In fact, in above experiments, Louvain likely pops out more clusters 

Fig. 2  Change of ARI (Louvain & K-means) and ACC (kNN) values with the increasing labeled proportion for 
six methods. a On Cortex dataset; b on Heart dataset; c on Limb Muscle dataset; d on Embryos dataset
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than K-means, in which k is exactly set to the true size of cell subpopulations. It can 
explain why the ARI of Louvain looks not as good as it of K-means.

As for ACC indicator, scSemiAE achieves the best score on two datasets, Limb Muscle 
and Heart, and on the other two datasets, scSemiAE is competitive. What’s more, when 
the proportion of labeled cells is very low, such as 0.05, scSemiAE is the best one.

A series of experiments illustrate that scSemiAE should be the first choice among the 
semi-supervised methods and unsupervised methods in comparison since it performs 
best or secondly best in tests with different proportions of labeled cells.

scSemiAE performs best for tests with the different number of labeled cell subpopulations

In reality, there must be some cell types, especially rare cell types, which cannot be 
annotated by a cell type predictor since these cell types may not be detected before. 
Therefore, we explore the performance of scSemiAE when the number of annotated cell 
types is limited. In this section, due to the size of cell subpopulations in the dataset, the 
number of labeled cell subpopulations ranges from 2 to 5, 6 or 7. Up to 10% cells of a cell 
subpopulation with more than 50 cells may be labeled. Three semi-supervised methods, 
scSemiAE, netAE and scANVI are compared.

The experimental results are shown in Fig. 3 (its corresponding numerical values being 
shown in Additional file  2). Obviously in most cases scSemiAE performs best regard-
less of the number of annotated cell subpopulations. From the results of Louvain algo-
rithm, when the number of annotated cell populations is more than 2, ARI of scSemiAE 
achieves about 20–30% better than it of the other two methods. When the number of 
annotated cell populations is 2, scSemiAE outperforms much in Cortex, Heart, and 
Limb muscle datasets, and performs comparably in Embryos datasets. The observation 
from K-means almost agrees it from Louvain, scSemiAE performs best in whole, except 
on Cortex dataset, when the number of cell types is less than 4, netAE and scANVI out-
performed scSemiAE a little.

What’s more, among three methods, scSemiAE is the only one that with the increas-
ing of annotated cell subpopulations, the performance of clustering unlabeled cells 
become better. While, netAE and scANVI cannot take full advantage of annotated 
cells since their performances keep very stable with the increasing of annotated cell 
subpopulations.

Fig. 3  Change of ARI (Louvain & K-means) values when increasing the number of labeled cell 
subpopulations for three semi-supervised methods. a on Cortex dataset; b on Heart dataset; c on Limb 
Muscle dataset; d on Embryos dataset
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As shown in Table 1, some datasets are seriously unbalanced, such as Heart datasets 
and among cell subpopulations of it, the most and least cells differ by two orders of mag-
nitude. In this case, it is truly hard for clustering algorithms to simultaneously identify 
both common cell type and rare cell type. scSemiAE alleviates the problem because it 
gives better low-dimensional representations in which common cell subpopulations and 
rare cell subpopulations are easy to be grouped respectively. ARIs from scSemiAE for 
Heart datasets are much better than its from netAE and scANVI, the other two semi-
supervised methods, as shown in Fig. 3.

scSemiAE could remove batch effects

Though scSemiAE takes no extra step to remove batch effects, it does have this function 
since one goal of it is to make cells of the same cell type close.

The Pancreas dataset is from four different batches. We also implement the experi-
ments mentioned above on this dataset. Among the methods, scANVI inherits from 
scVI the special treatment for removing batch effects, while scSemiAE and other meth-
ods do not take specific solution for it. As shown in Fig. 4 (its corresponding numerical 
values being shown in Additional file 3), the special treatment for removing batch effects 
do help scANVI and scVI outperform other methods. While, scSemiAE presents simi-
lar performance as scVI in clustering, a litter worse than the semi-supervised version 
scANVI, and much better than netAE and other unsupervised methods. It demonstrates 
that even when batch effects exist, scSemiAE could give better low-dimensional repre-
sentations which make the work of clustering algorithms easier.

For the Pancreas dataset, we further give visualizations of the raw data, the embed-
ded data from scSemiAE and netAE by UMAP, shown in Fig.  5 and here the labeled 
proportion is set to 0.1. It is obviously shown in Fig. 5a which is from raw data that when 
batch effects exist, cells such as alpha cells from CelSeq2 and Fluidigm C1 are rather far 
away, and even worse, alpha cells of Fluidigm C1 and beta cells of Fluidigm C1 are mixed 
together. It illustrates that here technical variations are bigger than biological varia-
tions, while most methods for batch effects removal, such as Seurat [10], Harmony [19], 
LIGER [20], work under the contrary assumption. In Fig. 5b, it is very clear that scSem-
iAE mixes cells of the same cell subpopulation from different batches very well, and each 
cell subpopulation is rather separate to ease clustering. In Fig. 5c, netAE looks unable to 
remove batch effects, such as alpha cells of Fluidigm C1, CelSeq2 and SMART-Seq2 are 

Fig. 4  a Change of ARI (Louvain) and ACC (kNN) values with the increasing labeled proportion for six 
methods on Pancreas dataset; b Change of ARI (Louvain) values when increasing the number of labeled cell 
subpopulations for three semi-supervised methods on Pancreas dataset
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very far away, so is beta cells of Fluidigm C1, CelSeq2 and SMART-Seq2. What’s worse, 
alpha cells and beta cells of Fluidigm C1 are much closer, just like the Fig. 5a.

The fine-tuning step of scSemiAE is to make cells of the same subpopulation close and 
cells among different subpopulations far away, which in some extent helps to remove 
batch effects even the step is guided by a few labeled cells. While netAE cannot deal with 
batch effects since one important part of its optimization goals is to make classification 
work, a classifier may find a cutline to classify different cell subpopulations while it is 
hard for unsupervised methods to group cells.

scSemiAE could preserve the cell differentiation structure

Embryos dataset includes 5 states of embryo development from the third day to the 7th 
day. UMAP visualizations for this dataset of the original space as well as the embedded 
spaces by scSemiAE, netAE and scANVI are shown in Fig. 6. The labeled proportion is 
also set to 0.1. From Fig. 6, we can figure out scSemiAE preserves the structure of the 

Fig. 5  Comparison on the Pancreas dataset. a Visualization for the raw data; b Visualization for the 
embedding of scSemiAE; c Visualization for the embedding of netAE
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differential process of cells. It suggests that scSemiAE could provide better low-dimen-
sional representations which could ease clustering and downstream trajectory inference.

Discussion
Clustering is the basis of differentially expressed genes detecting and trajectory analy-
sis. scSemiAE could help clustering algorithms find groups with more homogeny, and 
could preserve the cell differentiation structure, therefore it could give better support 
for differentially expressed genes detecting and trajectory analysis. In the future, we will 
consider how to emphasize the representing and detecting of rare cell types. scSemiAE 
could separate rare cell types from common cell types in latent space by now. However, 
if multiple rare cell types exist, though they could be separated, it is still hard for clus-
tering since the too small cell subpopulations are tended to be grouped with other cell 
types. Our experiments show cell types with tens of cell could be separated by scSemiAE 
and Louvain, while if cells of a cell type is about 10, sometimes it is merged with other 
cell types.

Conclusion
Due to high dimensions and high sparsity of scRNA-seq data, dimensionality reduction 
is an indispensable step before identifying cell subpopulations. In scRNA-seq data analy-
sis, they are often treated as two isolated steps and the new algorithms have been intro-
duced constantly and separately. If the dimensionality reduction algorithm can take a 
long view, the features we gain will benefit the identification of cell subpopulations.

By now, with the scRNA-seq data tsunami emerging, biological prior knowledge such 
as some common cell profiles could easily be gained and help the analysis of new data-
sets. In this paper, we propose scSemiAE, a semi-supervised deep learning framework 
combined with the thought of classification and clustering. On the one hand, we directly 
leverage a classifier to predict target datasets, which can provide prior knowledge; on the 
other hand, we encourage the low-dimensional representations of cells from the same 
cell subpopulation to be similar, while the representations of cells among different cell 
subpopulations are dissimilar. scSemiAE adopts a three-step strategy including annota-
tion, pretraining, and fine-tuning. A series of experiments for the different proportions 
of labeled cells or the different numbers of labeled cell subpopulations show that the 
performances of scSemiAE are rather excellent. It could leverage the prior information 
such as some, even few labeled cells to guide the gathering of the same cell subpopu-
lation, which could ease clustering. A byproduct of scSemiAE is that it could remove 

Fig. 6  Comparison on the Embryos dataset. a Visualization for the raw data; b Visualization for the 
embedding of scSemiAE; c Visualization for the embedding of netAE; d Visualization for the embedding of 
scANVI
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batch effects to some extent since it encourages the same cell type from different batches 
to gather together, which breaks the constraint that biological variations of different cell 
types should be greater than technical variations from different batches. In addition, it is 
also helpful to preserve the cell differentiation structure.

Active learning [21] is a form of semi-supervised learning, which is important tech-
niques when labeled data are scarce. It is worth trying to integrate active learning strat-
egy into scSemiAE to make improvement on learning efficiency and accuracy.

Methods
The core of scSemiAE is a semi-supervised version of the traditional autoencoder. Its 
primary objective is to learn a nonlinear mapping function by using the prior informa-
tion contained in some labeled cells so as to project high-dimensional expression of all 
cells to vectors in a low-dimensional space where similar cells are close and dissimilar 
cells are far away. In this section, we present the method of data preprocessing and the 
framework of scSemiAE.

Data preprocessing

As for data preprocessing, we first filter out genes that are not expressed in any sample 
and cells in which any reads are not captured. Then, we normalize the raw count matrix 
by using Scanpy package and making the target sum as the median of total counts for 
cells before normalization and take the log of it. Moreover, we select the top 5000 genes 
with high variance, which can save training costs to some extent.

Framework

To be more specific, the framework of scSemiAE consists of three stages: first, annotat-
ing labels for all cells using a classifier tool and picking out some of them whose labels 
are more likely to be right as the provider of prior information; second, pretraining with 
all cells on an autoencoder so that the latent characters can acquire as much effective 
information as possible; and third, adjusting the embedding function using labeled cells 
to accomplish the goal of grouping the cells with the same label and separating the cells 
with different labels.

In the first step, totally unannotated datasets will be annotated by existing tools, for 
example, SciBet [22], ScMap [23], Garnett [24], CellAssign [25], et al., which are classi-
fiers trained from datasets with cell labels. Most classifiers output the probability that a 
cell belongs to a certain cell type. The label with the maximum probability is regarded as 
the cell annotation result. For the prediction results are not completely correct, we set a 
threshold to filter out cells whose predictions are without high probability to ensure the 
selected labels as accurate as possible. Otherwise, the cell type is labeled as unknown. As 
for partially unannotated datasets, we can directly start with the second step.

In the second step of pretraining, an autoencoder is trained on all preprocessed data 
and we can get an embedding function that output latent vectors that are compressed 
representations while keeping the most important information of input data.

An autoencoder is a kind of artificial neural network used to learn efficient coding of 
unlabeled data by training to refine nonlinear features and ignore insignificant information. 
We take preprocessed gene expression profiles X = {xj ∈ RG}Nj=1

 as autoencoder’s inputs, 
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where N denotes the number of cells and G denotes the number of genes. Autoencoder 
usually consists of two main parts to regenerate the inputs: an encoder part that maps 
the inputs to a lower-dimensional embedding Z = {zj ∈ RD}Nj=1

 , where D denotes the 
dimension of the latent space; a decoder part that can reconstruct the inputs as outputs 
X̂ = {x̂j ∈ RG}Nj=1

 in the original space from the lower-dimensional embedding. The main 
idea of an autoencoder is to minimize the difference between the inputs and the outputs 
through optimizing the weights of the network. The loss function of the pretraining model 
is as follows and we choose mean squared error as data reconstruction error.

The third step is fine-tuning, which is a process of updating the weights of the encoder 
network based on partially labeled cells and finding a mapping function that can make 
the learned low-dimensional representations easily distinguish cells being the same cell 
subpopulation or not.

Let S be a scRNA-seq dataset. We assume that through the annotating process, 
S get some labels. S consists of two parts: one is gene expression matrix of labeled cells 
XL = {xj ∈ RG}

NL
j=1

 and a label vector of these cells YL = {yj ∈ {1, . . . ,K }}
NL
j=1

 , in which NL 
denotes the number of labeled cells and K represents the number of cell subpopulations in 
the labeled set; the other is gene expression matrix of unlabeled cells XU = {xj ∈ RG}

NU
j=1

 
and NU denotes the number of unlabeled cells. Of note, we assume that cell subpopulation 
i has Ni cells in labeled set.

Intuitively, in the data space, cells of the same subpopulation should be close, and cells 
among different subpopulations should be separated. Therefore, we design the optimization 
goal of fine-tuning process is to learn a nonlinear mapping function fθ : RG → RD in which 
θ is the whole parameters of the encoder network and through the mapping of fθ , labeled 
cells within the same cell subpopulation will be closer and vice versa.

On the one side, average distance within each cell subpopulation L1 is defined in for-
mula (2), in which, ci means center of cell subpopulation i shown in formula (3) and 
CL = {ci ∈ RD}Ki=1

 represents all centers in embedding space [26]. d is distance function 
and we choose squared Euclidean distance. By minimizing the L1 we can get similar repre-
sentations of cells within a cell subpopulation in the latent space.

On the other side, for cells among different cell subpopulations, they deserve representa-
tions as distinct as possible. We define the distance among several cell subpopulations, 
L2 , as the minimum distance of any two centers, shown in formula (4).

(1)Lp = min L(X , X̂) = min

∥

∥

∥
X − X̂

∥

∥

∥

2

(2)L1 =
1

K

K
∑

i=1

1

Ni

Ni
∑

j=1

d(fθ (xj), ci)

(3)ci =
1

Ni

Ni
∑

j=1

fθ (xj)

(4)L2 = min
0<i1<i2≤K

d(ci1 , ci2)
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The final objective function in formula (5) optimizes for the L1 and L2 distance jointly:

where � is a regularization constant which can balance between L1 minimization and L2 
maximization. Through optimizing for fθ , we can obtain the latent space where we can 
distinguish or cluster cells easily even for unlabeled cells.

Training strategy

In this subsection, we give our whole training strategy and default parameters settings of 
scSemiAE.

In the phase of pretraining, we first train Lp 50 epochs on all preprocessed data with a 
deep autoencoder as mentioned above. Then, scSemiAE removes the decoder of the pre-
training model and uses learned weights of the encoder to initialize the neural network, 
which can provide a prior parameter space. In the process of fine-tuning, the new loss 
function Lm is used to re-train the encoder network for 60 epochs, in order to further 
obtain biological characters and preserve biological structural relationships in the latent 
space.

As for the details of the implementation of scSemiAE, we use two fully connected 
layers in the encoder and decoder respectively and the encoder has the structure, 
dim5000 → dim500 → dim50 , while the decoder has a mirror-image. For both pretrain-
ing and the beginning of fine-tuning, we use the Adam [27] optimizer with learning 
rate 0.001 and for fine-tuning, we adjusted the learning rate to half of the original value 
after every 5 epochs. What’s more, we choose layer normalization for the hidden layer 
and ELU function, ELU(x) = max(0, x)+min(0,α(exp(x)− 1))(α = 1) , as a nonlin-
ear activation function. For the hyperparameter, we set � = 1 , which is the regularizer 
between L1 and L2 , distance within a cell subpopulation and distance among different 
subpopulations.

Availability of data and materials

To test scSemiAE and other existing methods, we select five publicly annotated scRNA-
Seq datasets listed as follows. More details are in Table 1.

The Cortex dataset (GSE60361) [28] concentrates on mouse brain cortex cells and con-
tains 3005 cells with 7 cell types, and it is relatively balanced from the aspect of quantity.

Tabula Muris Senis dataset [29] is a comprehensive compendium of single-cell tran-
scriptomic data and is available at: https://​figsh​are.​com/​proje​cts/​Tabula_​Muris_​Se-​nis/​

(5)Lm = min
θ

(L1 − �× L2)

Table 1  The details for all used datasets

Dataset # Cells #Cell 
subpopulations

# Genes # Cells of each subpopulation

Cortex 3005 7 19972 939, 820, 399, 290, 235, 224, 98

Heart 4433 11 23341 775, 458, 344, 127, 100, 93, 58, 47, 41, 8

Limb Muscle 1521 6 23341 683, 354, 205, 172, 70, 37

Embryos 1529 5 24557 466, 415, 377, 190, 81

Pancreas 6321 13 34363 2281, 1172, 1065, 711, 405, 359, 180, 
61, 24, 20, 17, 14, 12

https://figshare.com/projects/Tabula_Muris_Se-nis/64982/
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64982/, from which, we choose cells in heart and limb muscle from 18-month-old mice. 
The Heart and Limb Muscle datasets has 11 and 6 cell types respectively and the number 
of cells whithin each cell types is unbalanced, as shown in Table 1.

The Embryo dataset (E-MTAB-3929) [30] contains 1529 cells from human embryos 
with 5 cell states, corresponding to day 3 to day 7 of embryo development.

The Pancreatic dataset [31, 32] consists of 6321 human pancreatic islet cells with 
34363 genes in 13 cell types sequenced by four distinct sequencing technologies, 
CelSeq (GSE81076), CelSeq2 (GSE85241), Fluidigm C1 (GSE86469) and SMART-Seq2 
(E-MTAB-5061).

Abbreviations
scRNA-seq: Single-cell RNA sequencing; PCA: Principal component analysis; NMF: Non-negative matrix factorization; scVI: 
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UMAP: Uniform Manifold Approximation and Projection.
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