
Simultant: simultaneous curve fitting
of functions and differential equations using
analytical gradient calculations
Julius B. Kirkegaard*    

Background
Fitting mathematical functions to data can be a simple endeavor as modern computer
software has made this a technically trivial operation in uncomplicated cases. However,
collaborations between biologists and theoreticians have begun to strain this simplic-
ity. Increasingly complex mathematical models are being developed and applied to bio-
logical data, and such models cannot always be represented by a simple, closed-form
mathematical expression For instance, the result of mathematical modeling could be a
specification of an ordinary differential equation, but not its solution.

For example, the equations describing nerve signal excitation and conduction [1]
has no analytical solution. Many kinetic growth models of microorganism tend to be
highly non-linear and do not permit analytical solutions [2, 3]. Likewise, models of gene

Abstract 

Background:  The initial step in comparing mathematical models to experimental data
is to do a fit. This process can be complicated when either the mathematical models
are not analytically solvable (e.g. because of nonlinear differential equations) or when
the relation between data and models is complex (e.g. when some fitting parameters
must be shared between many data sets).

Results:  We introduce Simultant, a software package that allows complex fitting
setups to be easily defined using a simple graphical user interface. Fitting functions
can be defined directly as mathematical expressions or indirectly as the solution to
specified ordinary differential equations. Analytical gradients of these functions, includ-
ing the solution of differential equations, are automatically calculated to provide fast
fitting even for functions with many parameters. The software enables easy definition
of complex fitting setups in which parameters can be shared across both data sets and
models to allow simultaneous fits to be performed.

Conclusions:  Simultant exploits differentiable programming and simplifies modern
fitting approaches in a unified graphical interface.

Keywords:  Data analysis, Simultaneous fitting, Global fitting, Parameter sharing,
Differential equations

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Kirkegaard ﻿BMC Bioinformatics (2022) 23:191
https://doi.org/10.1186/s12859-022-04728-5 BMC Bioinformatics

*Correspondence:
julius.kirkegaard@nbi.ku.dk

Niels Bohr Institute,
University of Copenhagen,
2100 Copenhagen, Denmark

http://orcid.org/0000-0003-0799-3829
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04728-5&domain=pdf

Page 2 of 9Kirkegaard ﻿BMC Bioinformatics (2022) 23:191

expression [4], transcription networks [5, 6], enzyme kinetics [7], and a host of other
biological systems follow this trend. Thus, if experimental data is to be directly com-
pared a theoretical model, the fits must be performed with numerical evaluation of the
differential equations that define the theoretical models.

Likewise, the relationship between data and model can be complex, such as in the case
when some parameters are shared across data sets while others are not. This is dealt
with by utilizing a global analysis in which a simultaneous fit across all data is performed
[8]. These scenarios typically arise from experiments repeated with most variables kept
fixed, except for a few that vary. For instance, one might asses substance toxicity in bac-
teria by carrying out multiple experiments under varying concentration or type of toxic
substances, but in otherwise fixed conditions [9]. To fit models to this data correctly,
simultaneous analysis must be done, where parameters inherent to bacterial growth are
kept fixed but substance-specific parameters are allowed to vary. Likewise, in models of
amyloid aggregation [10], to elucidate aggregation mechanisms, simultaneous parameter
fitting can be used to rule out certain mechanisms and provide evidence in support of
others [11]. This can be achieved by varying a single variable between experiments and
comparing potential theoretical models globally to the data [12]. The same is true for
understanding bacterial growth dynamics [13], growth in mammals [14], the mitochon-
drial respiratory system [15], drug resistance [16], neural propagation [17], and many
other biophysical systems.

In all of these scenarios, the application of standard fitting software tends to be lim-
ited and instead custom code must be developed. To allow efficient collaboration in such
cases it can thus be necessary to develop graphical user interfaces or similar approaches
to enable all collaborators to interact with the code. Moreover, these complex models
are often not only difficult to implement, but also tend to be slow to fit; especially when
there are many fit parameters to be determined. To speed up fitting procedures mod-
ern approaches such as using analytical gradient calculations (“backpropagation”) can be
used, but these approaches have not seen broad adaption within biophysics yet.

Implementation
In this short report, we present Simultant, a software application that allows com-
plex functions to be fitted, potentially simultaneously across data sets, using a simple
but general graphical user interface. The software allows custom complex functions or
differentials equations to be specified as short Python snippets and automatically uti-
lizes analytical gradient calculations to speed up fitting. A simple interface allows the
specification of which functions and parameters belong to which data sets, and these
can be easily shared across data. The software runs locally on any Windows, Mac or
Linux machine. The code is open source and written in modern Javascript (electron–
vue frontend) and Python (django–pytorch backend) and is thus easily extendable.
Existing alternatives include AmyloFit [12] which is specialized for amyloid aggregation
data and commercial fitting softwares OriginLab [18], GraphPad Prism [19] and KinTek
Global Kinetic Explorer [20]. Compared with these, the interface of Simultant makes
it simpler to define complex fitting setups, and in contrast, Simultant accelerates fit-
ting using analytical gradient calculations, thus enabling large-scale fits to be performed.

Page 3 of 9Kirkegaard ﻿BMC Bioinformatics (2022) 23:191 	

Finally, a major difference is that Simultant is open-source and thus easily extendable
to custom needs.

Results
Using Simultant is a four step process as indicated in the main screen of the software
(Fig. 1). You need to specify your (mathematical) models and upload data. Your models
and data are saved in a database. You can then specify the specific fit topology: which
models and parameters correspond to what data. Finally, you specify initial guesses for
parameters and run the fit.

We will begin by exemplifying this process on a very simple, synthetic data set of bac-
terial growth. The data, shown and described in Fig. 2, was generated using a noisy gen-
eralized logistic growth model [21]. The data should thus approximately be described by

where r is the growth rate, K the carrying capacity, ν the growth curvature, and
N0 = N (0) the initial bacterial concentration. In this case we have an analytical expres-
sion for the fitting function, and thus we can add it using a simple python function as
shown in Fig. 3. The software automatically identifies function arguments as potential
fitting parameters. Data is imported using .csv or .tsv files. Simply drag and drop files,
or use the menu to select the data.

We now need to specify the fit topology. In the present case we have a single model
(Eq. 1) that applies to all the data curves. In the section “Fit Topology” we select the data
and add the model: when there is only one model chosen, it is automatically applied to

(1)N (t) = K

[

1−

(

1−

(

K

N0

)ν)

e
−rνt

]−1/ν

,

Fig. 1  The welcome screen of Simulatant explains the four steps needed to specify and perform a fit

Page 4 of 9Kirkegaard ﻿BMC Bioinformatics (2022) 23:191

Fig. 2  Synthetic bacterial growth curves. Data was generated using a Langevin equation of the form
dN = rN

[

1− (N/K)ν
]

dt + σNdW using carrying capacity K = 10, growth curvature ν = 0.5 , noise σ = 0.01 ,
and growth rate r = 0.2 for the black curves and r = 0.1 for red curves. Initial conditions were varied for each
run, N(0) ∈ (0.01, 0.02, 0.1) . Finally Gaussian ‘measurement’ noise was added with a standard deviation of 0.1

Fig. 3  Adding model using an analytical expression. The syntax is standard Python. Note that arguments
of the function are automatically recognized as fitting parameters. Constants and known bounds on the
arguments can be specified using type annotations as described in the main text. Default values for the initial
guesses are simply given as default arguments of the function variables

Page 5 of 9Kirkegaard ﻿BMC Bioinformatics (2022) 23:191 	

all data sets. We then need to specify how the parameters are associated with the data
sets. The typical approach to fitting data sets is to do one fit per data set, each with a free
choice of parameters. In Simultant this corresponds to having each parameter set to
the “Data parameter” type. However, in our present example only N0 is independent for
all data sets. The parameters K and ν are known to be the same across all data set and
should thus be fitted simultaneously: this is achieved by choosing “Model parameter” for
these parameters. Finally, the growth rate r is known to be shared across the two triplets
of data sets shown in Fig. 2. We do this by defining “Detached parameters” and share
them accordingly. This final setup in Simultant is shown in Fig. 4.

Finally we will run the fit. In the present example it is as simple as pressing “Run Fit”,
but further adjustments could be needed: are some of the parameters constants that
need not be fitted? Should some initial guesses of the parameters be changed? The
software uses the limited memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)
algorithm with gradients calculated analytically. For fitting discontinuous models, the
method can be changed to the Nelder–Mead algorithm, but this will in general be slower
as it requires a lot more iterations to converge.

Figure 5 shows the final fit, both in the case where r is chosen to be a Model parameter
(a) and the present case of r being tied two separate Detached Parameters. It is clear that
the data cannot be described by a single growth rate r. Naturally, the data could easily be
described if each curved was allowed a distinct r. Here we know that r should only take
two values, one for each sub-data sets. Thus we use detached parameters and we see in

Fig. 4  Fit topology. In our fit setup the parameters K and nu are Model parameters meaning their values is
tied to the model and thus shared across all data sets that use the model. n0 is a Data parameter meaning
that each data set has its own value of this parameter. Finally, the parameter r is tied to Detached parameters
rA and rB such that half of the data sets uses rA and the other half uses rB. Parameters whose value are
tied to a Detached parameter are indicated with an arrow. In total we have 10 free fitting parameters, six of
which stem from n0 and two from nu 

Page 6 of 9Kirkegaard ﻿BMC Bioinformatics (2022) 23:191

Fig. 5b that our model is viable. Restricting the total number of parameters is key in dis-
tinguishing right from wrong in modeling [12].

As mentioned Simulatant can also define models indirectly via differential equa-
tions. This is done by specifying (Fig. 3) the input method as ‘Ordinary Differential Equa-
tion’ and then simply writing the ODE. For the present example this would be

The rest of the process is exactly the same. However, it should be noted that ODE
fitting is slower than expression fitting, and so it is important to choose good initial
parameter guesses to speed up the process. The fact that Simulatant is able to do
large-number-of-parameters ODE fitting at all is because it calculates gradients analyti-
cally. Using Nelder–Mead, or similar gradient free approaches, is significantly more time
consuming for the present 10 parameter fit.

Simulatant allows the use of higher-order ODEs as well. These are simply specified
with a function that returns more than one value. The GUI allows the specification of
which dimension corresponds to the output of the fitting function. In more advanced
cases a transform function can be defined, which defines the output as a custom func-
tion. Finally, event detection of the ODE is also possible in Simulatant, which can be
used to e.g. normalize the ODE solutions by their steady state values.

Fitting is usually done with unconstrained parameters. However, often the math-
ematical model used implies certain restraints on the parameters. These constraint
can be given to Simulatant as Python type hints. For example, the following func-
tion, , has three parameters. The parameter ‘a’ is
unbounded, parameter ‘b’ is positive only, and parameter ‘c’ is limited to the range [0, 1].
To avoid discontinuities at the boundaries and thus retain the ability to calculate gradients

Fig. 5  Simultaneous fits. a Using r as a model parameter does not result in a good overall fit. Even though
the fit has R2 = 0.979 , it is clear that there are systematic errors. b Using two detached parameters results
in excellent fits. This fit has R2 = 0.997 which is comparable to the R2 = 0.998 that can be obtained using
completely independent fits (i.e. setting all parameters as data parameters). These plots were generated
directly by Simultant 

Page 7 of 9Kirkegaard ﻿BMC Bioinformatics (2022) 23:191 	

analytically, these bounds are implemented as parameter transforms. For example, for the
parameter ‘b’, which is constrained to be positive, the fit is instead performed over a hidden
variable b̃ which is unconstrained and defines b = e

b̃ . A similar approach is used for inter-
val constraints but using sigmoidal transform functions. Simulatant defaults parameters
to being positive only. Not all parameters of a model are necessarily fitting parameters. To
change the default type of a parameter to be constant, one may simply use C (for constant)
instead of R (for range) in the type hint.

Conclusions
In conclusion, Simulatant provides a simple user interface to design complex fitting set-
ups. We have shown an elementary example use of Simulatant, where detached parame-
ters were used to share some parameters between data sets. Detached parameters are more
general than this as they can also be used to share parameters across models. Thus all pos-
sible combinations of data and models can be defined using this simple interface. Simula-
tant furthermore utilizes automatic gradient calculations which permits fast fitting even
with many parameters. The software is furthermore easily extendable as the backend and
frontend are completely separated and written in modern Python and Javascript. While the
software is written using web technologies, the UI framework Electron allows this to run as
a native application on Windows, Mac and Linux machines, but it can easily be hosted as a
web server as well.

Availability and requirements

Project name: Simultant
Project home page: https://​github.​com/​juliu​sbierk/​simul​tant
Operating system(s): Platform independent
Programming language: Python and Javascript
License: MIT
Any restrictions to use by non-academics: None

Appendix: Comparison to existing software
The following table makes a comparison between Simultant and other software typically
used to perform fits of experimental data. As the underlying fitting procedures are simi-
lar, the fits that can be obtained with the software listed are all similar: what distinguishes
them is the ease at which one can define a complex fitting problem, whether ODE fitting is
possible, and whether they are commercial or not. We further note that most of the soft-
ware listed have a much broader range of functionality than just fitting, but here we only
compare on the features that Simultant provide: simultaneous expression/ODE fitting with
automatic analytical gradient calculations.

https://github.com/juliusbierk/simultant

Page 8 of 9Kirkegaard ﻿BMC Bioinformatics (2022) 23:191

Note that KinTek Global Kinetic Explorer [20] is specialized for analyzing the kinetics
of chemical reactions, and AmyloFit [12] is specialized for analyzing amyloid aggrega-
tion data. The remaining software listed are generic in their applications.
Acknowledgements
The author acknowledges useful discussions with Georg Meisl.

Author Contributions
JBK performed research, wrote software code, and wrote manuscript. The author read and approved the final
manuscript.

Funding
This project has received funding from the Novo Nordisk Foundation, Grant Agreement NNF20OC0062047. The funding
body had no role in the design or execution of this project.

Availability of data and materials
The latest version of the software and its source code can be found at https://​github.​com/​juliu​sbierk/​simul​tant. A version
has also been made available at Zenodo with https://​doi.​org/​10.​5281/​zenodo.​55413​76.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 11 October 2021 Accepted: 11 May 2022

References
	1.	 Hodgkin A, Huxley FAL. A quantitative description of membrane current and its application to conduction and

excitation in nerve. J Physiol. 1952;117:500. https://​doi.​org/​10.​1016/j.​neuron.​2008.​11.​005arXiv:​NIHMS​150003.
	2.	 Giménez B, Dalgaard P. Modelling and predicting the simultaneous growth of Listeria monocytogenes and spoilage

micro-organisms in cold-smoked salmon. J Appl Microbiol. 2004;96:96. https://​doi.​org/​10.​1046/j.​1365-​2672.​2003.​
02137.x.

	3.	 Le Marc Y, Valík L, Medveďová A. Modelling the effect of the starter culture on the growth of Staphylococcus aureus
in milk. Int J Food Microbiol. 2009;129:306. https://​doi.​org/​10.​1016/j.​ijfoo​dmicro.​2008.​12.​015.

	4.	 Ashyraliyev M, Siggens K, Janssens H, Blom J, Akam M, Jaeger J. Gene circuit analysis of the terminal gap gene
huckebein. PLoS Comput Biol. 2009. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10005​48.

	5.	 Elowitz MB, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature. 2000;403:335.
	6.	 Shen-Orr SS, Milo R, Mangan S, Alon U. Network motifs in the transcriptional regulation network of Escherichia coli.

Nat Genet. 2002;31:64.
	7.	 Cleland W. Enzyme kinetics. Annu Rev Biochem. 1967;36:77.
	8.	 Beechem JM. Global analysis of biochemical and biophysical data, vol. 210. Methods in enzymology. Amsterdam:

Elsevier; 1992. p. 37–54.
	9.	 Rial D, Vázquez JA, Murado MA. Effects of three heavy metals on the bacteria growth kinetics: a bivariate model for

toxicological assessment. Appl Microbiol Biotechnol. 2011;90:1095.
	10.	 Cohen SI, Linse S, Luheshi LM, Hellstrand E, White DA, Rajah L, Otzen DE, Vendruscolo M, Dobson CM, Knowles TP.

Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc Natl Acad Sci
USA. 2013;110:9758. https://​doi.​org/​10.​1073/​pnas.​12184​02110.

https://github.com/juliusbierk/simultant
https://doi.org/10.5281/zenodo.5541376
https://doi.org/10.1016/j.neuron.2008.11.005
http://arxiv.org/abs/NIHMS150003
https://doi.org/10.1046/j.1365-2672.2003.02137.x
https://doi.org/10.1046/j.1365-2672.2003.02137.x
https://doi.org/10.1016/j.ijfoodmicro.2008.12.015
https://doi.org/10.1371/journal.pcbi.1000548
https://doi.org/10.1073/pnas.1218402110

Page 9 of 9Kirkegaard ﻿BMC Bioinformatics (2022) 23:191 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	11.	 Meisl G, Yang X, Hellstrand E, Frohm B, Kirkegaard JB, Cohen SIA, Dobson CM, Linse S, Knowles TPJ. Differences in
nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides. Proc Natl Acad
Sci. 2014;111:9384. https://​doi.​org/​10.​1073/​pnas.​14015​64111arXiv:​arXiv:​1408.​1149.

	12.	 Meisl G, Kirkegaard J, Arosio P, Michaels T, Vendruscolo M, Dobson C, Linse S, Knowles T. Molecular mechanisms of
protein aggregation from global fitting of kinetic models. Nat Protocols. 2016. https://​doi.​org/​10.​1038/​nprot.​2016.​
010.

	13.	 Kohram M, Vashistha H, Leibler S, Xue B, Salman H. Bacterial growth control mechanisms inferred from multivariate
statistical analysis of single-cell measurements. Curr Biol. 2021;31:955.

	14.	 Finke MD, DeFoliart GR, Benevenga NJ. Use of simultaneous curve fitting and a four-parameter logistic model to
evaluate the nutritional quality of protein sources at growth rates of rats from maintenance to maximum gain. J
Nutr. 1987;117:1681. https://​doi.​org/​10.​1093/​jn/​117.​10.​1681.

	15.	 Beard DA. A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation. PLoS Com-
put Biol. 2005;1: e36.

	16.	 Rodrigues JV, Bershtein S, Li A, Lozovsky ER, Hartl DL, Shakhnovich EI. Biophysical principles predict fitness land-
scapes of drug resistance. Proc Natl Acad Sci. 2016;113:E1470.

	17.	 Guo T, Abed AA, Lovell NH, Dokos S. Parameter fitting using multiple datasets in cardiac action potential modeling.
Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS. 2011. https://​doi.​org/​10.​1109/​IEMBS.​2011.​60899​18.

	18.	 U. OriginLab Corporation Northampton, MA, OriginPro (2021).
	19.	 C.U. GraphPad Software, San Diego, GraphPad Prism (2021).
	20.	 Johnson KA, Simpson ZB, Blom T. Global kinetic explorer: a new computer program for dynamic simulation and

fitting of kinetic data. Anal Biochem. 2009;387:20.
	21.	 Richards FJ. A flexible growth function for empirical use. J Exp Bot. 1959;10:290. https://​doi.​org/​10.​1093/​jxb/​10.2.​290.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1073/pnas.1401564111
http://arxiv.org/abs/arXiv:1408.1149
https://doi.org/10.1038/nprot.2016.010
https://doi.org/10.1038/nprot.2016.010
https://doi.org/10.1093/jn/117.10.1681
https://doi.org/10.1109/IEMBS.2011.6089918
https://doi.org/10.1093/jxb/10.2.290

	Simultant: simultaneous curve fitting of functions and differential equations using analytical gradient calculations
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation
	Results
	Conclusions
	Availability and requirements

	Acknowledgements
	References

