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Background
Fitting mathematical functions to data can be a simple endeavor as modern computer 
software has made this a technically trivial operation in uncomplicated cases. However, 
collaborations between biologists and theoreticians have begun to strain this simplic-
ity. Increasingly complex mathematical models are being developed and applied to bio-
logical data, and such models cannot always be represented by a simple, closed-form 
mathematical expression For instance, the result of mathematical modeling could be a 
specification of an ordinary differential equation, but not its solution.

For example, the equations describing nerve signal excitation and conduction [1] 
has no analytical solution. Many kinetic growth models of microorganism tend to be 
highly non-linear and do not permit analytical solutions [2, 3]. Likewise, models of gene 
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expression [4], transcription networks [5, 6], enzyme kinetics [7], and a host of other 
biological systems follow this trend. Thus, if experimental data is to be directly com-
pared a theoretical model, the fits must be performed with numerical evaluation of the 
differential equations that define the theoretical models.

Likewise, the relationship between data and model can be complex, such as in the case 
when some parameters are shared across data sets while others are not. This is dealt 
with by utilizing a global analysis in which a simultaneous fit across all data is performed 
[8]. These scenarios typically arise from experiments repeated with most variables kept 
fixed, except for a few that vary. For instance, one might asses substance toxicity in bac-
teria by carrying out multiple experiments under varying concentration or type of toxic 
substances, but in otherwise fixed conditions [9]. To fit models to this data correctly, 
simultaneous analysis must be done, where parameters inherent to bacterial growth are 
kept fixed but substance-specific parameters are allowed to vary. Likewise, in models of 
amyloid aggregation [10], to elucidate aggregation mechanisms, simultaneous parameter 
fitting can be used to rule out certain mechanisms and provide evidence in support of 
others [11]. This can be achieved by varying a single variable between experiments and 
comparing potential theoretical models globally to the data [12]. The same is true for 
understanding bacterial growth dynamics [13], growth in mammals [14], the mitochon-
drial respiratory system [15], drug resistance [16], neural propagation [17], and many 
other biophysical systems.

In all of these scenarios, the application of standard fitting software tends to be lim-
ited and instead custom code must be developed. To allow efficient collaboration in such 
cases it can thus be necessary to develop graphical user interfaces or similar approaches 
to enable all collaborators to interact with the code. Moreover, these complex models 
are often not only difficult to implement, but also tend to be slow to fit; especially when 
there are many fit parameters to be determined. To speed up fitting procedures mod-
ern approaches such as using analytical gradient calculations (“backpropagation”) can be 
used, but these approaches have not seen broad adaption within biophysics yet.

Implementation
In this short report, we present Simultant, a software application that allows com-
plex functions to be fitted, potentially simultaneously across data sets, using a simple 
but general graphical user interface. The software allows custom complex functions or 
differentials equations to be specified as short Python snippets and automatically uti-
lizes analytical gradient calculations to speed up fitting. A simple interface allows the 
specification of which functions and parameters belong to which data sets, and these 
can be easily shared across data. The software runs locally on any Windows, Mac or 
Linux machine. The code is open source and written in modern Javascript (electron–
vue frontend) and Python (django–pytorch backend) and is thus easily extendable. 
Existing alternatives include AmyloFit [12] which is specialized for amyloid aggregation 
data and commercial fitting softwares OriginLab [18], GraphPad Prism [19] and KinTek 
Global Kinetic Explorer [20]. Compared with these, the interface of Simultant makes 
it simpler to define complex fitting setups, and in contrast, Simultant accelerates fit-
ting using analytical gradient calculations, thus enabling large-scale fits to be performed. 
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Finally, a major difference is that Simultant is open-source and thus easily extendable 
to custom needs.

Results
Using Simultant is a four step process as indicated in the main screen of the software 
(Fig. 1). You need to specify your (mathematical) models and upload data. Your models 
and data are saved in a database. You can then specify the specific fit topology: which 
models and parameters correspond to what data. Finally, you specify initial guesses for 
parameters and run the fit.

We will begin by exemplifying this process on a very simple, synthetic data set of bac-
terial growth. The data, shown and described in Fig. 2, was generated using a noisy gen-
eralized logistic growth model [21]. The data should thus approximately be described by

where r is the growth rate, K the carrying capacity, ν the growth curvature, and 
N0 = N (0) the initial bacterial concentration. In this case we have an analytical expres-
sion for the fitting function, and thus we can add it using a simple python function as 
shown in Fig. 3. The software automatically identifies function arguments as potential 
fitting parameters. Data is imported using .csv or .tsv files. Simply drag and drop files, 
or use the menu to select the data.

We now need to specify the fit topology. In the present case we have a single model 
(Eq. 1) that applies to all the data curves. In the section “Fit Topology” we select the data 
and add the model: when there is only one model chosen, it is automatically applied to 
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Fig. 1  The welcome screen of Simulatant explains the four steps needed to specify and perform a fit
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Fig. 2  Synthetic bacterial growth curves. Data was generated using a Langevin equation of the form 
dN = rN

[

1− (N/K)ν
]

dt + σNdW using carrying capacity K = 10, growth curvature ν = 0.5 , noise σ = 0.01 , 
and growth rate r = 0.2 for the black curves and r = 0.1 for red curves. Initial conditions were varied for each 
run, N(0) ∈ (0.01, 0.02, 0.1) . Finally Gaussian ‘measurement’ noise was added with a standard deviation of 0.1

Fig. 3  Adding model using an analytical expression. The syntax is standard Python. Note that arguments 
of the function are automatically recognized as fitting parameters. Constants and known bounds on the 
arguments can be specified using type annotations as described in the main text. Default values for the initial 
guesses are simply given as default arguments of the function variables
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all data sets. We then need to specify how the parameters are associated with the data 
sets. The typical approach to fitting data sets is to do one fit per data set, each with a free 
choice of parameters. In Simultant this corresponds to having each parameter set to 
the “Data parameter” type. However, in our present example only N0 is independent for 
all data sets. The parameters K and ν are known to be the same across all data set and 
should thus be fitted simultaneously: this is achieved by choosing “Model parameter” for 
these parameters. Finally, the growth rate r is known to be shared across the two triplets 
of data sets shown in Fig. 2. We do this by defining “Detached parameters” and share 
them accordingly. This final setup in Simultant is shown in Fig. 4.

Finally we will run the fit. In the present example it is as simple as pressing “Run Fit”, 
but further adjustments could be needed: are some of the parameters constants that 
need not be fitted? Should some initial guesses of the parameters be changed? The 
software uses the limited memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) 
algorithm with gradients calculated analytically. For fitting discontinuous models, the 
method can be changed to the Nelder–Mead algorithm, but this will in general be slower 
as it requires a lot more iterations to converge.

Figure 5 shows the final fit, both in the case where r is chosen to be a Model parameter 
(a) and the present case of r being tied two separate Detached Parameters. It is clear that 
the data cannot be described by a single growth rate r. Naturally, the data could easily be 
described if each curved was allowed a distinct r. Here we know that r should only take 
two values, one for each sub-data sets. Thus we use detached parameters and we see in 

Fig. 4  Fit topology. In our fit setup the parameters K and nu are Model parameters meaning their values is 
tied to the model and thus shared across all data sets that use the model. n0 is a Data parameter meaning 
that each data set has its own value of this parameter. Finally, the parameter r is tied to Detached parameters 
rA and rB such that half of the data sets uses rA and the other half uses rB. Parameters whose value are 
tied to a Detached parameter are indicated with an arrow. In total we have 10 free fitting parameters, six of 
which stem from n0 and two from nu 



Page 6 of 9Kirkegaard ﻿BMC Bioinformatics          (2022) 23:191 

Fig. 5b that our model is viable. Restricting the total number of parameters is key in dis-
tinguishing right from wrong in modeling [12].

As mentioned Simulatant can also define models indirectly via differential equa-
tions. This is done by specifying (Fig. 3) the input method as ‘Ordinary Differential Equa-
tion’ and then simply writing the ODE. For the present example this would be

The rest of the process is exactly the same. However, it should be noted that ODE 
fitting is slower than expression fitting, and so it is important to choose good initial 
parameter guesses to speed up the process. The fact that Simulatant is able to do 
large-number-of-parameters ODE fitting at all is because it calculates gradients analyti-
cally. Using Nelder–Mead, or similar gradient free approaches, is significantly more time 
consuming for the present 10 parameter fit.

Simulatant allows the use of higher-order ODEs as well. These are simply specified 
with a function that returns more than one value. The GUI allows the specification of 
which dimension corresponds to the output of the fitting function. In more advanced 
cases a transform function can be defined, which defines the output as a custom func-
tion. Finally, event detection of the ODE is also possible in Simulatant, which can be 
used to e.g. normalize the ODE solutions by their steady state values.

Fitting is usually done with unconstrained parameters. However, often the math-
ematical model used implies certain restraints on the parameters. These constraint 
can be given to Simulatant as Python type hints. For example, the following func-
tion, , has three parameters. The parameter ‘a’ is 
unbounded, parameter ‘b’ is positive only, and parameter ‘c’ is limited to the range [0, 1]. 
To avoid discontinuities at the boundaries and thus retain the ability to calculate gradients 

Fig. 5  Simultaneous fits. a Using r as a model parameter does not result in a good overall fit. Even though 
the fit has R2 = 0.979 , it is clear that there are systematic errors. b Using two detached parameters results 
in excellent fits. This fit has R2 = 0.997 which is comparable to the R2 = 0.998 that can be obtained using 
completely independent fits (i.e. setting all parameters as data parameters). These plots were generated 
directly by Simultant 
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analytically, these bounds are implemented as parameter transforms. For example, for the 
parameter ‘b’, which is constrained to be positive, the fit is instead performed over a hidden 
variable b̃ which is unconstrained and defines b = e

b̃ . A similar approach is used for inter-
val constraints but using sigmoidal transform functions. Simulatant defaults parameters 
to being positive only. Not all parameters of a model are necessarily fitting parameters. To 
change the default type of a parameter to be constant, one may simply use C (for constant) 
instead of R (for range) in the type hint.

Conclusions
In conclusion, Simulatant provides a simple user interface to design complex fitting set-
ups. We have shown an elementary example use of Simulatant, where detached parame-
ters were used to share some parameters between data sets. Detached parameters are more 
general than this as they can also be used to share parameters across models. Thus all pos-
sible combinations of data and models can be defined using this simple interface. Simula-
tant furthermore utilizes automatic gradient calculations which permits fast fitting even 
with many parameters. The software is furthermore easily extendable as the backend and 
frontend are completely separated and written in modern Python and Javascript. While the 
software is written using web technologies, the UI framework Electron allows this to run as 
a native application on Windows, Mac and Linux machines, but it can easily be hosted as a 
web server as well.

Availability and requirements

Project name: Simultant
Project home page: https://​github.​com/​juliu​sbierk/​simul​tant
Operating system(s): Platform independent
Programming language: Python and Javascript
License: MIT
Any restrictions to use by non-academics: None

Appendix: Comparison to existing software
The following table makes a comparison between Simultant and other software typically 
used to perform fits of experimental data. As the underlying fitting procedures are simi-
lar, the fits that can be obtained with the software listed are all similar: what distinguishes 
them is the ease at which one can define a complex fitting problem, whether ODE fitting is 
possible, and whether they are commercial or not. We further note that most of the soft-
ware listed have a much broader range of functionality than just fitting, but here we only 
compare on the features that Simultant provide: simultaneous expression/ODE fitting with 
automatic analytical gradient calculations.

https://github.com/juliusbierk/simultant
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Note that KinTek Global Kinetic Explorer [20] is specialized for analyzing the kinetics 
of chemical reactions, and AmyloFit [12] is specialized for analyzing amyloid aggrega-
tion data. The remaining software listed are generic in their applications.
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