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Background
fMRI data is used to evaluate connectivity in the brain, i.e., how brain regions interact 
together over time. When compared to other neuroimaging techniques, such as Electro-
encephalography (EEG) and Magnetoencephalography (MEG) (known to have a great 
temporal resolution), fMRI has a high spatial resolution while maintaining a temporal 
resolution of a few seconds [1, 2].

There are several strategies for fMRI data analysis, such as independent component 
analysis, machine learning, graph theory, among other [3]. These strategies require 
different modeling options for the data, such as 4-dimensional arrays (capturing the 
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three region dimensions and the temporal one), slices of figures or multivariated time 
series [4, 5]. In our study, we consider the use of unsupervised machine learning tech-
niques to analyse multivariated fMRI time series. The most popular form of unsu-
pervised machine learning is clustering, which uses the similarity between features 
(columns) to partition a set of subjects (rows) into groups (clusters).

Traditional clustering approaches are rigid since they search for similarities con-
sidering all features of the subjects and do not allow a subject to belong to multiple 
groups [6]. Biclustering algorithms were proposed to overcome these limitations of 
clustering by clustering the rows and columns of a data matrix simultaneously [7]. 
Biclustering has been widely studied over the last 20 years following the development 
of the Chen and Church algorithm [8]. Multiple algorithms and computational frame-
works for biclustering were developed [9], and biclustering is used in domains such as 
biomedicine, text mining, and marketing analysis [7, 10].

Despite these uses, the main application scenario of biclustering is the traditional 
gene expression context, which generates a bias in the development and application 
of biclustering. This bias has two main consequences: first, gene expression datasets 
act as a benchmark both during the development of new biclustering algorithms and 
in their independent comparison, meaning that these new algorithms are not com-
pared in contexts other than this specific problem. Second, results in real datasets are 
usually compared using measures of biological relevance, such as the Gene Ontology 
(GO) annotations [11], specific to the gene expression data context, and not useful for 
any other context. Allied to the fact that the application of biclustering algorithms has 
not progressed at the same pace as the software development [9], this scenario leads 
to a collection of biclustering algorithms, whose potential has not been fully explored. 
The purpose of this study is to evaluate the potentialities of biclustering algorithms in 
fMRI time series.

Previous exploratory studies considering neurosciences and biclustering did 
biclustering on extracted features [12–15]. For biclustering, the dimensions were 
the analysis is done is particularly important, and in contrast to these studies, we 
do biclustering under the Region × Time dimensions. We propose that biclustering 
can be used to analyze the temporal behaviour of brain (divided into a number of 
regions), and extract correlation regions. The validity of this approach is suggested by 
a number of studies who applied biclustering to analyse data with spatial and tempo-
ral properties [16–28].

Another difference between our work and previous studies is that we do a comparative 
analysis of the capacities of biclustering fMRI time series considering state-of-the-art 
biclustering algorithms instead of testing a proposed new algorithm [14, 16, 29]. There-
fore, our study resembles biclustering comparison surveys [11, 30–33] but in contrast to 
them, it uses internal evaluating metrics, which have wider applicability.

We selected seven state-of-the-art biclustering algorithms (covering different search 
strategies) and applied them to artificial and real-world fMRI datasets. Additionally, 
we added to this comparison two variations of three popular clustering algorithms, 
k-means, spectral, and ward’s hierarchical method. In the absence of ground truth to 
evaluate biclustering/clustering solutions, we opted for internal evaluation metrics and 
used them to determine the type of patterns to expect in fMRI data.
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This study is a comparative study on the application of biclustering in a different bio-
medical domain than gene expression data analysis. In addition, it proposes a method-
ology to evaluate biclustering. Besides neurosciences, we suggest that climate science, 
epidemiology, and sociology, sharing fundamental properties with the former, are scien-
tific fields expected to benefit from this study.

The remaining of this section targets biclustering and related work. First, we posi-
tion biclustering in the family of unsupervised learning algorithms, describe the rel-
evant biclustering patterns found in real-valued matrices, and categorize biclustering 
algorithms based on their search strategy. Then we revise previous work on biclustering 
reviews. Second, we motivate the use of biclustering and review studies about the use of 
biclustering in neurosciences and spatio-temporal analysis.

The remaining of this paper is organized as follows: In Methods, we describe the gen-
eral comparison methodology followed in our study and how it is different from other 
comparison studies. In Results we introduce and discuss our results. In Discussion, we 
show implications of our study in neurosciences. In Conclusion, we give concluding 
remarks.

Biclustering

Biclustering can be defined as simultaneous clustering of rows and columns [7], allowing 
the discovery of rows with similar behavior across a subset of columns, and vice-versa 
(biclusters). Considering a data matrix A, with n rows ( X = {x1, . . . , xn} ) and p columns 
( Y = {y1, . . . , yp} ), the biclustering task aims to discover subsets B of the original data 
matrix A. Each subset B is called a bicluster, and consists of a subset of rows I, and a sub-
set of columns J, where I ⊆ X and J ⊆ Y .

Bicluster patterns

Biclustering is able to find more flexible structures than traditional clustering. While the 
nomenclature for this possible structures is not standardized in the literature, the defini-
tions provided by Madeira and Oliveira [7] and Aguilar-Ruiz [34] are commonly used. 
The most simple structure is the constant bicluster, which is a submatrix (I,J) where all 
values bij are equal: bij = π.

In the context of a real-valued matrix, it is of particular interest to discover coherent 
biclusters. A coherent bicluster uses a row parameter πi and a column one βj . The inter-
action between the two parameters can be either additive (shifting) or multiplicative 
(scaling). A perfect shifting bicluster follows the additive relation among the variable: 
bij = πi + βj . A scaling bicluster follows a multiplicative relation: bij = πi × βj.

Search strategies

When categorizing biclustering algorithms, a particular concern is related to the search 
strategies. Table  1 systematizes four main search strategies, defined by Madeira and 
Oliveira [7] and used in recent comparison studies, such as Padilha and Campello [11] 
and Henriques et al. [33].
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Reviews

During the last two decades several authors reviewed biclustering methods [6, 7, 9–11, 
13, 30–33, 41–44]. These reviews can be fitted into three main categories: (1) General 
Surveys [6, 7, 9, 10, 13, 33, 44], (2) Comparison Surveys [11, 30–33] and (3) Measure 
Surveys [41–43, 45].

General survey studies categorize biclustering, providing abstract categorizations and 
reviewing state-of-the-art approaches and typical application cases. These studies are 
beneficial as a the first look into biclustering.

Comparison surveys, approach the task of finding the “best” biclustering algorithm. 
Prelić et al. [30] was the first to compare multiple biclustering algorithms by adapting 
methodologies used in clustering. They choose five biclustering methods, proposed a 
new algorithm, and compared their performance using synthetic and real gene expres-
sion data. The validation was performed using external indices on synthetic data and 
biological relevance. Bozdaǧ et  al. [31] compared 5 biclustering algorithms following 
the approach of Prelić et  al. [30], but considering the effects of noise, size and biclus-
ter overlap. Eren et  al. [32] expanded the research by comparing 12 algorithms, using 
synthetic datasets following six different biclustering models and eight gene expression 
datasets. Henriques et al. [33] compared the performance of pattern-based biclustering 
to the traditional approaches, evaluating a total of 15 state-of-the-art approaches. Their 
evaluation was done in synthetic and real datasets, considering two external measures 
and computational efficiency together with biological relevance of results. Padilha and 
Campello [11] used three synthetic data collections and two real data collections to ana-
lyze the performance of 17 algorithms.

Finally, measure surveys discuss metrics to evaluate biclustering.

Motivating biclustering

The traditional application area for biclustering is in the context of gene expression data 
analysis. Therefore the number of applications of biclustering in neuroimaging data 

Table 1  Biclustering search strategies as defined by Madeira and Oliveira [7]

Category General characteristics Examples

Greedy Biclusters are generated by adding or removing columns to a initial 
random bicluster in order to improve some gain function. The final 
objective is for the algorithm to find a global minimun solution after 
some iterations. Despite making wrong decisions, and loosing good 
biclusters due to beeing stuck in local minima, they have the poten-
tial of being fast algorithms

ISA XMotifs [35, 36]

Distribution param-
eter identification

Assume some statistical model behind the data, and then apply 
some iterative procedure in order to obtain its parameters by mini-
mizing some criterion

FABIA spectral 
biclustering [37, 38]

Divide and conquer Divide the original data matrix into smaller instances. With the poten-
tial of being very fast, they could fail to find good biclusters, splitted 
before identified

Bimax [30]

Exhaustive Based on the premise that finding the best biclusters can only be 
done by using an exhaustive enumeration of all possible biclusters 
in the data matrix. Despite being able to find the bests biclusters 
they do it by imposing restrictions to the biclusters size (since these 
algorithms are typically very slow)

BicPAM CCC [39, 40]
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is limited. This section reviews the most closely related studies. Despite the lack of a 
research line using biclustering and fMRI data, there are hints in the literature that sug-
gest opportunities for these algorithms to be applied in these data.

Since the brain structure is dynamic, different brain regions will fire together based 
on different stimuli [1, 5]. A flexible approach is needed to identify brain regions that 
fire together under different time points, and can be delivered by biclustering. Figure 1 
shows the time-series signal from two non-adjacent brain regions, showing that the cor-
relation between two regions is not static and shows only in some specific time points. 
Figure  2 shows a whole-brain time-series heatmap, where biclusters-like structures 
are visible. The biclustering task promises to identify these brain regions interacting 
together over the time points.

The remaining of this section highlights related studies where biclustering was used. In 
the first part of this section, we review the various studies that associated neurosciences 
and biclustering, not necessarily the same type of data as the one we cover. Then, we 
explain how biclustering is used to analyze data with spatio-temporal properties. While 
these study cases are outside medical data, they motive the capacities of these methods 
on temporal data.

Biclustering in neurosciences

Busygin et  al. [12] used a form of biclustering known as consistent biclustering to 
analyze EEG data and identify a physiologic marker for optimal vagus nerve stimula-
tor parameters. They conducted biclustering under the Label × Features dimen-
sions. The labels were created considering experimental settings, and the features 

Fig. 1  Correlation time series between two non-adjacent brain regions. Biclustering would be able to detect 
precisely these types of correlation patterns, while ignoring the non-correlated regions and time points. This 
allow to obtain more flexible structure than traditional clustering (Figure adapted from [1])

Fig. 2  Whole brain time series. In the heatmap, some row and column clusters are visible, as well with some 
events that happen only for some regions for some specific time points. This later type of structures are not 
detected by traditional clustering tasks (Figure adapted from [1])
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are associated with the EEG channels. Fan et al. [13] cited this EEG study as an exam-
ple of biclustering application, but it is a general-purpose review about biclustering.

Considering structural MRI data, Rahaman et al. [14] proposed a new biclustering 
approach under the Subject × Features. In this study, the features are computed 
considering the application of independent component analysis (ICA) of the MRI 
spatial maps. Gupta et al. [29] proposed a new biclustering approach in the Subject 
× Voxel dimensions to analyse structural MRI data, using an intermediate ICA step.

Yu et  al. [15] conducted biclustering analysis to explore relations among brain 
functional network connectivity (FNC), obtained by using fMRI data and genetic 
nodes (SNP). Therefore, the biclusters had the FNC × SNP shape.

In biclustering, the dimensions of analysis are a important part of the analysis. 
Each one of the previous studies use different dimensions in their analysis, and a dif-
ferent set of dimensions than we do in this study. The study most closely related to 
our research is the one conducted by Amar et al. [16], that proposed a new algorithm 
based on biclustering to perform three-way analysis (triclustering). As an applica-
tion example, they used multi-subject fMRI data (Region × Time × Subject) as an 
illustrative application of their approach. Their results suggest the capacity of this 
family of algorithms to identify pertinent brain regions. However, this study is only 
explorative, meaning that this algorithm’s performance is not tested against other 
three-way clustering algorithms or approaches.

Biclustering spatio‑temporal data

In more recent years, more general approaches than clustering have been success-
fully used in distinct Spatio-temporal application domains. This section focus on 
the uses of biclustering and triclustering [46] to analyze data with spatio-temporal 
properties.

Considering biclustering, Wu et al. [17] analysed Chinese meteorological Spatio-
temporal data. Shen et  al. [18] used biclustering to analyze the global distribution 
of natural disasters. Kaban et  al. [19] used biclustering to identify spatial of social 
vulnerability in Indonesia and was able to distinguish profiles of social vulnerability. 
Borgnat et al. [20] identified spatial and temporal profiles in a bike-sharing system 
in Lyon. Izenman et al. [21] used biclustering to group juvenile-offense data. Dham-
odharavadhani and Rathipriya analysed COVID-19 epidemiological data and identi-
fied countries with similar epidemic trajectory patterns [27]. Neves et al. [28] used a 
biclustering algorithm to analyse traffic data.

Considering triclustering, Martínez-Álvarez et  al. [22] analyzed parameters to 
seismogenic zoning using triclustering in the Iberian Peninsula. Guigourès et al. [23] 
proposed a technique to analyze time-varying graphs, illustrating it in the London 
bike-sharing system. Wu et al. [24, 25] used triclustering to analyze meteorological 
data from Duch weather stations. Melgar-García et  al. [26] applied a triclustering-
based algorithm to discover patterns over time in maize crops in Portugal to help 
farmers improve their harvests.

It is also relevant to refer that several biclustering algorithms were developed with 
a focus on temporal data [40, 47–49].
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Methods
Comparisons surveys are a category of studies focused on evaluating the perfomance of 
biclustering algorithms [11, 30–33]. These studies begin by selecting a set of biclustering 
algorithms and evaluate their perfomance on some dataset. These studies follow a com-
mon general strategy that we sistematize in Fig. 3.

In this section, we explain how our study follows this general methodology. For each 
sub-task, we explain our criteria for each decision and how it distinguishes from other 
comparison surveys in biclustering [11, 30–33].

Datasets

Previous studies use two types of data collections: synthetic datasets, where ground 
truth is known, and real data collections [11, 30–33]. The first is used so that an external 
metric can be used to evaluate the capacity of the biclustering algorithms to retrieve the 
artificially-planted biclusters in the dataset [41]. Since data is synthetic, the data param-
eters can be controlled (such as data size, presence of noise, number of planted biclus-
ters, and possibility of overlapping). The real data collections consists of gene expression 
datasets from various benchmarks. Typically, the number of datasets in each compara-
tive study is around a few dozens gene expression datasets.

This is a sub-task where our study differ most from previous studies. In our study we 
work exclusively with fMRI time series datasets, where each dataset represents a brain 
scan (we use the dimensions Region × Time). We use real data and artificial fMRI scans. 
In our study we use a total of 42 datasets, organized as four data collections, summa-
rized in Table 2.

The First data collection has a single artificial brain scan, and was used to test biclus-
tering parameters. The Artificial data consists of 20 artificial brain scans, which we use 
to evaluate the performance of the biclustering algorithms. The artificial datasets were 
obtained using the SimTB simulator [50] to generate data consistent with an auditory 
oddball experiment [56]. This approach was validated in previous studies and is part of 
the SimTB software [50, 51]. The Real data consits of 20 brain scans, and is also used 
to evaluate the performance of the biclustering algorithms. The data was collected by 

Datasets Biclustering
Algorithms

Set of Biclusters
(Biclustering) Analysis

Fig. 3  General methodology followed by comparison studies

Table 2  Data collections used to evaluate the performance of the biclustering algorithms. We have 
a total of 42 datasets, each one representing one brain scan

Data collection name Nature #Brain scans #Time points # Regions References

“First data collection” Artificial 1 150 ≈ 30 [50, 51]

“Artificial data” Artificial 20 150 ≈ 30 [50, 51]

“Real data” Real 20 94 463 [16, 52]

“Illustrative data” Real 1 137 45 [53–55]
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Vaisvaser et al. [52] to analyze stress response. This data was preprocessed by Amar et al. 
[16].1 The Illustrative data corresponds of a single brain scan, extracted from the “NYU 
Slow Flanker” dataset [53–55] and is used exclusivelly to illustrate results from a biclus-
tering algorithm.2 Typical preprocessing was conducted using the FSL software [57–59]. 
Finally, the fMRI brain scan was downsampled into regions considering the Harvard-
Oxford cortical atlas [60].

Biclustering algorithms

Dozens of biclustering algorithms have been developed during the last two decades 
[9]. Since it is not viable to test every single available biclustering algorithm, decisions 
regarding the best algorithm to use must be made. There is not a single strategy to decide 
what algorithms to test.

Prelić et al. [30] considered three criteria to chose biclustering algorithms: (1) the pop-
ularity of the algorithms in the biclustering community, (2) considering similar algorith-
mic strategies to be better comparable, and (3) the availability of the implementation. 
Eren et al. [32] choose algorithms considering both the convenience criteria (algorithms 
that have available implementations) and the criteria of having various biclustering algo-
rithms with differing approaches. Henriques et al. [33] selected what they considered to 
be the state-of-the-art biclustering algorithms. Padilha and Campello [11] referred the 
popularity criteria and the availability of implementation when selecting algorithms.

For our study we considered the following criteria to select biclustering algorithms for 
analysis:

•	 We began by considering only popular, freely available implementations of bicluster-
ing algorithms. We analysed both the previous comparative studies and the studies 
considering biclustering time series [11, 30–33, 61].

•	 We considered important for our algorithms to detect shifting and scaling patterns 
(patterns commonly found on real-valued datasets).

•	 The algorithms should be robust to noisy datasets (since there is a lot of expected 
noise in fMRI time series data).

•	 The algorithms should cover different search strategies.

We selected seven state-of-the-art biclustering algorithms covering four search strate-
gies. Table 3 highlights general characteristics of these algorithms together with the rea-
sons for their selection.

Since clustering can be viewed as a particular case of biclustering, we can compare 
biclustering approaches to traditional clustering. Clustering approaches are typically 
used to group brain-regions with similar activity over time [3, 65–67]. Among the 
most popular clustering approaches are the K-means algorithm, Spectral Clustering, 
and Hierarchical methods (in particular using the Ward’s algorithm) [66]. However, 
both row and column clustering make sense and can be considered. In what follows, 

1  Original data available at: acgt.cs.tau.ac.il/twigs/.
2  Original data available at the openneuro portal: openfmri.org/dataset/ds000102/.
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and considering data format, traditional row clustering and column clustering will be 
referred as region clustering and temporal clustering, respectively.

Biclustering

After running a biclustering algorithm over a dataset, a set of biclusters (biclustering) is 
generated. Previous studies do not discuss much of this step since it is closely related to 
the biclustering parametrization step. However, the biclusters must have a format ade-
quate for the posterior analysis.

Different biclustering algorithms will provide biclusterings with different structures. 
For example, Bimax requires a binary discretization of the original dataset. Therefore, 
the output of the algorithm will be a binary bicluster. Our strategy was to consider the 
set of rows and columns obtained by the algorithm and the original values present in the 
dataset to define the biclusters to be evaluated. Figure 4 illustrates this process.

Some biclustering algorithms can generate biclusters with less than two rows or col-
umns. In the context of our study, these biclusters were considered uninteresting and 

Table 3  Biclustering algorithms considered for this study. Additionally, they will be compared 
to three popular clustering algorithms: k-means, spectral, and ward’s hierarchical methods. For 
clustering, we use scikit-learn implementations [64]

Algorithm Type of search Available at References Reason to choose it

BicPAM Exhaustive BicPAMS [39, 62] State-of-the-art pattern min-
ing based biclustering method

CCC​ Exhaustive BiGGEsTS [40, 61] Allows to obtain temporal 
contiguous biclusters effi-
ciently

ISA Greedy isa2 [35] State-of-the-art greedy 
algorithm able to deal with 
real data

XMotifs Greedy biclust [36, 63] State-of-the-art greedy algo-
rithm based on a strategy of 
discretizating data

Bimax Divide and conquer biclust [30, 63] Very fast algorithm able to 
detect simple structures

FABIA Distribution parameter 
identification

FABIA [38] State-of-the-art algorithm

Spectral Biclustering Distribution parameter 
identification

biclust [37, 63] State-of-the-art algorithm able 
to detect a specific type of 
bicluster structures

Fig. 4  Typically, biclustering algorithms require some preprocessing step (either a normalization or a 
discretization step). For a fair comparison between multiple biclustering algorithms, a post-processing is 
done to garantee that the bicluster has the original values present in the original data matrix
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were removed from the biclustering, either by parametrization or considering a post-
processing step.

For the artificial and real data collections (20 datasets each), biclustering was con-
ducted independently for each dataset. For this study purposes, we consider the union of 
all generated biclusters as the result for that data collection.

Analysis

Traditional comparative studies use both the external evaluation metrics applied to the 
synthetic data and the biological significance applied to the real-world gene expression 
datasets [11, 30–33].

Our data focus on fMRI time series. External measures cannot be used due to the 
absence of ground truth. Furthermore, biological significance measures are exclusive to 
the context of gene expression data and not useful for any other context. Therefore our 
analysis methodology must be done differently. Internal evaluation indexes were selected 
to evaluate the performance of biclustering algorithms [43].

Our first task is related to the parametrization of the algorithms. For most parameters, 
we used the default ones provided by the implementations or suggested by the authors. 
We decided to test different parameters and select the best performance configurations. 
This approach is consistent with the standard practice followed by previous studies, 
which use mostly default parameters, discussing only the effects of some parameters [11, 
30, 32, 33]. We use these optimized parameters during the remaining of the study. For 
this part, the first data collection was used.

Then, we conduct a comparison between biclustering algorithms. This comparison is 
an essential part of our study since it compares the biclustering capacity against tradi-
tional clustering and the capacity of each algorithm. Additionally, we analyze the dimen-
sions of the biclusterings, which are distinct between algorithms and can explain the 
reasons for the previous performance. Finally, we use the correlation between our met-
rics to hypothesize the patterns hidden in fMRI time series. For this analysis, we used 
the artificial data collection and the real data collection.

Evaluation metrics

In our study, we use internal evaluation indexes, that translate the internal quality of the 
bicluster into a single number [43]. However, since there are multiple types of patterns 
that fall into the definition of bicluster, there is no single metric that can capture all types 
of patterns. As stated by Hartigan [68], one simple hypothesis to evaluate a bicluster is to 
calculate its Variance (VAR):

where bij refers to the element (i, j) of the bicluster B, bIJ refers to the global mean of the 
elements belonging to the data matrix and |I|, |J| represent the total number of rows 
and columns of the bicluster. A disadvantage of using the variance is that it is only able 
to measure constant biclusters. Therefore it will fail to detect most of the more complex 
patterns we want to detect.

(1)VAR(B) =
1

| I | × | J |

|I |∑

i=1

|J |∑

j=1

(bij − bIJ )
2
,
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Introduced by Cheng and Church [8], the Mean Squared Residue (MSR) aims to find 
the coherence of the bicluster over rows and columns:

where biJ and bIj point to the row i mean and the column j mean. This approach is an 
improvement compared to the variance since it can capture shifting tendencies. How-
ever, it is unable to capture scaling patterns [31].

In order to capture the scaling tendencies that the MSR cannot recognize, Mukho-
padhyay et  al. [69] developed a new measure called Scaling Mean Squared Residue 
(SMSR), focused on scaling patterns (however, it fails to capture the shifting patterns).

An important property of biclusters is the possibility that they could have a different 
range of values between each other, suggesting the use of standardisation processes. As 
pointed by Pontes et al. [43], an advantage of this approach is to characterise their ten-
dency. One way of doing it is to standardize data by row. In the context of fMRI, this 
means normalizing each brain region to have a similar amplitude as follows:

where µgi and σgi represent the mean and standard deviation over the rows of the biclus-
ter. Based on this approach, a quality measure was proposed under the name of Virtual 
Error (VE) [34, 70], considering the concept of a virtual pattern, which can be defined 
over rows or columns [43]. The normalized pattern over rows is given by:

This pattern represents the average brain behaviour over time, and the virtual error is 
thus defined as a measure of the difference between the real region behaviour compared 
to this virtual row:

A particular advantage of the virtual error measure is its capacity to detect both shifting 
and scaling patterns [43]. This advantage means that it is a suitable internal measure to 
compare different possible patterns obtained by different biclustering methods. When 
considering the presence of noise, Pontes et al. [43] pointed out that the virtual error can 
capture both scaling and shifting patterns since its value varies linearly with the induced 
error. Additionally, this metric is of particular interest since it uses the concept of pat-
tern over a “time” dimension.

(2)MSR(B) =
1

| I | × | J |

|I |∑

i=1

|J |∑

j=1

(bij − biJ − bIj + bIJ )
2
,

(3)SMSR(B) =
1

| I | × | J |

|I |∑

i=1

|J |∑

j=1

(biJ × bIj − bij × bIJ )
2

b2iJ × b2Ij
.

(4)b̂ij =
bij − µgi

σgi
, 1 ≤ i ≤| I |, 1 ≤ j ≤| J |,

(5)ρ̂j =
1

| I |

|I |∑

i=1

b̂ij .

(6)VE(B) =
1

| I | × | J |

|I |∑

i=1

|J |∑

j=1

| b̂ij − ρ̂j |.
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Types of signal

While the virtual error is expected to capture both shifting and scaling patterns [43], 
it does not provide any knowledge in ther of the specific type of the signal found in 
the fMRI data. Padilha and Carvalho [71], in a study consisting of 9 biclustering algo-
rithms and a benchmark of 19 different real gene expression datasets, showed that 
the virtual error is not fundamentally correlated with any of the remaining discussed 
measures (variance, MSR and SMSR).

Since the virtual error promises to be a stable measure for different types of biclus-
ters, we expect it to be correlated with the measure able to find the most common 
pattern present on our data. Therefore, we used the Pearson coefficient between the 
three mentioned quality measures (VAR, MSR and SMSR) and the virtual error meas-
ure to get insights patterns found in our data.

Results
This section discusses the performance of biclustering algorithms in our evaluation 
scenarios.

We begin by testing the influence of different parameters on the performance of 
each algorithm, to select an adequate set of parameters for the algorithms to be com-
pared with each other. Then, we evaluate the perfomance of the biclustering algo-
rithms considering the following criteria: (1) biclustering versus region and temporal 
clustering; (2) different biclustering algorithms; (3) top-K biclusters; (4) bicluster size; 
(5) type of bicluster pattern found.

Testing configurations

In this scenario, the objective was to test the behaviour of different parameter con-
figurations on six bicluster algorithms (BicPAM, FABIA, Bimax, CCC, XMotifs and 
Spectral). The First data collection was used for this step, and Table  4 shows the 
results of this testing.

In terms of input, the format Region × Time was selected to run most of the algo-
rithms. This approach was chosen since the algorithms are in general implemented to 
run in this configuration, since they were designed in gene expression context, where 
genes are commonly used in the rows and the conditions, such as time, fit in the col-
umns [7].

Considering the input format, an exception was made for BicPAM, since this algo-
rithm was reported to be more efficient for matrices with a larger number of rows 
than columns (which for this dataset consists of the Time × Region format), and 
allows to select a dimension to search for patterns (the temporal dimension was cho-
sen) [39, 62]. Due to its flexibility of finding different types of patterns, BicPAM was 
also run in three different configurations to search for constant, shifting and scaling 
patterns. The minimum number of biclusters before merging parameter was selected 
as high as possible in order to guarantee an adequate exploration of the dataset, while 
forcing it to run in a reasonable time. Additionally, BicPAM has a discretization step, 
and we used the default five symbols discretization. Based on the virtual error results 
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between constant, shifting and scaling patterns, we choose the “additive” version of 
BicPAM.

In FABIA the number of biclusters is always limited: it cannot be higher than the 
number of rows and the number of columns. In this case, we selected the number of 
columns of the dataset as a number of datasets (following the methodology proposed 
by Henriques et al. [33]). We considered two threeshold options: (1) default thresh-
olds, and (2) relaxed values to try to find more biclusters. This treeshold influences 
the size and number of generated biclusters.

We observed that the relaxed configuration achieves far worse results than the 
standard configuration. This suggests that the strategy of relaxing the thresholds does 
not provide more meaningful results, therefore we used the default threshold values.

In Bimax the default values were used but for the number of biclusters, changed as 
follows: 10 biclusters, 100 biclusters, 1000 biclusters, 10,000 biclusters and 100,000 
biclusters.

We observed that generating more biclusters mean adding more noise to the previ-
ous generated ones. Additionally, we observed an effect of saturation when generating 
a large number of biclusters, since asking the algorithm to generate “100,000” biclus-
ters does not produce actually any more biclusters than the “10,000” option.

Table 4  Median values for the four selected measures for the first artificial dataset, with 
uncertainties given by the standard deviation (except for the case of SMSR were the standard 
deviation is orders of magnitude higher than the median value). From these results it is visible 
that A) The high values of uncertainty discourage focus on optimizing the biclustering method 
parameters and B) Choosing the right evaluation metric is important, however in most of the 
biclusters cases they seem to agree for the same “best” configuration. Bold represents the choosen 
parameters for the next sections

Method Configuration VAR MSR SMSR VE

BicPAM Additive version 0.024± 0.024 0.001± 0.003 2.49 0.262± 0.232

Constant version 0.014± 0.026 0.001± 0.002 1.96 0.434± 0.185

Multiplicative 0.025± 0.024 0.002± 0.005 3.07 0.461± 0.263

Bimax 10 biclusters 0.004± 0.002 0.001± 0.001 0.03 0.881± 0.148

100 biclusters 0.006± 0.004 0.003± 0.002 0.05 0.729± 0.128

1000 biclusters 0.008± 0.008 0.004± 0.004 0.06 0.706± 0.168

10,000 biclusters 0.008± 0.007 0.004± 0.004 0.06 0.695± 0.169

100,000 Biclusters 0.008± 0.007 0.004± 0.004 0.06 0.695± 0.169

CCC​ Traditional discretization (5 
symbols)

0.189± 0.359 0.017± 0.021 0.51 0.288± 0.345

Variation between time points (2 
Symbols)

0.596± 0.491 0.067± 0.108 0.93 0.370± 0.315

Variation between time points (3 
Symbols)

0.596± 0.491 0.067± 0.108 0.93 0.370± 0.315

FABIA Standard 0.579± 0.502 0.006± 0.081 0.51 0.079± 0.167

Relaxed 0.946± 0.053 0.881± 0.095 3485.60 0.787± 0.036

Spectral Biclustering log 0.039± 0.053 0.033± 0.004 670.30 0.726± 0.012

bistochastization 0.040± 0.005 0.035± 0.004 3232.21 0.731± 0.015

irrc 0.040± 0.004 0.035± 0.004 1271.71 0.726± 0.015

XMotifs Discretization with 2 symbols 0.017± 0.004 0.012± 0.001 1168.76 0.662± 0.048

Discretization with 5 symbols 0.007± 0.009 0.003± 0.001 6.59 0.585± 0.035
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The greedy algorithm XMotifs was executed 30 times (to avoid interference from the 
starting seeds, and following the approach proposed by Padilha and Campello [11]). 
XMotifs uses a discretization step, and 5 symbols were used (in order to be similar to the 
discretizations used by CCC and BicPAM), as well as 2 symbols (to be similar to Bimax). 
The strategy of using a discretization with 5 symbols provided biclusters with smaller 
errors than using a binary discretization. Similar results were obtained by Kemal et al. 
[32].

Spectral biclustering uses a normalization method. We used the three normalization 
methods made available by the authors: “logarithmic normalization” (log), “independent 
rescaling of rows and columns” (Irrc) and “bistochastization” [37]. The three configu-
rations generate similar results in all metrics (except SMSR). The “log” configurations 
achieved the best performance in all four metrics, thus since it is also the configuration 
recommended by the authors, it was selected for the next stages of research.

In CCC​ most of the parameters are associated with the discretization step. We used 
the two major possibilities: use a traditional discretization per row (for this, 5 symbols 
was used) or use variation between time points (2 or 3 symbols) as described in Madeira 
et al. [40]. A surprising result is the traditional discretization to generate best biclusters 
than the variations options, contradicting results obtained by Madeira et al. [40]. This 
could be due to two possible reasons: different application context or the use of a differ-
ent evaluation metric.

Comparing biclustering and clustering

In this scenario, the general objective is to compare the general capacity of biclustering 
algorithms with traditional clustering algorithms in both region and temporal cluster-
ing. Results are summarized in Fig. 5. The general conclusion anticipates biclustering to 
obtain more homogeneous structures than the traditional clustering structures, since it 
achieves better values in all four quality evaluation criteria.

Fig. 5  Comparing the general capacity of biclustering algorithms versus the two clustering variants in 
artificial and real data. This is done by aggregating the results from all algorithms and comparing the median 
value of the metric. The results motivate the capacity of biclustering to obtain promising results for analysing 
the data
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Comparing algorithms

While previous results motivate the use of biclustering, they do not explain the capac-
ity of each individual algorithm to generate homogeneous biclusters. In this scenario 
we tested the performance of each biclustering (and clustering) algorithm. Figures 6 
and 7 illustrate our results in both synthetic and real data.

The first immediate conclusion is related with the lack of capacity of temporal clus-
tering algorithms to generate good results. This makes sense since these clustering 
scenarios generate groups of time points where all regions behave similarly. Since the 
brain is heterogeneous, different regions will behave differently under the same time 

Fig. 6  Virtual Error measure for every tested algorithm in our artificial data collection. Despite having great 
oscillations, the median performance of the exhaustive approaches (CCC and BicPAM) show promising results 
in comparison with the remaining biclustering approaches

Fig. 7  Virtual Error measure for every tested algorithm in our real data collection. Despite the biclustering 
algorithms not being indisputable better than the traditional clustering, the use of exhaustive biclustering 
approaches such as CCC and BicPAM show a good capacity of generating coherent biclusters
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points, it was not expected that clustering would generate good results considering 
the virtual error measure.

More comparable are the tasks of region clustering and biclustering. In this scenario, 
most biclustering algorithms achieve worse results than the traditional clustering tasks, 
with the exception of exhaustive biclustering algorithms. However, the capacity of the 
exhaustive approaches (BicPAM and CCC) to find homogeneous biclusters shows that 
while the clustering methods are fundamentally limited (due to the cluster structure), 
the biclustering task is able to achieve very good results.

Focusing on the individual performance, it is not too surprising that the Bimax algo-
rithm would achieve bad results since it discretizes data in a very specific way (it searches 
for binary biclusters). This step of turning the dataset into a binary one strongly limits 
the capacity of finding good biclusters. For Spectral Biclustering results are not surpris-
ing, since it does search for a very specific type of bicluster. FABIA has similar problems 
when compared to clustering approaches, since its factor-analysis approach strongly 
limits the capacity of the algorithm of generating biclusters. Both ISA and XMotifs pro-
duce bad results, which is suprising since they were expected to find the same types of 
biclusters than the exhaustive algorithms.

Comparing top‑K biclusters

Biclustering solutions are composed of a different number of generated biclusters, which 
can be order of magnitude different depeding of the algorithm. Additionally, as part of 
the methodology, greedy algorithms were executed multiple times to avoid interference 
from their stochastic nature. Therefore, comparisons that use every single bicluster are 
not be fair. In this section, our strategy was to use the virtual error as a filter and select 
the top-K biclusters of each algorithm. Additionally, to avoid statistical artifacts, biclus-
ters with virtual error smaller than 0.01 were removed from our study.

In our study, we selected the K value empirically considering the number of already 
generated biclusters. For the artificial data, the K number was selected as 50, and for the 
real dataset, the selected number was 500. Our results are shown in Fig. 8 and reinforce 

Fig. 8  Comparison between the best generated biclusters for each biclustering algorithm. From the previous 
biclustering solution, the top-k biclusters (filtering by the virtual error and removing biclusters with virtual 
error smaller than 0.01). The results follow the previous conclusions pointing for a high capacity of the 
exhaustive algorithms to generate good biclusters. Additionally the ISA results suggest that, while is general 
performance is bad, it does have the capability of generating some good biclusters
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the capacity of exhaustive approaches to generate homogeneous biclusters. Additionally, 
ISA had a great improvement in performance, indicating that it could be an interesting 
choice for dealing with this type of data. XMotifs, while being also a greedy algorithm 
had a worse performance but still better than the FABIA and Spectral algorithms (that 
are based on distribution parameter identification).

Size remarks

In this section, we studied the size of the biclusters to get insights of possible reasons 
some algorithms achieve better results than others. Since the algorithms generate biclus-
ters with different properties, now we focus on bicluster size parameters. Our results are 
shown in Table 5.

A first view on the results show biclustering solutions tend to generate biclusters with 
highly variable sizes. This makes sense, since the search strategies of each algorithm are 
different.

In the previous sections we observed the capacity of exhaustive algorithms to generate 
better biclusters than the remaining algorithms. This results show some possible hits of 
the reasons why they do it, since CCC and BicPAM generate the smallest biclusters in 
terms of area. For BicPAM these results show a lack of subspace exploration. BicPAM 
achieves great results by allowing to generate very small biclusters. Additionally, while 
the algorithm promised to generate biclusters of all sizes (due to its exhaustive nature), 
this comes at a price of execution speed (which we observed to be far greater than the 
remaining algorithms) and a running memory price, making this promise to be poten-
tially unfeasible. Despite being also exhaustive, the temporal contiguity constraint of 
CCC lead to a faster exploration of the datasets.

Table 5  Median values (and associated standard deviation) for the typical bicluster dimension 
parameters in both data collections: number of regions in each bicluster, number of time points 
and bicluster area. When comparing this results to the virtual error values, a apparent relation comes 
between the bicluster size and the associated virtual error, which make sense

Algorithms Artificial data Real data

Time points Region points Area Time points Region points Area

Biclustering

Bimax 6± 7 4± 2 24± 25 6± 2 21± 21 126± 386

BicPAM 7± 3 2± 1 16± 11 27± 8 2± 0 54± 16

CCC​ 3± 4 3± 2 10± 9 5± 2 4± 9 18± 22

FABIA 43± 5 4± 2 184± 76 29± 4 14± 52 403± 1204

Spectral Biclustering 23± 11 7± 3 136± 112 20± 7 17± 6 330± 211

ISA 14± 9 3± 1 44± 46 7± 5 30± 28 152± 276

XMotifs 49± 13 2± 1 114± 45 19± 11 4± 15 78± 71

Region clustering

kmeans 150 3± 2 450± 283 94 4± 1 376± 123

pectral 150 4± 4 525± 610 94 3± 117 282± 11038

ward 150 6± 5 900± 700 94 3± 1 282± 100

Temporal clustering

kmeans 3± 5 26 78± 119 3± 0 463 1389± 197

spectral 3± 6 26 78± 158 86± 36 463 39818± 16621

ward 3± 9 26 78± 247 3± 0 463 1389± 222
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FABIA produces the largest biclusters. This is related to the search strategy that uses 
factor analysis as base. For Spectral, the use of singular value decomposition and the 
generated checkerboard structures help explain the size of the generated biclusters. 
Bimax generates biclusters with different sizes due to its simplistic approach. The greedy 
algorithms ISA and XMotif generate relatively small biclusters.

Finally, clustering approaches generate the largest solutions. This is strongly related 
with their restriction of including all rows (or columns) in the clustering.

Types of bicluster patterns

To detect the pattern structures found by the biclustering algorithms, we calculated the 
square of the Pearson coefficient between the VAR, MSR and SMSR and the Virtual 
Error. A high correlation could be indicative of the expected type of pattern. Our results 
are shown in Table 6.

Most biclusters agree that the expected patterns are of shifting nature. Bimax is one of 
the exceptions, supporting constant and scaling patterns. However, it must be pointed 
that Bimax does not recognize any special type of structure since it works only with 
binary data. Other exception is CCC, supporting the hypothesis of constant patterns. 
This could be a consequence of the temporal contiguity constrain that generates biclus-
ters that are fundamentally different than the ones obtained by the other algorithms.

Discussion
Biclustering is a technique that allows the simultaneous clustering of rows and columns. 
It is worth noticing that the application of biclustering has not progressed in parallel 
with algorithm design. This has two particular reasons. The first one happens due to a 
gap between tool development and the understanding of the data properties for each 
specific study. The second one is a knowledge gap for applying biclustering with other 
analytical tools such as annotation processes, visualization programs and statistical 
methods, to derive a more comprehensive interpretation [9].

In the context of neurosciences, this gap is wider for two reasons: first, previous com-
parative studies consider only the gene expression context in their evaluations. Second, 
there is a scarcity of a consistent research line for the interpretation and application of 
biclustering.

Table 6  Correlation between the virtual error and the three specific coherence measures: Variance 
(constant biclusters), MSR (shifting biclusters) and SMSR (scaling biclusters). Most of the algorithms 
agree that the expected patterns are of shifting nature

Algorithms Artificial Data Real Data Type of Pattern

Variance MSR SMSR Variance MSR SMSR

BicPAM 0.009 0.133 0.000 0.040 0.306 0.000 Shifting

Bimax 0.003 0.037 0.087 0.196 0.001 0.000 Constant/scaling

CCC​ 0.112 0.007 0.000 0.200 0.033 0.000 Constant

FABIA 0.051 0.627 0.061 0.003 0.763 0.001 Shifting

ISA 0.050 0.453 0.000 0.040 0.045 0.000 Shifting

Spectral biclustering 0.009 0.125 0.000 0.103 0.361 0.000 Shifting

XMotifs 0.115 0.378 0.016 0.003 0.670 0.000 Shifting
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Our study aimed to close this gap between algorithm design, software development 
and the application of biclustering. The first part of this study was a comparative study 
for the biclustering capacities of extracting patterns from fMRI time-series data. In this 
section, we discuss the second issue and highlight the potential of biclustering for fMRI 
data analysis.

The first sub-section is an illustrative analysis of a single fMRI scan, highlighting the 
spatial and temporal patterns that biclustering can discover in fMRI. The second sub-
section discusses how biclustering could be integrated with other state-of-the-art tech-
niques of fMRI data analysis.

Illustrative results

To highlight the potentialities of biclustering to detect interesting structures, we con-
sider the “Illustrative data” (already mentioned in methods). This dataset consists of an 
fMRI scan of 137 time points and 45 brain regions (the Harvard-Oxford atlas was used 
to group the brain in regions). A heatmap of our data is illustrated in Fig. 9, where sev-
eral bicluster-like structures are visible.

We choose the CCC biclustering algorithm, implemented in BiGGEsTS [40, 61]. This 
algorithm was chosen, not only because it achieved good results in the previous analysis, 
but to generate temporal contiguous biclusters with an easier interpretation. The algo-
rithm returned 749 biclusters, which we sorted according to a temporal statistical signif-
icance metric [40, 45]. Figures 10, 11 and 12 show three of the most relevant biclusters.

Biclustering opportunities in fMRI data analysis

Biclustering is not a standalone technique, and is often integrated with an analysis 
pipeline consisting of several other tools, such as results annotation processes, vis-
ualization programs and statistical methods [9]. We explore how biclustering could 

Fig. 9  Heatmap of the illustrative data. Interaction between brain regions is local: some brain regions 
interact together in some time points. Traditional clustering analysis is not able to automatically discover 
these structures
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be integrated with other popular fMRI analysis techniques: clustering, independent 
component analysis and graph theory. In each section, we analyse how biclustering 
compares to them, and how these techniques can be combined to achieve greater 
interpretations of the phenomena under study. In addition to these, we explore how 
biclustering, an unsupervised technique of analysis is used to improve the quality of 
classification tasks.

Clustering

Biclustering algorithms were originally developed to expand on clustering limita-
tions, in particular to allow overlapping between structures and searching for similar-
ity considering only a subset of the features. Therefore, while clustering allows only 
to discover disjoint structures (subsets of rows or columns), biclustering discovers a 
larger set of possible interactions. Figure 13 illustrates differences between clustering 
and biclustering.

If directly applied to fMRI time series (in the format Region × Time), clustering 
discovers subsets of regions that have a similar behaviour considering all datasets. 
This approach assumes that all brain regions behave statically in time. Biclustering is 
expected to overcome this assumption and search for local patterns.

Fig. 10  First example bicluster
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Indepedent component analysis

Indepedent Component Analysis (ICA) is a dimensionality reduction technique that 
separates a multivariate signal into a number of components [72]. Often used for explor-
atory data analysis, in fMRI is particular popular since it separates the analysis of a Time 
× Region dataset into their temporal (Time × components) and spatial (components 
× Space) parts [73]. ICA is used in fMRI to analyse static brain connectivity and has 
been used to consistent networks across several studies [74–77].

ICA and biclustering are fundamentally different techniques. While ICA transforms 
a n× p matrix into matrices n×m and m× p , where m is the number of components 
(arbitrary chosen). Biclustering operates on a n× p matrix and extracts an arbitrary 
number of sub-matrices with an arbitrary size (Fig. 14 illustrates the differences between 
biclustering and ICA).

While ICA and biclustering are fundamentally different algorithms, decomposition 
techniques are used as an intermediate step in the internall bicluster algorithm [35, 37, 
38, 78, 79]. An additional approach follows Gupta et al. [29], who proposed a new biclus-
tering approach in the Subject × Voxel dimensions to analyse structural MRI data, 
using an intermediate ICA step.

An interesting application of ICA is its capacity to connect to other analysis tech-
niques such as clustering in an analysis pipeline. ICA is used as a preprocessing step, and 
a clustering approach operates in the results of ICA [80–82]. The same approach can be 

Fig. 11  Second example bicluster
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done with biclustering: instead of applying biclustering directly on fMRI time series (the 
approach of this study), biclustering algorithm can operate on the ICA results [14].

Graph theory

Graph theory is a mathematical field, applied in neurosciences to characterize the net-
work structure, and models the brain as a set of vertices (which represent either ROIs or 
even single voxels) and the connections between them as edges. Graph techniques can 
be used either to analyse individual vertices or the graph as a whole [3]. Heuvel et al. [83] 
and Rubinov et al. [84] discuss the use of graph theory to analyze the brain network, in 

Fig. 12  Third example bicluster

Fig. 13  Diferentes between Clustering and Biclustering. While clustering methods allow to obtain only 
disjoint strips in the data matrix, biclustering finds more flexible structures (Figure adapted from [6])
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particular the use of fMRI time series to construct the brain network. This approach to 
analyse fMRI data has been used in the past, not only to cluster the brain [85, 86], but 
also in tasks such as detecting schizophrenia [87].

Madeira and Oliveira [7], and Henriques et al. [33] established a theoretical connec-
tion between biclustering and graph theory. A data matrix can be seen as a weighted 
bipartite graph, and biclustering of a data matrix is conceptually equivalent to discover-
ing of maximal cliques or other structures from graphs obtained from binary or real-val-
ued matrices. This connection motivates the use of biclustering to find maximal cliques 
or other structures from graphs obtained from binary or real-valued matrices, where 
edge values identify connection strength [88, 89]. Several biclustering algorithms use 
graph concepts internally to obtain biclusters [90–94]. Figure 15 illustrates the conection 
between biclustering and graph theory.

Biclustering has been extensively used in gene expression data analysis to uncover 
graph structures such as the discovery of co-expressed gene modules and regulatory 

Fig. 14  Differences between ICA and Biclustering. While ICA decomposes the original matrix, biclustering 
generates an arbitrary number of sub-matrices (depending on the algorithm)

Fig. 15  Relation between biclustering and graph theory: a biclustering can be seen as a submodule in a 
network
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networks. A review on the application scenarios of biclustering in the discovery of bio-
logical networks is provided by Xie et al. [9].

Classification tasks

A group of studies has been exploring fMRI techniques to study neurologic and psy-
chiatric brain disorders, suggesting that neurodegenerative diseases target cortical net-
works rather than single regions [95]. These approaches have been applied in several 
diseases such as Alzheimer’s [96, 97], depression [98], dementia [99], multiple sclerosis 
[100], amyotrophic lateral sclerosis [101] and schizophrenia [87, 102–105]. In general, 
the goal of biomedical research is to establish clinical biomarkers. These biomarkers are 
a set of characteristics (features) that allows early disease detection and prognostic pre-
diction [106–110].

Biclustering has been used for supervised learning tasks [111–113]. Since a bicluster 
is representative of a certain characteristic of a subject, the presence of a bicluster can 
be used as a biomarker to discriminate characteristics of the population. Figure 16 illus-
trates this approach.

Bicluster based classification have been used previously for both temporal and non-
temporal data. Considering temporal data, Carreiro et al. [111] considers biclusters of 
Genes × Time to identify biological processes related to the progression of Multiple Scle-
rosis patients. This approach was extended, considering not biclusters, but meta-biclus-
ters (clusters of biclusters) [113]. In these approaches, the biclustering algorithm CCC​ 
was used. Matos et  al. [112] used the BicPAM biclustering algorithm to analyze non-
temporal data, together with the concept of meta-biclusters to characterize amyotrophic 
lateral sclerosis patients. Recently, Henriques and Madeira [114] showed that the use of 
biclustering based classification improves the performance of state-of-the-art classifiers.

Conclusions
Our study evaluated the use of biclustering in the context of fMRI data. Seven state-
of-art biclustering algorithms were selected, compared among each other and with 
three traditional clustering algorithms. Our results show that most biclustering 
methods are not able to clearly surpass the traditional clustering when using the vir-
tual error metric. However, the exhaustive methods (BicPAM and CCC) are able to 
achieve the best values of coherency of all tested algorithms. Additionally, and inde-
pendently of the measured homogeneity, we point out that biclustering can be useful, 
and an improvement in comparison to clustering, due to its ability to consider both 

Fig. 16  After discovering the biclusters for a group of subjects, a data matrix can be obtained locating the 
presence of some bicluster in a subject, and then used for classification tasks. The biclusters (sets of features 
and corresponding representative values) are used as features (Figure adapted from [112])
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spatial and temporal dimensions to discover the groups. We also observed that the 
bicluster structures found in this type of data are of a shifting nature.

Focusing on individual performance, BicPAM achieved high homogeneity levels 
by generating many small biclusters, which is not consistent with the promise of an 
exhaustive search. The issue is related to the performance of the algorithm, since it 
needs a prohibitive quantity of time and resources to discover bigger biclusters. This 
could be solved considering two approaches: the first one is related to the algorithm 
that can be optimized to generate results faster; the second is related to the param-
eterization of the algorithm that could be used if the size of the desirable biclusters 
is known apriori. It must be noticed that these observations are not inconsistent with 
the obtained results: even if this is considered, BicPAM will still be able to achieve 
good levels of homogeneity in its best biclusters.

Another interesting result comes from the greedy biclustering solutions, ISA and 
XMotifs. While not being able to achieve results as impressive as the exhaustive ones, 
they are still able to find some good ones using a fraction of the time BicPAM needs 
to operate. Additionally, while ISA works by using directly the real data, XMotifs 
requires a discretization step, which allows different approaches.

Considering the trade-off between the number of generated biclusters, their qual-
ity and execution time, Bimax is an interesting choice since it finds a huge number 
of biclusters very fast. This is achieved by doing a binarization of the data. While 
not being able to detect the best biclusters, its velocity could simply mean that the 
algorithm could be used to get some insights on the expected biclustering structures 
before running other algorithms.

FABIA and Spectral Biclustering are not able to achieve interesting results. Despite 
being both based on the same search type (Distribution Parameter identification) we 
believe that the reasons for this are different. The search strategy of FABIA means 
that the number of solutions will be limited to the number of columns of the data-
set, which will strongly limit its capacity to generate solutions with many biclusters. 
Spectral Biclustering on the other hand is limited due to the generated checkerboard 
bicluster structure.

The last algorithm considered is CCC which uses notions of temporal contiguity 
during the exhaustive search for biclusters. This means that CCC is able to find mul-
tidimensional time series motifs. This leads to the generation of a high number of 
biclusters with an easy interpretation which could be possibly ideal for these types of 
analyses. Since time is contiguous in these biclusters, a new set of quality measures 
based on statistical significance can further be used for an improvement when filter-
ing results. Furthermore, the high coherency levels observed in this study motivate 
the use of specific temporal biclustering methods to study fMRI data.

Biclustering is a tool to search for local patterns in data well established and recog-
nised in the gene expression application context. Our study shows that biclustering is 
equally promising in fMRI data. While comparative studies provide guidance over the 
selection of the methods, the choice of the biclustering algorithm to analyse must be 
guided by the study objectives.
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