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Background
Gaussian mixture models (GMMs) provide a flexible approach to multivariate density 
estimation and probabilistic clustering [1]. Most implementations of GMMs in the R 
programming language, including mclust [2] and mixtools [3], require complete 
data. The few implementations that do allow for missing values, such as MixAll [4], 
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have limited applicability due to their restrictive simplifying assumptions. For exam-
ple, MixAll assumes diagonal covariance matrices, which implies that the elements of 
the Gaussian vectors under consideration are mutually independent. In practice, both 
correlated and missing data are common. Our work was motivated by the problem of 
clustering summary statistics arising from genome-wide association studies (GWAS) of 
multiple correlated traits [5]. Missing data arose because not every genetic variant was 
tested for association with every trait.

Although commonly applied, standard approaches for addressing missing data prior 
to clustering, including complete case analysis and imputation, have serious drawbacks. 
By discarding information from observations that are only partially observed, com-
plete case analysis makes inefficient use of the data. This leads to unstable estimates of 
model parameters and cluster assignments that are susceptible to significant changes if 
the missingness pattern of the input data changes slightly. On the other hand, mean or 
median imputation introduces bias by making the incomplete observations appear less 
variable, and by shrinking the incomplete observations towards the complete data. This 
can result in inaccurate posterior membership probabilities that place excess weight on 
clusters with less missing data. Although a method has been described for estimating 
GMMs from incomplete data [6], there are no existing implementations in R.

To fill this gap, we present MGMM [7], a computationally efficient R package for maxi-
mum likelihood estimation of GMMs in the presence of missing data. Our package is 
carefully implemented and documented for ease of use. In contrast to complete case 
analysis, our approach makes full use of the available data; and in contrast to cluster-
ing after imputation, our approach is unbiased for estimating the parameters of the gen-
erative GMM, accurately assesses the posterior membership probabilities, and correctly 
propagates estimation uncertainty. Moreover, our implementation places no restrictions 
on the model’s covariance structures.
MGMM employs an expectation conditional maximization (ECM) algorithm [8], which 

accelerates estimation by breaking direct maximization of the EM objective function 
into a sequence of simpler conditional maximizations, each of which is available in 
closed form. While EM algorithms are regularly used for estimating GMMs, for example 
by both mclust and mixtools, those implementations only address missingness of 
the true cluster assignments, and not missingness of elements from the input vectors. In 
contrast, our ECM algorithm handles both missingness of the cluster assignments and of 
elements from the input data. We present a comprehensive benchmark, including three 
case studies, demonstrating that when the underlying distribution is well-approximated 
by a GMM, MGMM is better able to recover the true cluster assignments than MixAll or 
than standard GMM applied after state of the art imputation (e.g. multiple imputation 
by chained equations, MICE [9]). While we prioritized cluster assignments accuracy, our 
implementation also proves competitive in regard to running time for the missingness 
rates usually encountered in real data.

Methods
Model

This section provides an overview of the statistical model. For a detailed derivation and 
description of the ECM algorithm, see the Supporting Information.
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Statistical model overview

Consider n independent vectors yi = vec(Yi1, . . . ,Yid) in Rd , each arising from 
one of k distinct clusters. Although k is assumed known throughout this work, see 
"Methods" section of the Supporting Information for an approach to choosing k. Let 
Zij = 1 if the ith observation belongs to cluster j, and define the k × 1 indicator vec-
tor zi = vec(Zi1, . . . ,Zik) . Conditional on membership to the jth cluster, yi follows a 
multivariate normal distribution, with cluster-specific mean µj and covariance �j . Let 
πj denote the marginal probability of membership to the jth cluster. The observations 
can be viewed as arising from the following hierarchical model:

Marginalized over the latent cluster assignment vector zi , each observation yi follows a k 
component Gaussian mixture model (GMM):

To perform estimation in the presence of missingness, we derive the EM objective func-
tion Q(π , θ |π (r), θ (r)) , which is the expectation of the complete data log likelihood, given 
the observed data and current parameter estimates (see the Supporting Information 
for complete derivation). The EM objective is optimized using a sequence of three con-
ditional maximizations. Let γ̂ (r)

ij  denote the responsibility of the jth cluster for the ith 
observation, which is the current conditional probability of membership to that clus-
ter, given the observed data. In the first step, the cluster means are updated using the 
responsibility-weighted average of the working outcome vectors ŷ(r)ij  . In the next step, 
the cluster covariances are updated using the responsibility-weighted average of the 
working residual outer products. In the final step, the cluster responsibilities and mar-
ginal membership probabilities are updated using the new means and covariances. This 
process iterates until the improvement in the EM objective drops below the specified 
tolerance. Unbiased estimation of the model parameters requires that missingnesss in 
the outcome vector occur at random [10]. This means that whether a particular element 
of the outcome vector is missing can depend on the values of those elements that are 
observed, but not upon the values of those elements that are missing. See section 1.3 of 
the Supporting Information for further discussion of the missing at random assumption.

Imputation

Having fit the GMM in (2) via maximum likelihood, the missing values ymiss
i  of each 

observation yi may subsequently be imputed. Note that, in contrast to the imputation 
before estimation procedure commonly used to address missing input data, MGMM per-
forms imputation only after estimation. In this way, imputation has no effect on the 
final maximum likelihood estimates (π̂ , θ̂) . To perform a deterministic single imputa-
tion, as is done by the FitGMM function, ŷmiss

i  may be set to its posterior expectation 
given yobsi :

(1)
zi ∼ Multinomial(1,π),

yi (Zij = 1) ∼ N µj ,�j .

(2)f (yi) =

k
∑

j=1

πj f
(

yi|µj ,�j

)

.
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Here γ̂ij is the final responsibility of cluster j for observation i, and:

While single imputation to the posterior expectation is useful for visualization, drawing 
inferences from singly-imputed data is generally invalid [10]. For subsequent inference, a 
multiple imputation procedure is necessary, wherein multiple stochastic imputations of 
the input data are generated, analyzed in parallel, and the resulting estimates combined. 
To generate a single stochastic imputation of ymiss

i  , as is done by the GenImputation 
function, the latent cluster membership zi is first drawn from a multinomial distribution 
over γ̂ i = P(zi|y

obs
i ; π̂ , θ̂):

Given the cluster assignment, Zij = 1 , the missing elements ymiss
i  are drawn from a nor-

mal distribution with mean:

and covariance:

An exposition of how to use multiple stochastic imputations for inference is presented in 
the Supporting Information.

Benchmarking method

All analyses were performed in R 3.5.0 R [11]. We designed a benchmarking proce-
dure to compare the performance of MGMM against imputation followed by standard 
GMM (also implemented by MGMM) and another package that allows for missing val-
ues (MixAll). The imputation methods included in the benchmark were: naive mean 
and median imputation; k-nearest neighbors imputation, as implemented by the VIM 
package [12]; multiple imputation by chained equations, as implemented by the MICE 
package [9]; and random forest imputation, as implemented by the missforest 
package [13]. We defined clustering performance as the capacity of the algorithm to 
recover the true cluster assignments when applied to example data sets. We assessed 
the quality of the clustering by calculating the adjusted rand index (ARI) between 
the recovered and true class assignments. The running time was defined as the time 
necessary to obtain cluster assignation starting with the data set with missing val-
ues. We applied the benchmarking procedure to four case studies: a simulated four 

(3)

ŷmiss
i ≡ E

(

ymiss
i |yobsi ; π̂ , θ̂

)

= E

{

E

(

ymiss
i |zij = 1, yobsi ; π̂ , θ̂

)}

=

k
∑

j=1

ŷmiss
ij γ̂ij .

ŷmiss
ij = µ̂miss,j + �̂miss,obs,j�̂

−1

obs,j

(

yobsi − µ̂obs,j

)

.

zi ∼ Multinomial(1, γ̂ i).

E

(

ymiss
i |yobsi ,Zij = 1; π̂ , θ̂

)

= µ̂
miss
j + �̂miss,obs,j�̂obs,obs,j

(

yobsi − µ̂obs,j

)

V

(

ymiss
i |yobsi ,Zij = 1; π̂ , θ̂

)

= �̂miss,miss,j − �̂miss,obs,j�̂
−1

obs,obs,j�̂obs,miss,j
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component mixture of bivariate Gaussians, a cancer patient RNA-seq data set, sim-
ulated genome-wide association studies (GWAS) summary statistics, and summary 
statistics from GWAS for cardiovascular disease risk factors [14].

Missingness

For n observations on d dimensional data, a fraction of missing values m was intro-
duced completely at random by setting ⌈(m× n× d)⌉ elements of the data set to NA.

Evaluation metric

The quality of clustering was evaluated using the ARI [15, 16]. Briefly, the Rand Index 
(RI) is a measure of similarity that assesses the agreement between two partitions of 
a collection of n objects. All possible pairs of objects are examined, and the propor-
tion of pairs that are either 1. in the same cluster or 2. in different clusters according 
to both partitions is calculated. ARI is a variation of the RI that is adjusted for chance, 
and is permutation invariant. A value near zero suggests the agreement between 
the two partitions is no better than expected by chance, while a value of one occurs 
when the two partitions are identical. We define the quality of clustering as the ARI 
between the reference or true clustering, established in the data set description, and 
the clustering performed in the presence of missingness.

Benchmarking procedure

We designed the benchmarking procedure outlined in Fig. 1 and described in Algo-
rithm 1 to compare the performance of MGMM with imputation followed by standard 
GMM.

Fig. 1  Benchmark procedure schematic. The input data are continuous vectors with known class 
assignments. Missing values are introduced completely at random. GMMs were then fit to the incomplete 
data in several ways: 1. by using MGMM, which allows for missing values and arbitrary covariance structures; 
2. by using MixAll, which allows for missing values but assumes a diagonal covariance structure; 3. by 
imputing the missing values, then fitting a standard GMM. The GMMs were evaluated based on the adjusted 
Rand index between the predicted and true cluster assignments. This procedure was repeated N = times
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Benchmark data sets

Simulated Gaussian mixture

For the first clustering task, we consider data that were truly generated from a GMM, 
which is the setting in which MGMM should perform optimally. Data were simulated 
according to the hierarchical model in Eq. (1). The dimensionality d was set to 2 and 
the number of cluster components k to 4. The marginal density of the data generating 
process was:

The means ( µj ) were drawn from a uniform distribution on the square:

The component variances were set to 0.9:

The covariance was uniformly sampled from the interval (−0.9, 0.9):

Marginal membership to each cluster was equally likely, πj = 0.25 for j ∈ {1, . . . , 4} . A 
sample of size n = 2000 was generated using the rGMM function from MGMM. The true 
(generative) component memberships (zi) were used as the reference when evaluating 
clustering performance on incomplete data.

RNA sequence data from cancer patients

For the second clustering task, cancer gene expression data [17] were retrieved from 
the University of California Irvine machine learning repository. These data consist 
of expression values for 20,531 genes from n = 801 patients having 1 of k = 5 tumor 
types. Marginal analysis of variance was performed to identify the 20 most signifi-
cantly differentially expressed genes (DEGs) across tumor types. The patient by DEG 

(

Yi1
Yi2

)

∼

4
∑

j=1

πjN (µj ,�j).

{(x, y) : −5 ≤ x ≤ 5,−5 ≤ y ≤ 5}.

�11,j = V(Yi1|Zij = 1) = �22,j = V(Yi2|Zij = 1) = 0.9.

�12,j = C(Yi1,Yi2|Zij = 1) ∼ U(−0.9, 0.9).
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matrix was then decomposed via principal components analysis (PCA), and the final 
cluster task was performed on the d = 5 leading principal components. Yil represents 
the expression of patient i along the lth principal component. The patient’s observed 
tumor type was used as the reference when evaluating clustering performance on 
incomplete data. The tumor types are abbreviated as follows:

•	 BRCA: Breast carcinoma.
•	 COAD: Colon adenocarcinoma.
•	 KIRC: Kidney renal clear-cell carcinoma.
•	 PRAD: Prostate adenocarcinoma.
•	 LUAD: Lung adenocarcinoma.

GWAS summary statistics

For the third clustering task, we consider summary statistics, both simulated and real, 
arising from GWAS for cardiovascular disease risk factors. In this setting, i indexes sin-
gle nucleotide polymorphisms (SNPs) and Yil is the standardized score (i.e. Z-score) 
quantifying the magnitude of the observed association between SNP i and phenotype l. 
The SNPs may belong to one of k clusters, where the Z-scores of SNPs within a cluster 
may exhibit correlations due to the combination of environmentally-induced correla-
tion of the traits and sample overlap between the GWAS in which the Z-scores were 
ascertained.

A simulated set of GWAS summary statistics was generated for d = 3 traits and 900 
SNPs arising from 1 of k = 3 clusters. The marginal density was:

The mean vectors ( µj ) were set to zero, and the cluster covariances ( �j ) were set to:

Marginal membership to each cluster was equally likely πj = 0.33 for j ∈ {1, . . . , 3} . 
These covariance structures were chosen to represent a variety of situations: (1) pleio-
tropic SNPs whose effects are positively correlated for the two first traits ( �1 ); (2) pleio-
tropic SNPs whose effects are negatively correlated for the two first traits SNPs ( �2 ); 
(3) SNPs acting predominantly on the third traits ( �3 ). A sample of size n = 900 was 
generated using the rGMM function from the MGMM package. To emulate the omission 
of non-significant results, which frequently occurs when reporting GWAS summary 





Yi1
Yi2
Yi3



 ∼

3
�

j=1

πjN (µj ,�j).

�1 =





2.5 2 0

2 2.5 0

0 0 0.3





�2 =





2.25 −2 0

−2 2.25 0

0 0 0.3





�3 =





0.2 0 0

0 0.2 0

0 0 4.5



 .
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statistics, the SNPs were filtered to those having evidence of association with the traits 
at p ≤ 0.05 via the omnibus test (9) detailed in the appendix. After filtering, n = 183 
SNPs remained, with marginal cluster frequencies: π1 = 0.25 , π2 = 0.42 , π3 = 0.33 . The 
topology of the resulting data set is presented in Fig. 2. The true (generative) component 
memberships (zi) were used as the reference when evaluating clustering performance on 
incomplete data.

A set of real GWAS summary statistics for cardiovascular disease risk factors was pre-
pared as described in [14]. These traits were: body mass index (BMI), coronary artery 
disease (CAD), low density lipoprotein (LDL), triglycerides (TG), waist to hip ratio 
(WHR), and any strokes (AS). From this collection of traits, we formed three example 
data sets. The first included {BMI, CAD, LDL} only; the second included {LDL, TG, 
BMI, AS, CAD} ; the third {LDL, TG, BMI, AS, WHR} . We selected independent SNPs 
that were genome-wide significant (p-value ≤ 10−8 ) either marginally or via the omnibus 
test (9). These data sets contained 165, 166 and 179 SNPs respectively. For each example, 
a GMM with k = 3 components was fit to the complete data (using FitGMM from the 
MGMM package), and the cluster assignments from this initial model were used as the 
reference when evaluating clustering performance on incomplete data. Because the ref-
erence clustering partition was directly derived from the data, the benchmark on these 
examples assess the robustness of the clustering rather than the ability to recover a true, 
underlying data class assignment.

Imputation methods and MixAll parameter settings

Naive mean or median imputation refers to simply setting a missing value to the 
mean or median of the observed values along that coordinate. For kNN, a miss-
ing value was imputed to the (Euclidean) distance-weighted average of the 5 near-
est observations with observed data along that coordinate. For MICE, a missing 
value was imputed to its conditional expectation given the observed coordinates 
via the method of predictive mean matching; the number of imputations was 10, 

Fig. 2  Scatter Plot of the Simulated GWAS-like Multivariate Z-scores. Observations are colored according to 
component membership. The left panel plots the second coordinate against the first, and the right panel 
plots the third coordinate against the second
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and the maximum number of Gibbs sampling iterations was 50. For random forest 
imputation, the number of trees per forest was 100, and the maximum number of 
refinement iterations was 10. For MixAll, the default parameters of the cluster-
DiagGaussian function were adopted; this resulted in all available models being 
fit, and the best model, according to the integrated completed likelihood criterion, 
being returned.

Filtering unassignable observations from MGMM and MICE

Since both MGMM and MICE provide an indication of the uncertainty in the cluster 
assignments, we created an additional clustering method in which observations with 
high assignment uncertainty were regarded as unassignable. This occurs when an 
observation could very plausibly has originated from more than one of the clusters, 
and may be exacerbated by excess missing data along a coordinate that helps to dif-
ferentiate among clusters. This uncertainty can be assessed via the entropy of the pos-
terior membership probabilities:

where γ̂ij is the final responsibility of cluster j for observation i.
For MGMM, the entropy of the posterior cluster responsibilities is calculated by Fit-

GMM using (4). For MICE, each input data set is multiply imputed, and each of these 
imputed data set results in one maximum a posteriori cluster assignment. The pos-
terior probability of membership to each cluster (i.e. the responsibilities, γ̂ij ) may be 
approximated by the proportion of imputations on which an observation was assigned 
to each cluster.

In the filtered versions of MGMM and MICE, observations with high assignment 
uncertainty are identified via entropy and removed from consideration. For a given 
data set, such as the Cancer RNA-Seq data set, the distribution of entropy for MICE 
was typically right skewed (Supplementary Fig.  3-A). Consequently, for a fixed 
entropy threshold, the fraction of observations deemed unassignable is systematically 
higher for MICE than for MGMM (see Supplementary Fig. 3-B). To conduct a fair com-
parison of the two methods, we proceeded as follows: 

1	 For MICE, filter out observations with entropy exceeding 0.2 and assess performance 
on the remaining data.

2	 Find the proportion of observations discarded by MICE.
3	 Set an entropy threshold for MGMM such that the same proportion of observations is 

excluded as was removed for MICE.
4	 Filter out observations with entropy exceeding the MGMM threshold and assess per-

formance on the remaining data.

This procedure provides a fair comparison of MGMM-filtered and MICE-filtered by 
adaptively selecting the entropy threshold for MGMM in such a way that both methods 
remove the same fraction observations with high assignment uncertainty.

(4)H(yi) =
1

ln(k)

k
∑

j=1

γ̂ij(−1) ln(γ̂ij),
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Benchmark results
Four component mixture of bivariate Gaussians

When the underlying distribution was in fact a GMM, MGMM uniformly dominated 
imputation plus GMM (Fig. 3) at recovering the true cluster assignments. GMM after 
imputation by kNN and GMM after MICE performed similarly. The performance of 
MixAll was relatively poor compared to MGMM, despite the data having truly been gen-
erated from a GMM. This underscores the disadvantages of an estimation procedure 
that incorrectly assumes a diagonal covariance structure. Interestingly, although non-
parametric, random forest imputation was not competitive when the true data generat-
ing process was a GMM. Naive mean and median imputation strongly under-performed, 
and at elevated missingness created singularities in the data set that prevented the GMM 
from converging.

RNA sequence data from cancer patients

For the Cancer RNA-Seq data set, where the true generative model is unlikely to be a 
GMM, MGMM remained highly effective at recovering the true tumor type of the patient 
(see Fig.  4). MixAll evinced the worst performance when the proportion of miss-
ing data was ≤ 15% , however its performance deteriorated more slowly than the other 
methods, allowing it to become competitive when the proportion of missing data sur-
passed 35%. This may be because the simpler model assumed by MixAll is easier to fit 
when the data set is small and the proportion of missing values high. Random forests 
and kNN + GMM were competitive with MGMM, and outperformed when the propor-
tion of missing data was ≥ 35% . Mean and median imputation were again not competi-
tive, particularly when the proportion of missing data was ≥ 20% . MICE performed only 
slightly better than mean and median imputations. Linear imputation method may be 
ill-suited for separating the BRCA, LUDA, and PRAD tumor types.

GWAS summary statistics

Finally, we considered clustering vectors of GWAS summary statistics arising when the 
same SNPs are tested for association with multiple traits. This analysis is of interest for 
identifying pleiotropy, individual SNPs that have effects on multiple traits, and poly-
genicity, collections of multiple SNPs that have effects on common traits. Such analyses 
are often performed by combining data from multiple independent studies, and miss-
ingness arises because not all SNPs or all traits were ascertained in all studies. Further, 
this analysis would generally only include SNPs that were significantly associated with at 
least one trait.

Here we discuss one simulated and one real data example; two additional real data 
examples are presented in the appendix. For the simulated summary statistics in Fig. 5, 
the clustering task is same as the one presented on Fig. 3. The three clusters are clearly 
separated. Yet, the task remains challenging due to the specific and unusual clus-
ter topology arising from GWAS data. Since the underlying distribution was in fact a 
GMM, MGMM again performs very well, only falling off when the proportion of missing 
data reaches ≥ 40% . In this example, MixAll performed was competitive with MGMM, 
although MGMM did outperform until the proportion of missing data become high. For 



Page 11 of 20McCaw et al. BMC Bioinformatics  2022, 23(1):208	

Fig. 3  Benchmarking for the Mixture of Gaussians Data Set. The top panel includes the observations as 
simulated, colored according to the mixture component. The bottom panel presents the adjusted Rand index 
as a function of the missing data proportion for 8 different approaches to handling missing data; a higher 
value indicates better agreement between the predicted and true cluster assignments, adjusting for chance. 
Error bars represent the standard error of the mean across 20 simulation replicates
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Fig. 4  Benchmarking for the Cancer RNA-Seq Data Set. The top panel includes the projection of the 
expression data for n = 801 cancer patients onto the first two principal components. Observations are 
colored according to tumor type. The bottom panel presents the adjusted Rand index as a function of the 
missing data proportion; a higher value indicates better agreement between the predicted and true cluster 
assignments, adjusting for chance. Error bars represent the standard error of the mean across 20 simulation 
replicates
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Fig. 5  Benchmarking Simulated Multi-trait GWAS Summary Statistics. The left panel presents a heat map 
colored according to the normalized genetic effect, with SNPs as rows and traits as columns. The colorbar 
on the left represents the true cluster assignments. The right panel presents the adjusted Rand index as a 
function of the missing data proportion; a higher value indicates better agreement between the predicted 
and true cluster assignments, adjusting for chance. Error bars represent the standard error of the mean across 
20 simulation replicates
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this simulation, the data generation process MixAll because the covariance structure is 
truly diagonal for the 3rd component of the mixture, and close to diagonal for the 2nd. 
As for the RNA-Seq example (Fig.  4), random forest and kNN were competitive with 
MGMM, outperforming at very high missingness. Surprisingly, MICE under-performed 
naive mean imputation, and was comparable to native median imputation.

An analogous clustering task applied to summary statistics from real GWAS of BMI, 
CAD, and LDL is presented in Fig. 6. The three clusters, identified by applying a 3-com-
ponent GMM to the data before the introduction of missingness, appear well-differen-
tiated on the heat map. kNN and random forests offered the best performance, followed 
by MGMM, whose performance deteriorated at missingness ≥ 35% . The deficit in perfor-
mance of MGMM compared to kNN and random forests, even at low missingness, likely 
reflects a departure of the true data generating process from a GMM. Similarly, this 
departure likely explains the overall lower performance of MixAll for these data. As in 
the case of simulated GWAS summary statistics, MICE was not competitive, performing 
similarly to naive mean and median imputation. Two alternative examples with different 
set of traits are presented in Supplementary Material (see Supplementary Figs. 1 and 2).

Comparison of MICE‑filtered and MGMM‑filtered

By effectively removing poorly classifiable observations from consideration, filtering 
is expected to improve the clustering quality, but only if those observations with high 
assignment uncertainty are correctly identified. Therefore, the comparative performance 
of MGMM-filtered and MICE-filtered provides an indication of how well each strategy was 
able to identify those observations with high cluster assignment uncertainty. We present 
the performances of the two methods on four data sets in Fig. 7.

Four component mixture of bivariate Gaussians

For the Gaussian mixture simulation data set (Fig. 7A), filtering out unassignable obser-
vations strikingly improved the classification accuracy of both MICE and MGMM. How-
ever, MGMM-filtered performed better for all missing data ratios. Thus, when the data are 
in fact generated by a GMM, MGMM correctly assesses cluster assignment uncertainty, 
providing users with a mechanism for identifying observations with low-confidence 
cluster assignments.

RNA sequence data from cancer patients

For the cancer RNA-Seq data set (Fig.  7B), entropy-based filtering again significantly 
improved the performance of both methods, suggesting that assignment entropy pro-
vides a reliable method for identifying unassignable observations. Note that the filtered 
data set contained sufficiently many observations to correctly evaluate performance (see 
Appendix  5). MGMM-filtered outperformed MICE-filtered at lower missingness, while 
MICE-filtered performed better when the missing data proportion exceeded 30%. The 
same trend was observed for the unfiltered versions of MGMM and MICE. This example 
demonstrates that even when the underlying distribution is not a GMM, MGMM is able to 
accurately assess cluster assignment uncertainty at practical missing ratios.
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Fig. 6  Benchmarking Real Multi-trait GWAS Summary Statistics for 3 Cardiovascular Risk Factors. These were 
body mass index (BMI), coronary artery disease (CAD), and low density lipoprotein (LDL). The left panel 
presents a heat map colored according to the standardized genetic effect, with SNPs as rows and traits 
as columns. The colorbar on the left represents the true cluster assignments. The right panel presents the 
adjusted Rand index as a function of the missing data proportion; a higher value indicates better agreement 
between the predicted and true cluster assignments, adjusting for chance. Error bars represent the standard 
error of the mean across 20 simulation replicates
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GWAS summary statistics

For the GWAS summary statistic data sets, the comparative performances of the two 
methods depend on the structure of the data. On the simulated multi-trait GWAS 
summary statistics (Fig.  7C), filtering drastically improved the performance of MGMM, 
whereas filtering did little, if anything, to improve the performance of MICE. This sug-
gest that MICE-based imputation entropy was not an effective gauge of assignment 
uncertainty for these data. The non-linearity and absence of correlation among the vari-
ables probably explains the poor performance of MICE.

On the 2nd example of real GWAS summary statistics for cardiovascular risk factors, 
MICE-filtered performed best overall, and entropy-based filtering improved the perfor-
mance of MICE more so than the performance of MGMM. The unfiltered versions of MICE 
and MGMM performed comparably. The strong correlations among the traits studied likely 
explains the good performance of MICE-filtered for these data. It is also important to 
note that, for the GWAS data sets, the reference labels used to compute the adjusted 
rand index are not the true classes per se, but rather the clustering obtained on complete 
data (see the "Methods" section). Therefore, the performance assessment in this example 
is more a measure of the robustness of the clustering procedure to the presence of miss-
ing data than a measure of the capacity to identify true underlying classes.

Fig. 7  Performances of MICE-filtered and MGMM-filtered on four Benchmark Data Sets. The adjusted Rand 
index as a function of the missing data proportion for A the Four Component Mixture of Bivariate Gaussians 
simulation, B Cancer RNA-Seq Data Set, C Simulated Multi-trait GWAS Summary Statistics, D 2nd Example of 
Real Multi-trait GWAS Summary Statistics for Cardiovascular Risk Factors. Error bars represent the standard 
error of the mean across 40 simulation replicates
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Filtered observations

Importantly, filtering out unassignable observations based on entropy did not strongly 
enrich the remaining data for complete cases (see Supplementary Fig.  5). Therefore, 
the general improvements in performance observed with filtering cannot be trivially 
explained by the selective removal of incomplete observations, and point instead to the 
accurate identification of observations that could plausibly have arisen from more than 
1 cluster.

Running time benchmark

In terms of running time (see Fig. 8), simple and biased imputation scheme such as mean 
and median imputation were consistently fastest. The running time of k-NN and random 
forest remained low for all missing rate. Mixall was slower than MGMM on complete 
data and for realistic missing rate. MGMM was competitive for the missingness rates usually 
encountered in real data ( 

∼

10% ) but its running time increased steeply as the proportion of 
missing data became large. MICE followed by MGMM was the slowest method overall and 
was slow even for low missingness rates. This naturally follows from needing to perform 
multiple rounds of imputation followed by GMM estimation with MICE. Although MICE 

Fig. 8  Comparison of computation time for studied methods. The computation time as a function of the 
missing data proportion for A the Four Component Mixture of Bivariate Gaussians simulation, B Cancer 
RNA-Seq Data Set, C Simulated Multi-trait GWAS Summary Statistics, D 2nd Example of Real Multi-trait GWAS 
Summary Statistics for Cardiovascular Risk Factors. Error bars represent the standard error of the mean across 
40 simulation replicates
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and MGMM were generally the slowest methods, these are also the only methods that provide 
a mechanism for identifying and filtering out observations with high assignment uncer-
tainty. Moreover, to put the computation cost into perspective, the longest observed run-
ning time was 344 seconds, which remains tractable (obtained with MICE on the Mixture 
of Bivariate Gaussians example, Fig. 8A).

Discussion
We conducted a comparative benchmark to assess the capacity of MGMM versus MixAll 
and standard GMM after imputation to correctly identify true cluster assignments in data 
containing missing values. We established that for data sets following a distribution close 
to a GMM, MGMM is able to recover the true class assignment more accurately than imputa-
tion followed by standard GMM. When the underlying data generating process is in fact 
a GMM, then as a correctly specified maximum likelihood procedure, MGMM is optimal. 
MGMM consistently outperformed the other existing GMM implementation that allows for 
missing data (i.e. MixAll), except when the proportion of missing data became excessive. 
The better performance of MGMM at low levels of missingness is likely because MGMM places 
no restrictions on the form of the covariance matrix. At high levels of missingness, adopt-
ing the parsimonious assumption of a diagonal covariance structure, as is done by MixAll, 
can be advantageous. However, for a fixed proportion of missing data, MGMM should match 
or exceed the performance of MixAll as sample sizes increases. In addition, MGMM cor-
rectly assess its level of uncertainty in clustering assignments, providing a mechanism for 
identifying and separating out observations whose cluster assignments are unreliable.

GMMs are not well-suited to all clustering tasks. Direct application of MGMM was less 
effective than non-linear imputation, via kNN or random forests, followed by standard 
GMM in cases where the clusters present in the observed data were poorly differentiated, 
or the missingness was high (e.g. 40% ). This observation emphasizes the need to assess the 
appropriateness of a GMM before applying MGMM to a clustering problem. Since kNN and 
random forest imputation, followed by standard GMM, were typically competitive with 
MGMM in the real data examples, these methods may be used to perform sensitivity anal-
ysis on the final cluster assignments. On the other hand, standard GMM following kNN 
or random forest imputation will not appropriately propagate uncertainty due to missing 
data. This can lead to inaccurate estimates of the posterior membership probabilities, par-
ticularly for observations with multiple missing elements, and failure to identify observa-
tions whose cluster assignments are unreliable. Thus, an approach such as MGMM-filtered, 
which accurately assesses assignment uncertainty and removes unclassifiable observations 
from consideration, may be more reliable. The framework proposed by [6], and elaborated 
upon here, of using an EM-type algorithm to fit mixture models in the presence of both 
missing data and unknown class assignments, may be extended to estimates mixtures of 
non-Gaussian distributions. Extending MGMM to estimate such mixtures in the presence of 
missing data is among our future directions.

Conclusion
We have presented MGMM, a powerful, general purpose R package for maximum like-
lihood-based estimation of GMMs in the presence of missing data, and demonstrated 
that MGMM often outperforms both MixAll and imputation followed by standard 
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GMM on various real and simulated data sets. In contrast to estimation after impu-
tation, MGMM uses the ECM algorithm to efficiently and unbiasedly obtain the maxi-
mum likelihood estimates of all model parameters while properly accounting for the 
uncertainty introduced by the presence of missing values; and in contrast to Mix-
All, which also employs maximum likelihood estimation, MGMM does not assume the 
data are uncorrelated. To our knowledge, MGMM is the only publicly available method 
for fitting GMMs that properly accounts for missing data without imposing simplify-
ing assumptions, and our benchmark is the first extensive study of how estimating 
GMMs while properly accounting for missing data compares with the ad hoc proce-
dure of estimation after imputation. In addition, the supporting information  (Addi-
tional file 1) provides a clear step-by-step derivation of our ECM algorithm, providing 
a foundation for extending this work to missingness-aware mixtures of other distribu-
tions. The functionalities of the MGMM package [7] are carefully documented and com-
prise: the generation of random data under a specified GMM, the fitting of GMMs to 
data sets containing missing values, the drawing of multiple imputations for a fitted 
model, and the computation of a panel of clustering criteria to identify the optimal 
number of clusters.
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