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Introduction
A gene expression signature is a single or combined group of genes whose expression is 
altered in predictable way in response to a specific signal or cellular status. Gene signa-
tures are often derived from the set of differentially expressed genes (DEGs) identified 
when comparing two groups of transcriptomes, such as disease versus healthy controls 
or treated versus untreated samples. In turn, a gene signature can be of aid in trying to 
determine whether a given biological sample was exposed to that particular stimulus or 
belongs to the status defined by the gene set. Thus, reliable gene signatures can be used 
as surrogate markers for the activation of pathways or cellular status.

Abstract 

Molecular gene signatures are useful tools to characterize the physiological state of 
cell populations, but most have developed under a narrow range of conditions and 
cell types and are often restricted to a set of gene identities. Focusing on the transcrip‑
tional response to hypoxia, we aimed to generate widely applicable classifiers sourced 
from the results of a meta-analysis of 69 differential expression datasets which included 
425 individual RNA-seq experiments from 33 different human cell types exposed to 
different degrees of hypoxia (0.1–5%O2 ) for 2–48 h. The resulting decision trees include 
both gene identities and quantitative boundaries, allowing for easy classification of 
individual samples without control or normoxic reference. Each tree is composed of 
3–5 genes mostly drawn from a small set of just 8 genes (EGLN1, MIR210HG, NDRG1, 
ANKRD37, TCAF2, PFKFB3, BHLHE40, and MAFF). In spite of their simplicity, these clas‑
sifiers achieve over 95% accuracy in cross validation and over 80% accuracy when 
applied to additional challenging datasets.  Our results indicate that the classifiers 
are able to identify hypoxic tumor samples from bulk RNAseq and hypoxic regions 
within tumor from spatially resolved transcriptomics datasets. Moreover, application 
of the classifiers to histological sections from normal tissues suggest the presence of a 
hypoxic gene expression pattern in the kidney cortex not observed in other normoxic 
organs. Finally, tree classifiers described herein outperform traditional hypoxic gene 
signatures when compared against a wide range of datasets. This work describes a set 
of hypoxic gene signatures, structured as simple decision tress, that identify hypoxic 
samples and regions with high accuracy and can be applied to a broad variety of gene 
expression datasets and formats.
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Hypoxia can be defined as the situation were oxygen supply does not meet cellular 
demand [1]. In response to hypoxia cells activate a gene expression program, under the 
control of the Hypoxia Inducible Factors (HIFs) [2], that aims to increase oxygen supply 
while reducing its consumption. Thus, this transcriptional response restores oxygen bal-
ance and, as such, it is central in maintaining tissue homeostasis. Importantly, oxygen 
homeostasis is disrupted in a number of prevalent pathologies including neoplasms [3] 
and cardio-respiratory diseases [4]. For all this reasons, the development of a hypoxic 
gene signature could be of practical interest to identify cells or samples that had been 
exposed to hypoxia, and accordingly, a number of studies have published hypoxic gene 
signatures [2, 5–11]. However, in spite of their merit, in all these cases the gene signa-
ture was derived from a limited set of related tumoral samples, raising the question of 
their applicability in other contexts. On another note, in almost all the cases, the gene 
signature is just a set of genes without any additional information reflecting their rela-
tive importance or their expected expression levels under normoxic/hypoxic conditions, 
meaning that it is nearly impossible to classify an individual isolated sample as normoxic 
or hypoxic based solely in the identities of the genes in the signature.

Herein we describe tree-based classifiers that accurately identify hypoxic cells or sam-
ples based on their gene expression profile. The identification is absolute, meaning that it 
does not require a set of normoxic reference samples to sort out the hypoxic ones. Thus, 
it can be applied to interrogate a single isolated sample. Finally, although the classifier 
implicitly contains information about the relative importance of the genes in the signa-
ture and their expression levels in hypoxia, it is simple enough to be interpreted and 
applied without the need for sophisticated computational tools.

Materials and methods
RNA‑seq data download and processing

Raw reads of 121 RNA-seq experiments used as validation sets were downloaded from 
Sequence Read Archive [12]. Pseudocounts for each gene were obtained with salmon 
[13] using RefSeq [14] mRNA sequences for human genome assembly GRCh38/hg38 
and mouse genome assembly mm10 as references.

Read counts of 70 tumoral and healthy samples were downloaded from the TCGA 
data portal and transformed to counts per million.

Spatial gene expression datasets for 7 experiments were downloaded from 10X 
Genomics website [15–21]. Raw read counts were normalized with sctransform [22] fol-
lowing Seurat v4.0.4 [23] standard pipeline for analysis, visualization, and integration 
of spatial datasets. No variable regression was performed during sample preprocessing, 
clustering nor PCA/UMAP reductions.

Generation of a classifier

To generate the classifier we made use of 425 transcriptomic profiles of hypoxia-exposed 
cells and their normoxic counterparts described in a recent study [24]. From the gene 
pseudocounts in each sample, we calculated each gene’s ranking percentile and used this 
information in downstream analyses. We used the R package randomForest [25] to per-
form feature selection and the R package rpart [26] to generate decision trees. Random 
Forest hyperparameters were selected by cross-validation accuracy across 100 iterations 



Page 3 of 19Puente‑Santamaría et al. BMC Bioinformatics          (2022) 23:204 	

for each of the possible values, ending up with 10 as the number of features and 200 as 
the number of trees generated. After hyperparameter tunning, the top genes were then 
selected by their “importance”, measured as mean decrease in accuracy (MDA) across 
1000 iterations, resulting in a list of 20 genes used to generate individual decision trees. 
Each decision tree was evaluated by cross-validation using 70% of the available RNA-seq 
experiments as a training set and the remaining 30% as a validation set.

By default, a sample is classified as hypoxic when the tree assigns it a probability over 
50% of being hypoxic, even though this threshold can be made stricter or laxer. The full 
collection of decision trees, validation data, and tutorial are available at www.​github.​
com/​Laura​PS1/​Hypox​ia_​Class​ifier.

Results
Generation of a hypoxic classifier

Results from our previous work [24] on differential expression triggered by hypoxia 
indicate that, even for those genes showing a significant regulation in the ensemble of 
datasets, the response to hypoxia could be in large part cell-specific. Thus, we sought 
to identify a minimal set of genes that could be used as a reliable readout of exposure 
to hypoxia and to develop a simple, easy to use, classifier that could identify whether an 
individual sample is hypoxic based on its gene expression.

With the goal of making the model as widely applicable as possible we chose to use as 
input data the percentile of each gene on a gene expression ranking, thus minimizing 
the effects of read depth, different normalization methods, possible rRNA contamina-
tion, and other factors that influence RNA quantification. Thus, we first constructed a 
gene ranking matrix for a set of 425 individual RNA-seq samples derived from published 
transcriptomic analysis of hypoxic cells and controls (Fig. 1A). For subsequent analyses 
we kept the subset of 178 genes both significantly up-regulated by hypoxia ( LFC > 0.7 , 
FDR < 0.01 ) and widely expressed (detectable in ≥ 90% of the analyzed subsets) accord-
ing to a meta-analysis performed on this data set [24].

In order to select the most informative genes in this subset, we used 1000 iterations 
of a random forest classifier sampling 70% of the RNA-seqs at each iteration (Fig. 1A). 
As a measure of each gene’s importance we use the mean decrease in accuracy (MDA), 
representing how much accuracy the model losses by excluding each gene, across all 
iterations. The 20 genes with average MDA over 4 (Fig. 1B) were selected to train 10000 
decision trees randomly sampling 70% of the individual RNA-seq experiments and using 
the remaining 30% as a validation set. The 276 trees with an accuracy over 0.95 on the 
validation set were selected to further test their performance (Additional file 1:  Table S1 
sheet 4, “Cross validation” and Fig. 1A).

Only 16 genes are used in all of the 276 decision trees, with half of them (EGLN1, 
MIR210HG, NDRG1, ANKRD37, TCAF2, PFKFB3, BHLHE40, and MAFF) being 
included overwhelmingly more frequently (Fig.  1C). Most of these genes have already 
been linked to the transcriptional response to hypoxia [27–34], even though in some 
cases their particular role in it has not yet been defined.

In these classification trees, at each node, the algorithm evaluates the rank percen-
tile of the pertinent gene to determine which branch will be followed for the clas-
sification of the sample, hence the final sample label is assigned based on the relative 

http://www.github.com/LauraPS1/Hypoxia_Classifier
http://www.github.com/LauraPS1/Hypoxia_Classifier
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(percentile rank) expression values of the genes in the tree. As seen in Fig. 1D, the split 
point for most genes is limited to a narrow range of rank percentiles, with ANKRD37 
and BHLHE40 being the exception. These two genes show two differentiated split points 
that depend on the identity of remaining genes in the tree: for ANKRD37, it depends on 
whether its combined together with NDRG1 or TCAF2, while BHLHE40’s depends on 
whether the tree includes MIR210HG. Fig. 1E represents gene identity and split points 
for the 10 best trees according to cross-validation accuracy. Both in this top 10, as well 

Fig. 1  Generating expression based tree classifiers to identify hypoxic samples. A Decision trees generation 
overview. 425 RNA-seq samples exposed to normoxia or hypoxia were processed to produce a ranking set of 
genes from each of one them. A subset of the resulting data matrix, consisting in the 178 genes significantly 
up-regulated by hypoxia according to ref [24], was used as input to a feature selection algorithm. The 20 
genes showing an MDA>4 were then selected to generate 10000 random trees and the 276 trees showing 
an accuracy over 95% in cross validation were selected as classifiers. Finally, a set of challenging datasets not 
used in the generation nor training steps, were used to test the performance of the 276 trees and select the 
best overall tree and two additional substitutes. B mean decrease in accuracy index of the 20 most important 
genes according to 1000 random forest iterations. C Frequency of each gene being used as a predictor 
variable in the classification trees. D Split points for the rank percentile (100 being the most expressed gene, 
0, the least) of the genes used in all the models with accuracy > 0.95. E Split points for the rank percentile of 
the genes used in the 10 best performing models according to cross-validation accuracy
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as in the whole set of 276 trees we find a limited number of topologies present, with 
MIR210HG, EGLN1, MAFF, NDRG1, and PFKFB3 forming the most common combina-
tion, closely followed by ANKRD37, NDRG1, and BHLHE40.

Evaluation and validation of the resulting decision trees

In order to evaluate the performance of each one of the 276 decision trees with an accu-
racy over 95% and test particular strengths and weaknesses of each model, we tested 
them on a series of datasets that were not part of the training nor cross-validation sets 
and had some differential feature that posed a challenge to the classification (Additional 
file 1: Table S1 sheet 2 “RNA-seq metadata”). In addition to evaluate their performance, 
the result of these analyses guided us in the selection of the trees best suited to be used 
as general and robust hypoxia classifiers.

First we chose a time series experiments available on PRJNA561635 [35], consisting 
of a set of transcriptional profiles of Human Umbilical Vein Endothelial Cells (HUVEC) 
exposed to different oxygen concentrations at nine time points. The main challenge with 
this validation set is detecting early stages of hypoxia (1–3 hours), where most hypoxia-
target genes have just barely began to accumulate, and differentiate mild hypoxic stress 
(3% oxygen) from physoxia (5% oxygen), which is within the range of physiological oxy-
gen concentration found in many tissues [36] and hence in vitro trigger a weaker tran-
scriptional response for many genes [37]. As shown in Fig.  2A and Additional file  1: 
Table S1 sheet 5 “PRJNA561635”, all decision trees correctly classified normoxic samples 
and samples exposed to oxygen levels at or below 3%O2 (i.e. physiological hypoxia, [36]) 
for at least 5h. It is worth highlighting that around a third of the trees were also able to 
detect earlier stages of hypoxia (2h 1%O2, 3h 3%O2). In addition, these results clearly 
show that the lower the oxygen tension, the strongest the signal detected at early times 
of exposure with 5% oxygen being at the boundary between normoxia and physiological 
hypoxia.

The next validation set consisted of four studies on specific fractions of RNA: newly 
transcribed RNA(4sU labeling RNA-seq and GRO-seq [38, 39]) and actively translated 
RNA (polysomal RNA-seq [40]) (Additional file  1: Table  S1 sheet 6, “RNA fractions”) 
[41–43]. In this case the challenge stems from the different RNA fractions used in the 
derivation of the trees (total mRNA) and test datasets. In spite of the different source of 
RNA, all decision trees had an accuracy over 0.75, with 36% showing an accuracy over 
0.9 in the classification of 4sU labeling, GRO-seq, and polysomal samples (Fig. 2B).

The transcriptomic response to low oxygen tension can be induced by specific 
genetic lesions even under normoxia, so next we tested whether the classification 
trees could identify such samples, in spite of being derived from cells not exposed 
to hypoxia. Specifically we tested whether they could differentiate between clear cell 
renal carcinoma samples (ccRCC) and paired healthy adjacent tissues (Additional 
file 1: Table S1 sheet 7, “ccRCC”) from both the TCGA-KIRC collection and another 
publicly available study [44]. Over 80% of ccRCC show mutations in the von Hippel-
Lindau (VHL) gene that encodes for a key molecule controlling HIF stability. Thus 
VHL mutation leads to chronic HIF activation, even in the presence of oxygen, lead-
ing to a hypoxia-like transcriptional pattern [45, 46]. As shown in Fig.  2C, the vast 
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majority of the trees, 216 out of 272, were able to identify VHL-mutant cells with an 
accuracy over 83%, even though no ccRCC samples were included in the training nor 
cross-validation datasets.

Finally, since the tree-classifiers were derived from human samples, we decided to 
test its performance on transcriptomes from other organisms. To that end, we gath-
ered five studies in murine cells, totalling 34 individual RNA-seq experiments per-
formed in different cell types and experimental conditions (Additional file 1: Table S1 
sheet 2 “RNA-seq Metadata”) [47–51]. As in the previous cases, the majority of 
trees (160 out 276) were able to classify samples with an accuracy of 79% or higher 
(Fig. 2D).

Altogether these results indicate that the tree-classifiers show a remarkable perfor-
mance on novel datasets not used during the generation nor training steps, and cor-
rectly identify hypoxic samples derived from a wide range of conditions outside those 
represented in the training set. In spite of this, the bimodal distribution observed 
in Fig. 2C and 2D, suggest that a subset of the trees did not behave well on specific 
datasets. Closer analysis of these cases revealed that of the 58 trees showing poor 
performance against the ccRCC datasets, 42 share a common structure that includes 
only three genes organized in two levels, with ANKRD37 being the root nodes and 

Fig. 2  Validation of tree classifiers on novel datasets. A Time and oxygen series dataset. Each of the dots 
represents one of the samples in the five time series in PRJNA561635, ordered by oxygen tension and time. 
The color of each dot represents the mean probability of each sample to be classified as hypoxic, while the 
size of the dot is proportional to the number of trees correctly classifying each sample. B–D Distribution of 
the accuracy of the 276 classification trees on validation datasets. Different colors are used to identify trees 
including specific genes and/or topology as indicated in the legend. See text for details. B 22 datasets from 
RNA fractions other than total mRNA. C 2 datasets of clear cell renal carcinoma with VHL mutations and 
paired adjacent healthy tissues. D 34 mouse RNA-seq datasets
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two branches, one evaluating NDRG1 and the other BHLHE40 (Additional file 4: Fig. 
S1A). Although the expression of ANKRD37 differs in both groups (Additional file 4: 
Fig. S1B), both NDRG1 and BHLHE40 are already highly expressed in normal kid-
ney samples (Additional file 4: Fig. S1C and D), explaining why trees with this topol-
ogy are unable to differentiate between conditions. In the case of mouse datasets, we 
found that most of the best classifiers did not included MIR210HG in their structure 
(Fig.  2D), which stands to reason as there are no MIR210H orthologs annotated in 
mouse, therefore this feature does not convey relevant information for the classifica-
tion in this case.

Altogether the analyses presented above allowed us to identify a subset of trees that 
accurately classify samples even from challenging datasets. Fig. 3A shows the best per-
forming tree overall, especially apt in detecting short exposure to hypoxia and mildly 
low oxygen levels without overestimating the number of hypoxic samples in other vali-
dation sets. Since specific RNA types such as lncRNAs and microRNAs might not be 
represented in all sequencing libraries, we also selected the tree in Fig. 3B, being the best 
performing among those that don’t include MIR210HG lncRNA gene. Even though both 
trees perform reasonably well on mouse data, we have selected the additional tree in 
Fig. 3C for being the best performing in classifying murine samples specifically.

Since the selected trees derive from manual curation against a limited set of condi-
tions outside those in the original datasets and it is unlikely that a single tree could 

Fig. 3  Selected decision trees. The labels in each node indicate the node’s class (N, normoxic, and H, 
hypoxic), the probability of samples in the node to be classified as hypoxic, and the percentage of samples 
of the training set in each node. Each node is colored according to the probability of samples in said node to 
be classified as hypoxic. A Overall best performing tree (tree #125). B Best performing tree among those not 
using MIR210HG (tree #241) C Best performing tree on mouse data (tree #42)
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accurately classify samples from all potential datasets, we tested whether classifica-
tion would improve using several trees and generating a consensus. To this end, we 
compared the performance of the individual three selected trees (Fig. 4A–C) against 
three ensembles: the whole 276 collection (Fig. 4D), the 20 trees with higher mean 
F1-score (Fig.  4E) and the aforementioned three selected trees (Fig.  4F). AUC val-
ues for each curve are displayed in Table  1. The result of this analysis shows that, 
as expected, the ensembles tend to outperform individual trees. However, the dif-
ference is small and in some datasets individual datasets performed as well as the 
ensembles.

Thus, we have constructed a classification tree (tree #125, Fig.  3A,) that based 
on the ranked expression of just four genes (MIR210HG, KDM3A, ANKRD37 and 
NDRG1) is able to correctly identify normoxic/hypoxic samples with an accuracy 
of over 95% and 0.96 F1- score. The robustness of the predictions can be further 
improved by using the consensus decision from more than one tree.

Table 1  Area under the curve corresponding to ROC curves for individual trees and three 
ensembles using four validation datasets. A sample was classified as hypoxic when the mean 
probability given by the ensemble or individual tree surpassed a given threshold between 0 and 1

Model Time series RNA fractions ccRC Mouse

Ensemble 276 trees 0.978 0.967 0.969 0.953

Ensemble top 20 0.991 1.000 0.990 0.946

Ensemble selected 3 0.958 0.955 0.990 0.936

Tree 125 0.958 0.955 0.944 0.910

Tree 241 0.903 0.909 0.899 0.794

Tree 42 0.903 0.909 0.656 0.882

Fig. 4  Tree ensembles performance. ROC curves for individual trees and three ensembles using four 
validation datasets. A sample was classified as hypoxic when the mean probability given by the trees 
surpassed a given threshold between 0 and 1. Black dots represent TPR/FPR values for a probability threshold 
of 0.5 to classify a sample as hypoxic. A–C ROC curves for the individual trees selected for their performance. 
A Tree #125 (Fig. 3A). B Tree #241 (Fig. 3B). C Tree #42 (Fig. 3C). D–E ROC curves for three tree ensembles. D all 
276 trees. E top 20 trees by medium F1-score. F three selected trees (#125, #241, #42)
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Application of the classifier to identify hypoxic tumors and hypoxic regions within tissues

Most solid tumors are hypoxic due to their aberrant growth and vascularization. 
Given that the presence of hypoxia compromises cancer therapy and is a poor prog-
nosis factor, the identification of hypoxic tumors is relevant to predict tumor progres-
sion and select appropriate treatment strategies [52]. Thus, we next studied the ability 
of the tree classifier to identify hypoxic tumors. To that end we applied the classifier 
to transcriptomic profiles from The Cancer Genome Atlas (TCGA) and determined, 
for each type of tumor, the proportion of samples classified as hypoxic. As shown in 
Fig. 5A, the tumor type with the highest proportion of cases classified as hypoxic is 
the Kidney Renal Clear Cell Carcinoma (KIRC), in agreement with the molecular 
alterations characteristic of this cancer. Moreover, although the ranking of tumors 
varies across studies [52, 53], head and neck and cervix carcinomas tend to be very 
hypoxic tumors as determined by direct measure of pO2 using oxygen electrodes, also 
in agreement with the classifier prediction shown in Fig. 5A.

One of the challenges in the study of tumor hypoxia is the heterogeneity of oxygen-
ation within the tumoral mass [36]. The identification of hypoxic areas within a tumor 
typically relies on the detection of a single or a few markers of hypoxia such as the 
presence of HIFs or HIF targets [52]. The availability of spatial transcriptomic data-
sets allows for the identification of tissue hypoxia based on a gene signature rather 
than a single marker, so we decided to take advantage of the availability of several spa-
tially resolved tumor sample transcriptomes [15, 17, 18] to test the ability of the tree 
classifiers to identify hypoxic regions in glioblastoma, prostate, and colorectal cancer. 
Each spot in the samples was classified as normoxic/hypoxic applying an ensemble of 
the 20 trees with higher mean F1-scores across validation datasets. For datasets that 
did not include MIR210HG expression, we generated an ensemble with trees that do 
not require this gene’s expression value.

This analysis revealed that regions identified as hypoxic by the tree classifiers, cor-
respond to those poorly vascularized, according to vascular markers, and express-
ing high levels of glycolytic enzymes (Fig.  5B–D). It is worth mentioning that none 
of these reference markers were previously used to evaluate the performance of the 
classifiers.

In sharp contrast to the pervasive presence of hypoxic areas in most tumors, normal 
tissues usually do not show detectable HIF activity [54]. In order to test the specificity 
of the hypoxic signal detected by our classifiers, we next analyzed the spatial tran-
scriptomes of normal tissues [19–21]. As shown in Fig. 6, with the exception of the 
kidney cortex, none of the normoxic tissues presented defined normoxic areas. These 
results are in agreement with a report showing that the kidneys are the only organ in 
showing HIF activity in normal mice breathing room air [55]. As further confirma-
tion we proceeded to cluster the spots in each dataset (Additional file 5: Fig. S2) and 
examined differential expression between clusters containing high or low proportion 
of spots classified as hypoxic (Additional file 2: Table S2–9 and Additional file 6: Fig. 
S3).

Altogether, these results support the utility of our classifiers beyond bulk RNA-seq 
datasets, considering they accurately identify hypoxic tumoral samples and hypoxic 
regions in spatial gene expression datasets.
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Fig. 5  Detection of hypoxia in TCGA transcriptomes and tumor sections. A Proportion of TCGA tumor 
samples classified as hypoxic by an ensemble of the 20 decision trees with higher F1-score, by primary site. 
B–D Spatial Gene Expression datasets were downloaded from from 10X Genomics and used as input for 
the tree classifiers to detect hypoxic regions. On the left column, the expression of ENG, and PECAM1 are 
highlighted as endothelial markers, while on the right the expression of PDK4, LDHA, and CA9 mark regions 
of active anaerobic glycolysis. The central column represents the probability of each spot to be classified as 
hypoxic. B Human Prostate Cancer, Adenocarcinoma with Invasive Carcinoma (FFPE). C Human Glioblastoma. 
D Human Colorectal Cancer
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Fig. 6  Detection of hypoxic regions within normal tissue sections. Spatial Gene Expression datasets were 
downloaded from from 10X Genomics and used as input for the tree classifiers to detect hypoxic regions. On 
the left column, the expression of ERG, ENG are highlighted as endothelial markers, while on the right the 
expression of Car12, LDHA mark regions of active anaerobic glycolysis. The central column represents the 
probability of each spot to be classified as hypoxic. A Cerebellum. B Heart. C Lymph node. D Kidney
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Comparison with previously published hypoxia gene signatures

As indicated before, a number of hypoxic gene signatures have been previously described 
[2, 5–11], most of them derived from the lists of DEGs in response to hypoxia in specific 
tumors. Although these signatures are mostly defined as mere lists of genes and, as such, 
cannot be used to classify samples, Bhandari and co-workers [56] described a method 
to derive an hypoxic score value based on these lists of genes. Unlike the tree classifiers 
described herein, this score can not identify a sample as being hypoxic or normoxic, how-
ever, it allows the relative comparison among samples. We made use of this hypoxic scor-
ing method to assess the relative ability of the individual gene signatures to discriminate 
between normoxic and hypoxic samples in the validation datasets described above (time 
series, RNA fractions, ccRCC and mouse RNA-seq datasets). Fig. 7A shows that the per-
formance of the different gene signatures on the time series dataset varies widely and that 
only the scoring based on the Sorensen signature [9] results in a relative separation of sam-
ples that resembles their true labels. In the case of the different RNA fractions datasets, all 
gene signatures perform poorly as demonstrated by the very similar distribution of hypoxic 
scores assigned to normoxic and hypoxic samples (Fig. 7B), with only around 60% of the 
hypoxic samples having a score above those assigned to normoxic samples in the best cases. 
In contrast to these results, most signatures resulted in a good relative classification of nor-
mal and tumoral samples from the ccRCC datasets, as indicated by the score of the tumoral 
samples being higher than that of normal kidney ones (Fig. 7C). In spite of this, there was a 
substantial overlap between the two groups of samples for some signatures (Winter, Elvidge 
and Seigneuric2). Finally, we tested the gene signatures against samples from mouse cell 
lines, and as shown in Fig. 7D, even the best performing signatures (Sorensen and Elvidge), 
were unable to assign a score above controls to the majority of the hypoxic samples. Next, 
to directly compare the performance of the tree classifiers with the aforementioned gene 
signatures, we represented the hypoxic score assigned by each gene signature against the 
probability assigned by the ensemble of the 20 best trees for all the samples included in 
the validation datasets (time-course, RNA fractions, ccRCC and mouse RNA-seq samples). 
Fig. 7E shows that, although the two measures correlate for most gene signatures, the tree-
based classifier described herein outperforms all gene signatures as evidenced by the better 
separation of samples according to the X-axis than the Y-axis. Finally, Figs. 7F–G compare 
the performance of individual trees and gene signatures against each validation dataset. 
Remarkably, in the case of the most favorable dataset (clear cell renal carcinoma), individual 
trees perform similarly to the best gene signatures while thoroughly outperforming them in 
the rest of validation datasets.

As a whole these results indicate that, in contrast to our classifiers, most of the published 
hypoxic gene signatures are less reliable when identifying cells exposed to hypoxia outside 
of the biological context each signatures was developed in. Basing our classifiers on the 
results of an extensive meta-analysis grants them the degree of flexibility needed to main-
tain accuracy against new data and different biological contexts.

Discussion
In this work we aim to derive a gene signature that, besides defining the minimum 
core of genes that characterize the response to hypoxia, could be used to assess if an 
individual gene expression dataset corresponds to sample that has been exposed to 
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low oxygen tension. Additionally, one of the main priorities in the design of this clas-
sifier was to keep maximum transparency and interpretability in the process, so that, 
with a minimal or no background in machine learning, any user can not only deter-
mine if their sample is hypoxic, but also trace why it was marked as hypoxic.

This work is based on a meta-analysis of the transcriptomic response to hypoxia, gen-
erated through the integration of a corpus of 69 differential expression datasets which 

Fig. 7  Performance of published hypoxic gene signatures. A–D Application of 8 hypoxia gene signatures 
as described in [56] to training and validation datasets. A PRJNA561635 time series. B Specific RNA fractions 
other than total mRNA. C ccRCC tumor and healthy adjacent tissue samples. D mouse datasets. E Correlation 
between the hypoxia scores derived from the 8 molecular signatures tested and the hypoxia probability 
calculated using an ensemble of our 20 best classifiers calculated for all samples from the validation 
experiments. Color code goes as follows; blue: samples grown in normoxia, red: samples grown in hypoxia, 
dark blue: healthy kidney samples, dark red: ccRCC tumoral samples. F–G distribution of F1-scores for normal 
and tumoral samples from the validation datasets using the published gene signatures and tree classifiers. 
F Molecular signatures used in [56]. Samples were classified as hypoxic when the score calculated exceeded 
50% of the maximum for that dataset and signature. G 20 individual trees that composed the ensemble. 
Samples were classified as hypoxic when the probability given by a tree exceeded 0.5
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included 425 individual RNA-seq experiments from 33 different cell types exposed to 
different degrees of hypoxia (0.1–5%O2 ) for a period of time spanning between 2 and 48 
h [24]. As a first filter of the variables (genes) to be included in the signature, we selected 
those widely expressed and significantly up-regulated by hypoxia according to the meta-
analysis. This step ensured that the resulting models can be applied to a large variety of 
tissues as well as minimizing the risks of a biased corpus of publicly available experi-
ments. Then we applied data mining methods to identify sets of genes that best sepa-
rated normoxic and hypoxic samples using a tree-like decision structure. Although the 
total number of trees that achieved high accuracy was relatively large, only 16 out of the 
20 pre-selected genes were required among all the trees, with many having the same 
structure and differing only slightly in the gene expression threshold. Moreover, the 
vast majority of trees included different combination of 3–5 genes from the set EGLN1, 
MIR210HG, NDRG1, ANKRD37, TCAF2, PFKFB3, BHLHE40, and MAFF (Additional 
file 1: Table S1).

In contrast with classical molecular signatures, the trees described herein provide 
not just a list of genes relevant to the process, but also a set of matching quantitative 
expression boundaries, which allows it to classify individual samples both from a binary 
perspective (hypoxic or normoxic sample) as well as a continuous one (probability of a 
sample to be classified as hypoxic, shown in Figs. 5B–D and 6). The features of the clas-
sifiers permit their application of the classification trees to a wide range of gene expres-
sion datasets, from the conventional bulk RNA-seq by polyA capture and techniques to 
characterize newly transcribed RNA [38, 39] to spatially resolved transcriptomics and 
single cell RNA-seq. Importantly, gene’s expression boundaries are represented as the 
percentile occupied by the gene in a ranked list of expression values from a given sam-
ple, which means that this method can be applied to a diverse set of input formats: raw 
reads, counts per million, FPKM, variance stabilizing transformations, etc.

It should be noted that these classifiers are robust enough to predict the condition 
of samples from murine cells despite being trained only on human datasets, as well as 
identify samples in which response to hypoxia is activated by mutations in specific sig-
nalling pathways (ccRCC dataset), due to the pattern of vascularization and/or oxygen 
consumption (TCGA datasets, tumor specimens) and even hypoxic regions present in 
normal tissues (kidney dataset).

In regard to the classification of tumor samples according to their degree of hypoxia, 
our results are in good agreement to those reported in [56] using different hypoxic signa-
tures (Additional file 1: Table S1 sheet 8). However, unlike the tree classifiers described 
herein, other signatures failed to identify clear cell renal carcinomas as the type of tumor 
showing the highest up-regulation of the hypoxic transcriptome [56]. Nevertheless, 
as shown in Fig. 5A, with the exception of renal carcinomas, the proportion of tumor 
samples classified as hypoxic in each group resembles more closely the results obtained 
by Bhandari et al. [56]. On the other hand, previously reported hypoxic signatures per-
formed poorly against non-tumoral validation datasets described in our work, as shown 
in Fig. 7 and Additional file 3: Table S3. Considering that all but one of the classic gene 
signatures were defined in the context of tumor hypoxia, a poor correlation could be 
expected when compared to the performance of a classifier trained with a more diverse 
corpus of experiments (Fig. 7E).
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As further confirmation of the effectiveness of the trees in comparison to classic 
gene signatures, we decided to test them in spatial gene expression datasets, using the 
expression levels of endothelial markers ERG, ENG and PECAM1/CD31 to localize 
well oxygenated regions and the expression levels of genes related to anaerobic glyco-
lysis, to define regions of restricted oxygen availability. As shown in Fig. 5B–D, regions 
classified as hypoxic overlap those of active anaerobic glycolysis, meanwhile regions rich 
in endothelial markers tend to be classified as normoxic. After unsupervised cluster-
ing of the same datasets (Fig. S2), differential expression between clusters overlapping 
normoxic and hypoxic areas highlighted genes linked to hypoxia and not included in 
our models, such as VEGFA or ENO1 (Additional file 2: Table S2). Furthermore, when 
comparing the adjusted p-values of genes up-regulated between clusters that are also 
significantly up-regulated in the cited hypoxia meta-analysis [24] (random effect>0.7 
and FDR<0.01) this group has significantly lower p-values than genes not linked to 
hypoxia, confirming an enrichment on hypoxia-related genes among those differentially 
expressed between hypoxic and normoxic clusters. In contrast to the results obtained 
with tumor sections, we did not found significant hypoxic regions in normal tissues 
(Fig. 6). Which is consistent with the absence of HIF activation in tissues under physi-
ological conditions [54], in spite the wide range of pO2 values found in normal tissues 
[36]. The only exception was the identification of the kidney cortex as an hypoxic region 
(Fig. 6), which, although unexpected at first glance, is in agreement with the results from 
a noninvasive imaging technique that identified the kidneys as the only organ in show-
ing HIF activity in normal mice breathing room air [55]. Moreover, although pO2 in the 
medulla is lower than in the cortex, the renal medulla presents a comparatively higher 
expression of the HIF inhibitors EGLNs [57], which might explain why no constitutive 
HIF stabilization is found in the medulla under physiological conditions [58] and thus 
why this region is not labeled by the tree classifier.

In addition to their remarkable performance, the structure of the decision trees allows 
for biological interpretation of the prediction’s results. In this regard, the application of 
the decision trees to the challenging datasets provided relevant and novel insights into 
the underlying biological processes. For example, the analysis of the performance of dif-
ferent trees on the ccRCC dataset revealed that BHLHE40 and NDRG1 are expressed 
at high levels in renal tissue which can hint to specific functions of these genes in kid-
ney physiology. On the other hand, as seen with the mouse dataset in Fig. 2D, missing 
data in one of the classifying variables (MIR210HG) could directly or indirectly hinder 
the performance of the trees. Thus, we tested if performance of the tree classifiers can 
be improved by generating a consensus. As we show in Fig.  4, an ensemble of the 20 
trees with higher mean F1-score (Fig. 4D) can outperform all individual trees and other 
ensembles in most cases (with the exception of tree #42 in the mouse dataset). A classi-
fication based just in the consensus of the three trees selected in this paper (Fig. 4F) can 
compensate for the shortcomings of each individual model while maintaining the ease 
of use intended for this classifier. Tree ensembles could be a better suited alternative for 
samples that are harder to classify or derived from a dataset distantly related to the ones 
used to derive our tree classifiers.

In summary, herein we describe a ensemble of tree gene signatures that can be eas-
ily implemented to identify hypoxic samples based on their transcriptomic profile 
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without the need for a reference. Given the importance of oxygen homeostasis in 
physiology and disease, this tool could be useful in a wide variety of research and 
clinical settings. Finally, in the view of its merits, we proposed the extension of this 
method to define gene signatures that characterize other cellular processes.
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