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Background
Aligning two or more genomic (or protein) sequences is one of the most fundamen-
tal tasks in bioinformatics. A base assumption is that if two sequences align well, 
they are likely to share a common evolutionary origin, i.e. are homologs. Often, one 
is especially interested in finding orthologies which might indicate the same func-
tion. The alignment of whole-genomes is instrumental to comparative genomics and 
comparative genome annotation in particular [1]. The number of newly sequenced 
genomes can be expected to continue to grow for a long time. For example, the Ver-
tebrate Genomes Project aims to generate reference genome assemblies of about 
70,000 vertebrate species [2]. Creating a whole-genome (multiple) alignment requires 
to construct many local alignments of evolutionary related fragments of the differ-
ent genomes. The task to find homologous genomic regions is of increasing impor-
tance and accurate, efficient and scalable methods are needed [1]. Thereby, most 
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truly homologous, nonrepetitive genomic regions (e.g.  coding exons of orthologous 
genes) shall be found but the number of hits of unrelated or repetitive regions shall be 
limited.

A common approach to alignment is the seed and extend approach [3]. In a first step, 
very short local similarities are sought. For the sake of speed, these similarities may be 
required to be identities. The resulting hits constituting of one fragment per sequence 
then serve as alignment anchors. In a second step, starting from these anchors, local 
alignments are computed. As the second step is usually more time consuming, it is 
important that the anchors, also called seeds, from the first step are sensitive and spe-
cific, while being found very quickly. As sensitivity and specificity can be traded off 
against each other we will sometimes generally refer to accuracy. This work focusses on 
finding these seeds and improving established methods to do so.

In early aligners, small exact matches of length k, so called k-mers, were used as seeds 
[3]. Ma et al. [4] and Burkhardt and Kärkkäinen [5] were among the first to introduce the 
idea of spaced seeds, where bases at certain positions of a seed—so called don’t care posi-
tions—are not required to match. They independently found that the positions, at which 
mismatches are allowed, have a high influence on the sensitivity of spaced seed patterns. 
In a following article, Li et al. [6] introduced multiple spaced seeds and use a set of spaced 
seed patterns to find alignment anchors with even higher sensitivity. Much research has 
been carried out investigating the optimality of spaced seed patterns and the hardness to 
actually compute such patterns (e.g. [7–20], among others), usually under the assump-
tion of very simple probabilistic models of homologous and non-homologous sequence 
pairs. There are special types of spaced seeds, such as transition-constrained seeds as 
used in BLASTZ [21] and YASS [22] (among others), that allow transitions at certain 
seed positions (i.e. allow an A-G or a T-C match). Extending spaced seeds this way can 
further improve seed accuracy [22, 23] and is a compatible replacement to the plain 
spaced seeds used in our work. The interested reader is referred to this survey by Brown 
[24] for a more detailed overview of the topic.

Spaced seeds have been applied in alignment software such as DIAMOND [25], 
LASTZ [26], YASS [27] and the discontiguous MegaBLAST version of BLASTn [3, 28, 
29], to name a few. In previous research on further improving spaced seeds, Noé and 
Kucherov [22] introduced an additional filter criterion. A local group of possibly over-
lapping individual seeds is treated as a unit when they are proximate to each other and 
on close diagonals. Then the total number of matching bases of such a seed group is 
thresholded to trigger an alignment in YASS. The idea of considering the number of 
seeds in a diagonal “band” or “bin” as a filter criterion was also previously described 
by e.g. Rasmussen et  al. [30] and Meyers [31]. Mak et  al. [32] presented “indel seeds” 
that can cope with very small indels in homologous regions, thereby sacrificing speed. 
Recently, Leimeister et al. [33] applied spaced seeds with an additional filtering step in a 
multiple sequence alignment pipeline. They used very sparse spaced seed patterns with 
10 match and 100 don’t care positions and a novel filtering step, scoring all positions in a 
seed to filter out noise.

Seed-chaining can also be used as an explicit filter on seeds. For example, Abouelhoda 
et  al. [34] published the CoCoNUT seed finding and alignment software tools, which 
use maximum unique matches as seeds. As a phase during alignment, subsets of seeds 
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whose fragments are in the same order in all sequences (chains) are selected. Such a 
chaining phase would be a natural next step after our filtering approach.

In this article, we compare fast methods to increase sensitivity and specificity of 
(spaced) seeds. We here consider methods that are based on exact re-occurrences of 
fixed-length sequence patterns, which can be implemented very efficiently and thus can 
be used as a very fast initial step in an alignment pipeline. Typically, such seeds could 
be in a particularly well-conserved region with higher sequence similarity and would 
be used as starting point for a sequence of steps that constructs a local alignment that 
extends further and uses a detailed scoring to increase the specificity of the hit. Sub-
sequent filtering steps can be slower than the seed finding and typically include a gap-
less extension of anchors (e.g. with the X_drop heuristic [3]), thresholding the alignment 
score of the extension, the joining of nearby gap free alignments and local alignment 
extensions that may contain gaps and further thresholding ([3, 26]). The seeds can be 
interpreted as anchors that constrain the set of admissible alignments, significantly 
reduce their number and also the runtime of alignment algorithms.

We introduce a novel method, geometric hashing. Geometric hashing is a fast filter of 
candidate seeds taken, such as exact k-mer matches induced by spaced seed patterns. To 
achieve a higher accuracy, the matches from homologous regions are accumulated over 
possibly long distances using a secondary hashing technique. We evaluate the methods 
on real genomic data from human and mouse for sensitivity, as well as on artificial ran-
dom sequences to assess specificity. Geometric hashing can be adjusted to simultane-
ously be more sensitive and much more specific than existing methods at finding seeds 
in coding regions of homologous genome regions and requires only a small fraction of 
additional runtime.

We confirm that multiple spaced seed patterns are better than a single spaced seed 
pattern. On this task, sets of four spaced seeds produce one to two orders of magni-
tude fewer false hits than a single spaced seed pattern. We also confirm and quantify 
the superiority of spaced seeds over contiguous k-mers as seeds in finding homologous 
exons.

Geometric hashing can be adjusted to decrease the number of false positives by at least 
six orders of magnitudes while maintaining the sensitivity. Alternatively, when using a k 
that is one smaller than the k used by a set of four spaced seed patterns, here k = 14 ver-
sus k = 15 , geometric hashing simultaneously reduces the false negatives by 19.5% from 
4.6% to 3.5% and the number of false positives by a factor of about 2 · 105.

Methods
Test data

As test data set we used genomic sequences from the softmasked genome assemblies of 
human and mouse:

•	 Homo sapiens (hg38 GCA_000001405) [35]
•	 Mus musculus (mm10 GCA_000001635) [36]

Ortholog protein coding genes have been queried from Biomart [37], the Ensembl inter-
face to access homology predictions of genes. Pairs of ortholog genes were selected, 
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thereby ensuring a high confidence in the orthology relation according to their respec-
tive Ensembl score [38]. Further, only one-to-one orthologs were allowed in the dataset, 
such that each sequence appears in only one pair and no two sequences from different 
pairs were considered orthologs.

We retrieved the GFF genome coordinate files containing Ensembl annotations for 
the human genome, a single representative principal transcript was picked for each gene 
in order to avoid any bias towards those genes which include a larger number of tran-
scripts. We added flanking regions to both ends of each gene. The lengths of these flank-
ing regions were randomly and independently chosen from [5000, 10000]. This was done 
to prevent a potential bias from assuming relative gene boundaries.

We selected a subset of 705 pairs of human and mouse gene regions, each containing 
one orthologous gene pair. The average sequence lengths were 88  kbp and 80  kbp for 
human and mouse, respectively. The total length of human and mouse genic regions in 
the test set were approximately 62 Mbp and 56 Mbp, respectively.

As real genome sequences cannot be guaranteed to be void of further homologies 
besides the chosen orthologies, we simulated a set of random sequences for an estima-
tion of the number of false positives. For each real sequence in the human-mouse data-
set, we simulated a random DNA sequence with independent and uniformly distributed 
nucleotides of the same length as the respective gene, labeling it with the respective 
genome. Choosing this simple distribution for the negative examples is in agreement 
with most previous work on spaced seeds. The independent and uniform distribution is 
stated either explicitly [24, 39] or is implied by considering all seeds of length or weight 
k as equally specific [11, 40]. All seed hits in this artificial set of DNA sequences were 
counted as false positives.

Evaluation

As spaced seeds have generally been designed to anchor an alignment of two sequences, 
we will evaluate and compare all methods on a pair of genomes as well, here from 
human and mouse. However, the geometric hashing idea generalizes to more than two 
genomes. Formally, we define an alignment seed as a quadruple (S1, i, S2, j) , where i is a 
position in sequence S1 and j is a position in sequence S2 . The seed can be interpreted 
as a prediction that these two positions are believed to be homologous positions. The 
applied methods actually rather identify small region pairs of equal length, e.g. of length 
k. We therefore use for evaluation purposes the region midpoints.

Several alignment anchors could eventually lead to the same local alignment of homol-
ogous regions. This is to be expected for seeds (S1, i, S2, j) and (S1, i′, S2, j′) of the same 
sequence pair, where i′ − i and j′ − j are small and similar or even equal. It is therefore 
sufficient to find at least one of the anchors that are redundant in this sense, which moti-
vates the following accuracy measure.

Sensitivity

We say a seed (S1, i, S2, j) supports a coding sequence (CDS) with coordinate range [a, b] 
of sequence S1 if a ≤ i ≤ b and if (S1, S2) is a pair of homologous gene regions. We calcu-
late the percentage of human coding exons (CDS) with at least one supporting seed and 
define
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This measure is based on the notion that the alignments of coding sequences of homolo-
gous CDS pairs typically contain only small numbers of indels, are relatively highly con-
served and therefore a subsequent alignment anchored in such a seed would likely result 
in an alignment of at least a large part of the exons. Brejova, Brown and Vinar find on 
human-mouse homologous coding gene pairs that the CDS alignment fragments, that 
are not interrupted by introns, are on average 152 bp long. This figure reduces to 120 bp 
if the fragments are considered to end at an indel [10].

Note that we did not require that the corresponding position j in mouse is homolog. 
One reason for this choice is that the accuracy measure would otherwise depend on the 
completeness and correctness of some reference alignment and would also presuppose 
that a matching splice form is annotated and identified. The sensitivity would then have 
an unknown upper limit < 1 that depends on other tools and their settings. Another rea-
son is that we will below consider limits to the overall number of false positives such that 
the number of false positive seeds in homologous region pairs (S1, S2) , that contain only 
a single gene each, is negligible. Thirdly, all methods are compared with the same accu-
racy measures and we do not expect the relative performances to be affected.

Note that this sensitivity measure still cannot quite be expected to achieve 100% 
because not all human exons have a homologous region in the mouse genome. In order 
to raise upper limit to the practically achievable sensitivity to 100%, we ignore a small 
number of human exons which we expect cannot be anchored, e.g. because the gene 
sequences at the respective annotated coordinates are masked or there is no annotated 
alignment for the exon inside the ortholog mouse sequences [41]. Nevertheless, we con-
sider choices of k and other parameters most relevant when the sensitivity is at least 0.9.

False positives

To measure and compare the prediction of wrong seeds we applied all approaches also 
to the set of random sequences described in “Test data” section. Any hit between a ran-
dom ’human’ and ’mouse’ sequence is considered a false positive (FP). We normalize the 
number of false positives #FP to F̂P as follows

#FP is the total number of counted false positives. n1 = 62.348 · 106 and 
n2 = 56.197 · 106 are the total lengths of the random ’human’ and ’mouse’ sequences 
from the artificial data set. N = 3.22 · 109 is the size of the human genome. F̂P can be 
interpreted as the extrapolated fraction of false positive seeds per genome position if 
two human-sized genomes were compared.

The rationale behind this measure is as follows. The alignment space—more particular, 
the set of all admissible (S1, i, S2, j)—is inherently of quadratic size N 2 for two genomes 
of total size N. However, through appropriately large k’s or thresholds, seed-finding can 
reduce the number of hits that are further examined to something that is linear in the 
genome size(s) N. An effort that is linear in N is unavoidable and acceptable.

sensitivity :=
number of supported human CDS

number of human CDS

F̂P := #FP ·
N · N

n1 · n2
·
1

N
=

#FP

n1n2
N .
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Seeding approaches

In this section five methods M1–5 for seed finding are described in order of increas-
ing accuracy and sophistication. M1 searches for contiguous matches, M2 and M3 use 
a single and multiple spaced seed patterns, respectively. Methods M4 and M5 use seed 
candidates found by M3 and apply additional filtering steps to reduce F̂P.

Matches found by M1-M3 are small similar region pairs, thus we extract the respective 
midpoints as seed candidates. Repeats in the sequences could lead to many seed candi-
dates originating from the same k-mers. Firstly, we do not consider sequence positions that 
fall in a repeat-masked part of the genome. Secondly, we apply a simple filter to reduce this 
noise for all methods. If a k-mer leads to more than ten seed candidates, we only compute 
a random subsample of size 10 of all possible seed candidates. The filter value (10) can 
be adjusted to be more or less strict. Ignoring seeds of patterns with many matches is in 
accordance with filtering techniques used in other genome aligners, e.g. DIAMOND [25].

For a string S and sequence positions a ≤ b let S[a..b] denote the substring of S from 
position a up to and including position b. Exclusion of the end position is denoted 
with round parentheses, e.g. S[a..b) goes up to position b− 1 only. In the following, all 
sequence positions are implicitly assumed to be in the range of the sequence length. 
Seed matches with ambiguous or unknown characters (e.g., n) were not considered a 
match and were discarded.

M1: exact contiguous matching

This simplest method serves as a baseline. For a given weight k, we say that two 
sequences S1 and S2 have an exact contiguous match at position pair (a, b) if and only if

We then take (S1, a+ ⌈k/2⌉, S2, b+ ⌈k/2⌉) as the seed, i.e. the center from the two iden-
tical substrings of length k.

M2: spaced seeds

A spaced seed pattern is a binary pattern p = (p1, . . . , pℓ) ∈ {0, 1}ℓ of length ℓ , i.e.  a 
string over the alphabet {0, 1} where the 1’s are called match positions and the 0’s are 
don’t care or wildcard positions. The length ℓ is called span and the number of match 
positions is its weight k, with k ≤ ℓ . The k-mer xi is the string induced by applying p to a 
sequence S at some position i, concatenating only the characters from S that pair with a 
match position. More formally, let

be the position of the s-th 1 in p. The k-mer xi defined by

is said to be the contiguous pattern induced by spaced seed pattern p at position i in S.
Let xi and yj be the k-mers induced by a spaced seed pattern p of weight k at positions 

i − ⌈ℓ/2⌉ − 1 in S1 and j − ⌈ℓ/2⌉ − 1 in S2 , respectively. We then say that S1 and S2 have 
a match according to the spaced seed pattern p at position pair (i, j) iff xi = yj . Note that 
in the literature about spaced seeds, the notion is often used to refer to the binary spaced 

S1[a .. a+ k) = S2[b .. b+ k).

πs := r, such that p1 + · · · + pr = s for s = 1..k

xi[s] := S[i + πs − 1] (s = 1..k)
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seed pattern. In this article, we call a seed a pair of sequence positions ( S1, i, S2, j ) that 
could serve as an alignment anchor and write “spaced seed pattern” when we refer to the 
binary pattern of match and don’t care positions.

It is well-established that the choice of p has a significant influence on the sensitiv-
ity even at a fixed weight [4, 9]. The sensitivity of spaced seed patterns is related to the 
number of overlapping hits [42]. Hits of contiguous seed patterns (M1) tend to cluster, 
while hits of seed patterns with low self-overlap are more evenly distributed and thus 
more sensitive [11]. Thus, one needs to use optimized spaced seed patterns to get the 
best results. We used the software SpEED [17, 40] to compute spaced seed patterns of 
desired weight, that are good under its simplifing assumptions on the distribution of 
homologous sequences. The underlying model requires the length of the homologous 
region and the similarity of the homologous region for which the seeds should be opti-
mal. As in [4] we set the region length to 64. The base pair match probability was set to 
0.85, the percent identity of corresponding CDS in human and mouse [43].

M3: set of spaced seed patterns

Let P be a set of m > 1 spaced seeds patterns, each of weight k. We say that S1 and S2 have a 
match according to P at position pair ( i, j ) if the two sequences have a match at this position 
pair for any spaced seed pattern p ∈ P . Li et al. introduced this concept to increase the sen-
sitivity of spaced seed patterns. While reducing the weight k of a single spaced seed pattern 
also leads to higher sensitivity, the trade-off with getting more random hits at the same time 
is better when using more spaced seed patterns instead [4]. We again used SpEED to gener-
ate good sets of spaced seed patterns of desired weight with the same parameters as above.

These first three methods are well known and used as basis and baseline for the 
upcoming methods. The following methods describe additional filtering steps which can 
be applied to sets of seeds found by either of the former methods.

M4: neighbouring matches

After all matches have been identified, locally the number of consistent matches are 
counted and a hit is only reported if the number of neighbouring matches reaches 
a threshold τ > 1 . The idea is to allow the individual seeds to be less specific (smaller 
weight k or higher number of patterns m). Applying this filter, an isolated match that 
could be random and non-homologous does not necessarily result in a false hit. This 
method is similar to the one described by Noé and Kucherov [27].

What is considered local versus non-local is controlled by a variable D. Suppose 
(S1, i, S2, j) is a candidate seed from method M3. This position pair is reported as hit only 
if the total number of seeds of some positions ( S1, i′) and (S2, j′) , such that i′ − j′ = i − j 
and |i − i′| ≤ D/2 , is at least τ . As customary, we call the sets {(i, j) | i − j = const} diag-
onals in the pairwise alignment space. In other words, all matches are counted in the 
region pair of length D centered around i and j that are on the same diagonal. The idea 
of counting hits on the same diagonal goes as far back as 1983 [44]. Summarizing nearby 
hits on the same diagonal can be done very efficiently (see “Geometric hashing algo-
rithm” section). As reporting hits on the same diagonal that are very close to each other 
are likely to be redundant, we do not allow two matches (i, j) and (i′, j′) to overlap, i.e. 
|i − i′| ≥ ℓ.
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M5: geometric hashing

Methods M1–M3 only consider the directly matching regions. Method M4 considers 
the immediate neighborhood only. In contrast, M5 is able to gather evidence for homol-
ogy from matches that are distant to each other. The idea is to collect seed candidates 
from multiple exons from the same orthologous genes. Or, more generally, from seed 
candidates with similar distance differences in the two sequences. Reporting only seeds 
from sufficiently large such collections then increases specificity as single random 
matches typically remain unreported.

Our geometric hashing approach is motivated by an eponymous technique from 
object recognition in computer vision [45]. There, first distinctive points are identified 
in the image. A hash table is built, where the keys are ordered pairs from the distinctive 
points and the value is a collection of coordinates of the remaining points measured in a 
coordinates system given by the pair of key points. This is done for any two points from 
the object. To recognize an object in an image, the same is done for two arbitrarily cho-
sen distinctive points. If the object is “known”, there will be a slot in the hash table that 
has a very similar collection of points relative to their key points, and thus the object can 
be predicted. Geometric hashing is robust to object rotation, translation, small varia-
tions in object shape and to partially occluded objects.

When transferring this concept to seed finding for pairwise sequence alignments, 
matters even get easier. The “objects” we try to identify are orthologous genes. Exons 
of orthologous genes are much better conserved than typical noncoding sequences, 
thus we expect many matches there, while there should be only few matches in the less 
conserved introns and intergenic region. The seeds are our distinctive points. The only 
transformation we require is horizontal shift. In fact, there is no need to limit geometric 
hashing to two genomes. It is easily extensible to process seed candidates of more than 
two genomes. We here first show the special case of two-dimensional seed candidates 
that was used to compare geometric hashing to the other methods. Later, we generalize 
the approach to higher dimensions.

Two seed candidates ( S1, i, S2, j ) and ( S1, i′, S2, j′ ) from different exons from the same 
two orthologous genes may be thousands or even ten thousands of basepairs apart in the 
genome. Yet, the relative distances i − j and i′ − j′ are often similar. Using this relative 
distance, we are able to collect seeds from even very distant exons. As the interjacent 
introns often have undergone length changes through insertions or deletions, we round 
the relative distances to multiples of F = 10,000 bp (‘quantization’). F is a parameter and 
its value is here set for vertebrate-sized genomes. This way, the relative distances of seeds 
become robust to varying intron lengths up to a certain degree. See Fig. 1b where this 
is illustrated. It displays two sequences S1, S2 from human (top) and mouse (bottom), 
which turn out to be the orthologous glutathione synthetase (GSS) genes. The thick blue 
bars are annotated exons, which the algorithm is unaware of. The orange lines are seeds 
found by our geometric hashing approach. Some introns quite visibly differ in length, yet 
the seeds all were collected at one place we call a tile. A more formal description of the 
geometric hashing approach follows.

Let S be a set of candidate seeds, e.g. from either method of M1-M4. Let F be a tile size 
(we use F = 10, 000 for vertebrate genomes) and define a geometric map
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that maps a candidate seed to the pair of sequence identifiers and a difference tile. Here, 
⌊ ⌋ means rounding down to the next integer. Let T := g(S) be the image set of the geo-
metric map. We call the elements of T tiles. For a tile t ∈ T  , the set g−1(t) contains seeds 
of the same sequence pair that have similar differences i − j:

See Fig. 1a for an illustration of the idea. One can think of a tile as a diagonal stripe of 
width F in the pairwise alignment space.

The choice of a tile size in the order of 10,000 bp was based on an analysis of our data-
set (Fig. 2). The choice constitutes a tradeoff. Ideally, the tile size would be big enough so 
that even genes with greatly differing intron lengths are not ‘broken‘ into neighbouring 
tiles. On the other hand, very large tile sizes may lead to spurious tiles that by chance 
contain many uninformative seed candidates.

To study the effect of indels on the relative positions of exons of orthologous human-
mouse pairs of genes, we filtered the human and mouse gene pairs from our data such 
that all pairs have the same respective number of CDS and assumed that identically 
numbered CDS are orthologous. We then calculated the maximum offset between 
‘orthologous‘ CDS: Say there are n CDS in a particular gene and denote the start of the 
i-th CDS in human with a1i  and in mouse with a2i  . The maximum offset is then defined as 
� := maxni=1 |(a

1
i − a11) − (a2i − a21)| . When looking at the distribution of maximum 

offsets (Fig. 2), we see that with a tilesize of 10,000 bp we can catch approximately 75% of 
genes in a single tile, while results show a reasonable F̂P . Organisms with smaller aver-
age intron lengths can be expected to also have smaller offsets as well, so that a smaller 
parameter F may be better.

(1)g(S1, i, S2, j) := (S1, S2,
⌊
(i − j)/F

⌋
)

g(S1, i, S2, j) = g(S1, i
′, S2, j

′) ⇒ |(i − j)− (i′ − j′)| = |(i − i′)− (j − j′)| < F

Fig. 1  Geometric hashing. a Idea of geometric hashing. Seeds a, b and d map geometrically to the same 
tile (S1, S2, 1) = g(a) = g(b) = g(c) and support each other even though they are distant and there are 
indels between them if they specify homologous site pairs. Seed candidate c maps geometrically to tile 
g(c) = (S1, S2,−2) whose significance falls below the threshold and is not reported as no other seeds map 
geometrically to the same tile. b Seeds from human and mouse gene glutathione synthetase (GSS, Ensembl 
IDs ENSG00000100983 and ENSMUSG00000027610, respectively). Conserved exons (thick blue bars) 
are hit by many seed matches (orange lines). All seeds from the ≈ 30 kpb gene range were collected in a 
single tile, despite differing intron lengths between corresponding exons. Edited screenshots from UCSC 
Genome Browser [47, 48]
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After performing geometric hashing, the encountered tiles are scored and all seed can-
didates from a tile t are reported as seeds if the score of t matches or exceeds a threshold 
τ . If the threshold is not reached, none of the seed candidates of the tile are output. The 
tile scoring algorithm works as follows. Let |S1| and |S2| denote the lengths of sequences 
S1 and S2 , respectively. We divide each tile into a fixed number of b sub-tiles of equal 
width F/b and the sub-tiles further into chunks of length h.

Each seed candidate (S1, i, S2, j) ∈ g−1(t) in a tile t is assigned to a chunk ⌊(i + j)/h⌋ 
in a sub-tile ⌊db/F⌋ ∈ {0, . . . , b− 1} , where d = i − j − t∗ is the seed candidate’s diag-
onal inside t and t∗ := F · ⌊(i − j)/F⌋ is the first diagonal of tile t. We found that with 
our data, b = 50 sub-tiles and chunk length h = 400 work well. We denote with nr,s the 
number of seed candidates in sub-tile r ∈ {0, . . . , b− 1} and chunk s ∈ {0, . . . , smax} of 
t, with smax = ⌊(i∗ + j∗)/h⌋ such that smax is maximal given g(S1, i∗, S2, j∗) = t and 
i∗ ∈ [1, . . . , |S1|] and j∗ ∈ [1, . . . , |S2|] . We then calculate the p-norm for the score (Equa-
tion (2)). This gives a relatively higher score to tiles whose seed candidates cluster on few 
chunks and less so for evenly scattered seed candidates.

The former we expect in truly orthologous sequences where single orthologous exons 
share many seeds on similar diagonals (see Fig. 1b), the latter we expect from random or 
unrelated sequences.

With longer sequences S1, S2 , we expect more spurious seed candidates appearing by 
chance and normalize the score to account for this noise. We compute the expected num-
ber � of seed candidates in a chunk when all seed candidates were evenly scattered across 
the genomes as � = AL/(n1n2) with A denoting the “area” of a chunk, i.e. A = hF/b , L 
the total number of observed seed candidates in all tiles and n1, n2 denoting the sum of 
sequence lengths (both genomic and artificial) in human or mouse, respectively. We use 

Fig. 2  Distribution of maximal exon offsets � in the test set of human-mouse orthologs. Exon offsets 
measure the cumulative effect that indels have on the relative positions of exons. For most genes, maximal 
exon offsets are in the range [−10,000 bp, 10,000 bp] (blue). The offsets whose absolute value is beyond 
F = 10,000 are marked in orange. The distribution leans to the right, apparently because there are more 
transposable elements inserted in intronic regions in the human lineage. Outliers are not shown. See main 
text for the definition of �
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� · b(smax + 1) as a normalization term, i.e. � times the number of chunks in tile t. The score 
for tile t is then

where p is a parameter to adjust the impact of chunks that have more seed candidates 
than expected on the score. We used p = 6 , such that the score is dominated by the 
chunks of sub-tiles with the most seed candidates.

Two‑step geometric hashing

Separating the alignment space into tiles yields another possibility to increase specificity. As 
stated above, exons from one gene often all lie in the same or few neighbouring tiles, given 
a sufficient tile size F. To find seeds in these exons, it is sufficient to only search inside these 
tiles, thus finding these tiles before the actual seed finding would result in having fewer spu-
rious or FP seed candidates and in a great speedup.

This approach uses two different seed pattern weights k and k ′ with k < k ′ . Using a high 
weight k ′ , seed candidates can be counted for each tile in a first run. A high weight seed 
mask is not very sensitive but highly specific. By using a simple link count threshold τ ′ , we 
can select a set T ′ of tiles that have τ ′ or more seed candidates. To catch more exons, we also 
include all the neighbouring tiles t + 1, t − 1∀t ∈ T ′ . Then, in a normal geometric hashing 
run with a (set of) sensitive low weight seed mask(s) with weight k as described above, we 
only consider seed candidates (S1, i, S2, j) ∈ g−1(t) if t ∈ T ′ . Thus, if we catch the right tiles 
in the first run, we can find all exons inside these tiles in the second run.

Multi‑genome seed finding

The geometric hashing approach can be generalized to find seed candidates when compar-
ing more than two genomes. This issue can arise when a non-progressive multiple genome 
alignment method is developed. Let s ≥ 2 be the number of homologous input sequences. 
A (multiple alignment) seed candidate is then a tuple (S1, i1, S2, i2, ..., Ss, is) . For the exact 
contiguous matching method (M1) such a seed candidate means that there was an identi-
cal substring S1[a1..a1 + k) = S2[a2..a2 + k) = ... = Ss[as..as + k) in each input sequence, 
where ij = aj + ⌈k/2⌉ for i ∈ 1..s . This applies analogously for the spaced seed methods 
(M2, M3). The generalized geometric mapping function is

Here, S1 is arbitrarily chosen as a reference sequence in order to resolve the overpara-
metrization of the relative positions by s absolute positions. The matching positions in 
the remaining sequences are determined w.r.t. this reference sequence. The elements of 
the image set of mapping g are again called ’tiles’ and can now also represent a higher-
dimensional quantization. Again, we propose to subdivide each tile into b roughly 
equally sized sub-tiles 0, . . . , b− 1 and each sub-tile into chunks of length h in order 
to reward the case where multi-dimensional seeds that map to the same tile have even 
more similar relative position offsets than required by merely mapping to t. Let nr,s be 
the number of seed candidatates that map to the s-th chunk in the r-th sub-tile of t. The 

(2)Score(t) :=
1

�b(smax + 1)
p

√√√√
b−1∑

r=0

smax∑

s=0

n
p
r,s,

g(S1, i1, S2, i2, ..., Ss, is) := (S1, S2, ..., Ss, ⌊(i1 − i2)/F⌋, ..., ⌊(i1 − is)/F⌋).
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scoring formula (2) can then be applied also in this more general case as the fundamen-
tal reasoning did not change.

Geometric hashing is particularly suited for a generalization of the seed concept to 
multiple alignment, as it does not require an explicit comparison between pairs of seeds. 
This is a property that distinguishes geometric hashing from the seed grouping approach 
of YASS, for example. To our knowledge, the use of multi-dimensional seeds for multiple 
genome alignment has so far not yet been described.

Geometric hashing algorithm

We here outline the geometric hashing algorithm (M5) with pseudocode and provide a 
runtime analysis. The algorithm for M4 (Neighbouring Matches) is detailed in the Addi-
tional file 1.

Our implementation in C++ uses a hash table for the data structure H. Inserting and 
querying elements from such a data structure can be done in O(1) expected time. The 
key of the hash table is a tile, and the value is an unordered set of seed candidates that fit 
into the tile. Inserting a seed candidate into an unordered set also takes O(1) time. Com-
puting the score in line 6 is linear in the number of seed candidates in the tile.

Results
Figure 3 shows the extrapolated false positive fractions and sensitivities for all five meth-
ods, when the weight k and the number of spaced seed patterns (for M3) is varied. M5 
was run as described in “M5: geometric hashing” section, without using the two-step 
approach. A decreasing k leads to larger sensitivities but the number of false positives 
grows exponentially. With a weight k = 12 all methods except M4 are expected to pro-
duce 100 or more times as many seeds or intermediate seed candidates (M5) as there are 
bases in one genome, when seeds in two human-sized genomes are searched. For such 
tasks, a further decrease of k could quickly render seed finding or seed extensions com-
putationally infeasible or have prohibitive memory usage.

On our test data set of unrelated sequences, geometric hashing completely 
removed all false positive seeds for all k ≥ 15 , while maintaining a very high accu-
racy (bottom right data point in Fig.  3). For methods that predicted 0 false posi-
tives in these random sequences (M4 for k ≥ 17 and M5 for k ≥ 15 ), the confidence 
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interval for F̂P is [0, 4.2 · 10−6] (confidence level 1− α = 99% , assumption that #FP is 
Poisson-distributed).

Consider the comparison of the red and the brown points labeled k = 15 in Fig.  3. 
Here, M5 (brown) received the seeds output from M3 (red) as input and provided an 
additional filter. With it, geometric hashing reduced the number of false positives pro-
duced by a set of four spaced seed patterns (M3) of weight k = 15 from 12 false seeds 
per genome position (#FP = 13,035,210) to arguably less than 6.2 · 10−6 false seeds per 
genome position (#FP = 0), i.e. by a factor of about 2 · 106 . At the same time, the sensi-
tivity did not decrease.

When using a smaller k, seed finding with geometric hashing can simultaneously be 
more sensitive and much more specific than sets of spaced seeds. To see this, compare 
geometric hashing (M5) for k = 14 with M3 (four patterns) for k = 15 . With this con-
figuration, M5 has 3.5% false negatives and 67 FP while M3 has 4.6% false negatives and 
13,035,210 FP (see Fig. 3 and Additional file 1). Stated differently, M5 reduces the false 
negatives by 0.9%/4.6% ≈ 19.5% and the false positives by a factor ∼ 2 · 105.

M4 (neighbouring matches) is able to achieve zero false positives as well, however at 
lower sensitivity. Among the baseline methods M1-M3, contiguous seeds have the worst 
trade-off between sensitivity and F̂P . Using one spaced seed pattern greatly improves 
this trade-off, which is even better when using two or four spaced seed patterns. M4 and 
M5 were run with four spaced seed patterns and are thus directly comparable to the per-
formance of M3 with four patterns. We compared the runtime of M3, M4 and M5 when 
all were run with the same spaced seed patterns in Table 1. M4 and M5 both need only 
marginally more time to improve the specificity. However, M4 reduces the sensitivity 
stronger than M5 compared to M3.

Fig. 3  Comparison of the different methods. The y-axis shows on a logarithmic scale the total number 
of false positive seeds that are scaled to be estimates of the total number of false positive seeds per base 
in the genome if two complete human-sized genomes were compared ( µ means 10−6 ). The x-axis is the 
percentage of coding exons that are supported by seeds. Each data point represents a run of the respective 
method with a certain weight k (point labels), ranging from 12 (top right points) to 24 (bottom left). Note that 
data points at 0 F̂P are slightly shifted for better visibility. The filtering to consider at most 10 seed candidates 
per k-mer was relaxed to 100 for all weight 12 runs
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Metaparameter optimization

The key parameter for seed finding is the weight k of the seeds. We determined optimal 
weights minimizing F̂P while requiring that the sensitivity is at least 0.9. Figure 4 shows 
the FP count for each method at the optimal weight (numbers over the bars). In Table 2 
we compare the performance of the respective runs. Using multiple spaced seeds (M3) 
alone heavily increases runtime and memory requirement, which can be reduced with 
smaller weights. Even though geometric hashing is neither the fastest nor requires the 

Table 1  Runtime and memory requirements of comparable runs of M3 (multiple spaced seed 
patterns), M4 (neighbouring matches) and M5 (geometric hashing)

Method Weight Patterns Sensitivity F̂P Additional 
runtime (s)

M3 15 4 0.954 12 –

M4 15 4 0.843 11× 10
−5 86

M5 15 4 0.954 0 300

Fig. 4  Comparison of minimal achievable FP count when sensitivity is required to be at least 0.9. Geometric 
hashing is the only method that does not report any false positives in our dataset at this sensitivity threshold. 
The numbers on top of the bars denote the weight of the seed or spaced seed pattern(s). On the y-axis k and 
M abbreviate 103 and 106 , respectively

Table 2  Runtime and memory requirements of the methods when run with best weight as 
determined by Fig. 4

The weights were chosen such that each method had the lowest possible F̂P but a sensitivity of at least 0.9. Note that the 
runtime and memory for M4 cannot be directly compared to the other methods as we needed to split the data into batches 
and do multiple sequential runs because of memory limitations

Method Weight Patterns Sensitivity F̂P Runtime (min) Memory (GB)

M1 13 1 0.909 34.3 32 38

M2 15 1 0.914 2.99 17 26

M3 17 2 0.906 0.375 38 64

M3 18 4 0.909 0.0116 87 156

M4 12 4 0.928 0.349 194 80

M5 15 4 0.955 0 75 137
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least memory, it yields the highest sensitivity as it produced no FPs. Note that we also 
did not focus on optimizing our code to get the best computational performance pos-
sible. We performed grid searches on the remaining metaparameters for the respective 
methods. Neighbouring matches (M4) was run with a neighbour count threshold τ = 2 
and a search area D = 1000 . Geometric hashing was run with a tile size F = 10, 000 , 
b = 50 sub-tiles, chunk length h = 400 and p = 6 . The tile score thresholds τ were opti-
mized for the different weights independently (see Additional file 1).

Comparison with competing tools

To evaluate the performance of geometric hashing in comparison to other state of the 
art seed filtering programs, we ran the YASS alignment software on our dataset. YASS 
uses the “group criterion” [27] for seed filtering, of which our M4 is a simplified version. 
They also use special “transition-constrained” seeds. We evaluated the results in a very 
similar manner to our seed finding methods. Each human exon that was covered by an 
alignment was considered “supported” and, as before, sensitivity = number of supported 
human CDS/number of human CDS. For the false positives we counted all the align-
ments between randomly generated sequences. Geometric hashing results were evalu-
ated as before. Using the two-step approach (“Two-step geometric hashing” section), 
geometric hashing is able to outperform YASS on our dataset in terms of sensitivity, FP 
count and runtime, see Table 3. We used an optimal single spaced seed mask of weight 
k ′ = 19 in the first step and four optimal spaced seed masks of weight k = 8 in the sec-
ond step. The spaced seed masks were again computed using SpEED [17, 40]. The link 
count threshold τ ′ was 3, the tile scoring threshold τ was also 3. All other parameters 
were set as before. We used default YASS parameters after confirming in a grid search 
that they perform best.

Very long input sequences

In our global seed-finding strategy, a decision to include a seed can potentially be influ-
enced by very far away sequence positions. To test this long-range influence, we per-
formed an experiment with the complete chromosomes 20 and 2 of human and mouse, 
respectively, as input. These chromosomes share 151 ortholog genes from our data set. 
We used these genes to assess the sensitivity as described in “Methods” section. Here, 
the sensitivity analysis is restricted to the subset of these 151 genes and the second seed 
position is required to be in the range of the respective orthologous mouse gene. The 
number of false positive seeds is again estimated on two random sequences of lengths 
of the respective chromosomes, 64Mb and 182Mb. For direct comparison, we ran 

Table 3  Comparison of YASS [27] and geometric hashing using the two-step approach (“Two-step 
geometric hashing” section) on the same dataset as used in Fig. 3. Sensitivity is the fraction of human 
conding exons covered by an alignment for YASS or by a seed for geometric hashing

FP denotes the number of alignments between randomly generated sequences in YASS and the number of such seeds for 
geometric hashing

Method Sensitivity FP Runtime (min) Memory

YASS 0.9931 7 107 590 MB

Geometric hashing 0.9979 0 49 28 GB
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geometric hashing also on the subset of 151 gene pairs. We made this experiment with a 
weight of k = 15 and both runs were performed with the same parameters. In both runs, 
the number of false positives (FP) was zero. The sensitivities when inputting two whole 
chromosomes or only gene pairs were 0.978 and 0.954, respectively. This shows that in 
principle our method also works on bigger inputs like whole chromosomes. However, 
we observed a longer runtime (98 min vs. 11 min) and higher memory consumption 
(153 GB vs. 26 GB) in the whole-chromosome run vs. the gene pair run as the input is 
much larger. The sensitivity for the whole chromosome run is somewhat higher. We sus-
pect this is because geometric hashing can now benefit from synteny effects: A human 
CDS that is missed when comparing two gene regions only, may be in a tile that reaches 
the tile scoring threshold τ when complete chromosomes are input that include nearby 
syntenic gene pairs.

Discussion
Our experiments show that geometric hashing is the most accurate method on our test 
data. Geometric hashing can reduce the number of false positives by about 6 orders of 
magnitude over a common strategy in seed finding, using sets of (four) spaced seed pat-
terns. The later method itself constitutes an improvement of 3–4 orders of magnitude 
over the naive method of using contiguous k-mer matches as alignment seeds on pro-
tein-coding genes.

Geometric hashing can be used as a filter on any other seed finding method and 
may potentially be ’inserted’ into the internal pipeline of existing alignment programs 
between seed finding and seed extension. A large speed-up may be possible in such 
aligners if significant parts of the runtime are spent downstream of seed finding. Note 
that seed extension, followed by scoring and filtering, is also an algorithmic step to 
achieve a higher specificity. However, it requires running an algorithm for local align-
ment scoring over a variable-length region. In contrast, geometric hashing only requires 
a constant number of simple integer arithmetic functions (in fact two: one for map-
ping, one for scoring) and does not require any sequence comparisons. A seed extension 
phase would still follow but needs to be executed on a much smaller set of seeds.

Moreover, a higher sensitivity can be achieved by lowering k. Due to the effective filter-
ing of geometric hashing, this need not come at the computational cost of a large num-
ber of false positives. The seed finding with geometric hashing can then simultaneously 
be somewhat more sensitive and much more specific than sets of spaced seeds. Even 
small improvements in sensitivity may result in finding orthologies with lower sequence 
similarity [39].

With our results we confirmed the well established advantage of spaced seeds 
(M2, M3) over contiguous seeds (M1) and that additional filtering steps (M4, M5) 
can improve seed performance even further. The focus of this work was to show that 
considering even distant exons in filtering, as done in geometric hashing, works and 
is superior to only considering local neighbourhoods of seeds candidates as done in 
M4. Due to its ability to filter out FP efficiently, we expect a large runtime improve-
ment from geometric hashing when applied in pairwise whole-genome alignments, 
as much fewer wrong seeds have to be considered in the more time consuming seed 
extension phase. Since geometric hashing is also easily generalizable to process seeds 
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from an arbitrary number of input sequences in a truly simultaneous fashion, we 
think it is a promising novel tool in multiple genome alignment tasks.

Geometric hashing aggregates non-local similarities and, accordingly, we tested it 
here on input sequences that span at least a whole vertebrate gene. It can be expected 
that the relative advantage is lost, when only short similarities are sought, e.g.  from 
small genome rearrangements or horizontal transfer of DNA fragments. However, we 
think that the geometric hashing idea is not limited to genome alignments. It could be 
adapted for protein sequences as well and with some adjustments also for protein to 
mRNA alignments, or it could be used to speed up tBLASTX [3], which finds region 
pairs in genomes that are similar peptide sequences when translated. As mentioned 
earlier, the geometric hashing idea also generalizes well for higher dimensional seeds 
that occur when multiple genomes are compared simultaneously. Future work could 
focus on the necessary adaptations for this to work well.

The methods for seed filtering can be seen as proofs of concept with much potential 
for improvements as we did not aim to write a fully optimized software. For example, 
it has been reported that sorting matches by keys rather than hashing can improve 
runtime due to better data locality [25]. Such an implementation is compatible with 
our geometric hashing approach, both for the primary hashing of k-mers and for the 
secondary geometric hashing of tiles. Further, the overall memory footprint can be 
decreased when the genomes are processed in chunks rather than all at once.

Conclusion
We presented a novel seed filtering approach, geometric hashing, that uses non-local 
neighbourhood information to find orthologous genes with high precision. It out-
performs local neighbourhood filtering while only slightly affecting the sensitivity of 
unfiltered seeds. Geometric hashing is a simple yet powerful idea and generalizes well 
to other alignment problems and higher dimensional data and could be a strong tool 
in future (multiple) genome alignment approaches.
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